Publicaciones
Publicaciones | Prepublicaciones |
| 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 |
echo $Activo; ?>
- A. Arratia, C.. OrtizApproximating the expressive power of logics in finite models. Lect.Notes in Computer Science, 2976, 540-556 (2004).
- A. Campillo, F. Delgado, S. Gusein-ZadePoincaré series of rational surface singularities. Invent. Math. 155, 41-53 (2004).
- A. Campillo, F. Delgado, S. M. Gusein-ZadeOn zeta functions of a meromorphic germ in two variables. Advances in Mathematical Sciences. Amer. Math. Soc.Translations.Serie2.Vol. 212. Amer..Math.Soc. Geometry, Topology and Mathematical Physics. 67-74 (2004).
- A. Campillo, J. I.. FarránAdjoints and Codes. Rend.Sem.Mat.Torino 62(2), 19-33 (2004).
- G. Cortiñas, J. L. CastiglioniCosimplicial versus DG-rings: a version of the Dold-Kan correspondence. J. Pure Appl. Algebra. 191, 119-142. (2004).  
- G. Cortiñas, M. LeónCálculos efectivos de la homología cíclica negativa de hipersuperficies con singularidades aisladas. EACA 2004:Actas de los Encuentros de Algebra Computacional y Aplicaciones, 2004.L. González Vega, T. Recio (Eds.) Universidad de Cantabria. Santander, 2004.ISBN 84-688-6988-04.
- C. Galindo, F. MonserratThe cone of curves of line bundles of a rational surface. Int. J. of Math. 4 (15), 393-407 (2004).
- E. R. García Barroso, A. PłoskiPinceaux de courbes planes et invariants polaires. Annales Polonici Mathematici 83.2, 113-128, (2004).  
- M. Giulietti, F. TorresOn dense sets related to plane algebraic curves, Ars Combin. LXII, 33-40
- M. LahyaneExceptional curves on rational surfaces having $K^2 geq 0$. C. R. Acad. Sci. París. 338 (11), 873-878 (2004).
- M. LahyaneRational surfaces having only a finite number of exceptional curves. Math. Zeitschrift. 246(1), 213-221 (2004).
- E. Martínez-MoroA generalization of Niederreiter-Xing's propagation rule and its commutativity with duality. IEEE Trans. on Information Theory, Vol 50, 701-702 (2004).
- E. Martínez-MoroRegular representations of finite dimensional separable semisimple algebras and Groebner bases. J. Symb. Comp. 37, 5, 575-587 (2004).
- C. Munuera, F.. TorresBounding the trellis state complexity of algebraic geometric codes. Appl. Algebra Eng. Comm. Comput. 15, 81-100. (2004).
- C. Munuera, F. TorresBounding the trellis state complexity of algebraic geometric codes, Appl. Algebra Eng. Comm. Comput. 15, 81-100.
- Ignacio Ojeda Martínez de Castilla, Pilar Pisón-CasaresOn the hull resolution of an affine monomial curve. J. Pure Appl. Algebra 192 (2004), no. 1-3, 53-67.
- M. J. PisabarroComputing lattice ideals of union of monomial curves. J. Symb.Comp. 38, 1025-1042 (2004).