
Numerical semigroup problems motivated by
Distributed Matrix Multiplication using AG codes

Adrián Fidalgo-D́ıaz
(Joint work with Umberto Mart́ınez-Peñas)
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Motivation: Umberto’s talk.



Preliminaries

AG polynomial codes problem

AG matdot codes problem



Definition
Let S ⊆ N. We say that S is a numerical semigroup if:

▶ S is a submonoid of N, i.e, s1 + s2 ∈ S for all s1, s2 ∈ S and
0 ∈ S .

▶ N \ S is finite.

Notation
Let A ⊆ N, we write A∗ := A \ {0}.

Definition
Let S be a numerical semigroup we define the following:

▶ The conductor is the lowest number c(S) such that if
s ≥ c(S) then s ∈ S .

▶ g(S) := |N \ S |, the number of elements of N not in S .

▶ n(S) is the number of elements of S strictly lower than c(S).
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Definition
Let n ∈ S∗, we define the Apéry set with respect to n ∈ S as

Ap(S , n) := {s ∈ S : s − n /∈ S}

Lemma (Kunz coordinates)

Let n ∈ S∗. Then

▶ Ap(S , n) = {w0,w1, . . . ,wn−1}, where wi is the lowest
element of S congruent with i mod n.

▶ c(S) = max(Ap(S , n))− n + 1.
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Problem
Let m, n ∈ N∗, we say that DA,DB ⊆ S is a solution to the AG
polynomial code problem if

▶ |DA| = m and |DB | = n.

▶ (Non colliding) a+ b ̸= a′ + b′ for every
(a, b), (a′, b′) ∈ DA × DB such that (a, b) ̸= (a′, b′).

We define its recovery threshold as max(DA) + max(DB) and we
say that the solution is optimal if the recovery threshold is
minimum among all the possible solutions.
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Notation
Let A,B ⊆ N, we write A+ B to denote the Minkowski sum, i.e.,

A+ B := {a+ b ∈ N : a ∈ A, b ∈ B}.

Remark
We observe that the non colliding property is equivalent to
|DA + DB | = mn.



Example

Let S = ⟨2, 5⟩ = {0, 2, 4, 5,→}, m = 2 and n = 3. Consider the
sets:

DA := {0, 4}
DB := {4, 5, 6}.

We see that DA + DB = {4, 5, 6, 8, 9, 10}. Since |DA + DB | = mn,
this is a solution. It is not an optimal solution but

D ′
A := {4, 5}

D ′
B := {0, 2, 4}.

it is.



Construction (Trivial)

Define the sets

DA := {c(S), c(S) + 1, . . . , c(S) +m − 1},
DB := {c(S), c(S) +m, . . . , c(S) + (n − 1)m}.

This is a solution to the AG polynomial codes problem since

DA + DB = {2c(S), 2c(S) + 1, . . . 2c(S) + nm − 1}

and so |DA + DB | = mn. Its recovery threshold is 2c(S) + nm − 1.



Construction (Apéry)

Let m′ := min{s ∈ S : s ≥ m}. Choose DA as the subset formed
by the first m elements of the Apéry set Ap(S ,m′). Define DB as

DB := {0,m′, . . . , (n − 1)m′}.

This is a solution for AG polynomial code problem by Lemma of
Kunz coordinates. Its recovery threshold satisfies the following
upper bound

max(DA) + max(DB) ≤ c(S) + (m +m(S)− 1)n − 1.

If m ∈ S , then m′ = m and

max(DA) + max(DB) = c(S) +mn − 1.



Lemma
Let DA,DB ⊆ S of sizes m and n, respectively. Consider the sets

EA := {d − d ′ ∈ N : d , d ′ ∈ DA, d > d ′},
EB := {d − d ′ ∈ N : d , d ′ ∈ DB , d > d ′}.

The sets DA and DB are a solution to the AG polynomial code
problem if and only if EA ∩ EB = ∅.



Construction (Difference sets)

Consider the sets

DA := {c(S), c(S) + 1, . . . , c(S) +m − 1},
DB := {m1,m2, . . .mn},

where each mi is defined recursively as

mi :=

{
0 if i = 1

min{s ∈ S : s ≥ mi−1 +m} if i > 1.

Applying the previous lemma we conclude that DA and DB form a
solution to the AG polynomial code problem, since

max(EA) = m − 1,

min(EB) ≥ m,

which implies that EA ∩ EB = ∅.



If m ∈ S then mi = mi−1 +m for each i = 2, . . . n and

max(DA) + max(DB) = c(S) +mn − 1.



Proposition (Lower bound)

Let DA and DB be a solution to the AG polynomial code problem.
If mn ≥ n(S), then

max(DA) + max(DB) ≥ g(S) +mn − 1.

if m /∈ S if m ∈ S
Trivial 2c(S) +mn − 1 2c(S) +mn − 1
Apéry c(S) +m′n − 1 c(S) +mn − 1

Difference sets c(S) +mn − 1 +
∑n−1

i=1 µi c(S) +mn − 1

Table: Recovery threshold of proposed solutions to the AG polynomial
code problem.
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Topics to explore:

▶ Obtain new constructions.

▶ Obtain optimal constructions.

▶ Improve the lower bound.

▶ Any of the anterior but restricting to some semigroup family
(generated by two elements, symmetric, sparse, Arf,
telescopic...).
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Problem
Given m ∈ N∗, we say that DA,DB ⊆ S is a solution to the AG
matdot code problem if

▶ |DA| = |DB | = m.

▶ (Maximum colliding) There exists d ∈ DA + DB such that
there are exactly m pairs (a, b) ∈ DA × DB satisfying
d = a+ b.

We define the recovery threshold as max(DA) + max(DB) and we
say that the solution is optimal if the recovery threshold is
minimum among all the possible solutions (observe that d is not
fixed, only m is fixed).
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▶ |DA| = |DB | = m.

▶ (Maximum colliding) There exists d ∈ DA + DB such that
there are exactly m pairs (a, b) ∈ DA × DB satisfying
d = a+ b.

We define the recovery threshold as max(DA) + max(DB) and we
say that the solution is optimal if the recovery threshold is
minimum among all the possible solutions (observe that d is not
fixed, only m is fixed).



Example

Let S = ⟨2, 3⟩, m = 4. Consider the sets:

DA := {2, 3, 4, 5}
DB := {3, 4, 5, 6}

This is a solution since

d := 8 = 2 + 6 = 3 + 5 = 4 + 4 = 3 + 5

It is not an optimal solution but

D ′
A = D ′

B := {2, 3, 4, 5}

it is.



Construction (Trivial)

Define the sets

DA = DB := {c(S), c(S) + 1, . . . , c(S) +m − 1}.

These sets form a solution to the AG matdot code problem, where
d = 2c(S) +m − 1. Its recovery threshold is 2(c(S) +m − 1).



Definition
Let δ ∈ [0, c(S)] ∩ S . Define

n(δ) := |[δ, c(S)− 1] ∩ S |,

Proposition (Optimal solution)

Let m ≥ 2c(S). Consider an element δ ∈ [0, c(S)] ∩ S such that
δ + 2n(δ) is maximum among all the possible δ. Define
d := m − 1 + 2c(S)− 2n(δ). Then

DA = DB := ([δ, c(S)− 1] ∩ S)

∪ ([c(S), d − c(S)])

∪ (d − [δ, c(S)− 1] ∩ S),

is an optimal solution to the AG matdot codes problem with
recovery threshold 2(m − 1 + 2c(S)− δ − 2n(δ)).



Remark
Observe that the number δ defined before is independent of m (as
long as m ≥ 2c(S)), so we only need to compute it once for the
chosen semigroup.

Definition
Define the map ∆ given by

∆ : S ∩ [0, c(S)] → N
δ 7→ δ + 2n(δ).

Proposition

The map ∆ reaches its maximum in some δ ≥ c(S)/2.
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Definition
We say that a numerical semigroup is sparse if it has no
consecutive elements lower than the conductor.

Proposition

If S is sparse, then ∆ reaches its maximum at δ = c(S).

Proposition

If S = ⟨q, q + 1⟩ with q ≥ 2, then ∆ reaches its maximum at
δ = q⌈(q − 1)/2⌉.
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Topics to explore:

▶ Optimal solutions for m < 2c(S).

▶ Algorithms to compute where ∆ reaches its maximum.

▶ Any of the anterior but restricting to some semigroup family
(generated by two elements, symmetric, Arf, telescopic...).



Thank you for your time!
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