Numerical semigroup problems motivated by Distributed Matrix Multiplication using AG codes

Adrián Fidalgo-Díaz
(Joint work with Umberto Martínez-Peñas)

University of Valladolid

Motivation: Umberto's talk.

Preliminaries

AG polynomial codes problem

AG matdot codes problem

Definition

Let $S \subseteq \mathbb{N}$. We say that S is a numerical semigroup if:

- S is a submonoid of \mathbb{N}, i.e, $s_{1}+s_{2} \in S$ for all $s_{1}, s_{2} \in S$ and $0 \in S$.
- $\mathbb{N} \backslash S$ is finite.

Definition

Let $S \subseteq \mathbb{N}$. We say that S is a numerical semigroup if:

- S is a submonoid of \mathbb{N}, i.e, $s_{1}+s_{2} \in S$ for all $s_{1}, s_{2} \in S$ and $0 \in S$.
- $\mathbb{N} \backslash S$ is finite.

Notation

Let $A \subseteq \mathbb{N}$, we write $A^{*}:=A \backslash\{0\}$.

Definition

Let S be a numerical semigroup we define the following:

- The conductor is the lowest number $c(S)$ such that if $s \geq c(S)$ then $s \in S$.
- $g(S):=|\mathbb{N} \backslash S|$, the number of elements of \mathbb{N} not in S.
- $n(S)$ is the number of elements of S strictly lower than $c(S)$.

Definition

Let $n \in S^{*}$, we define the Apéry set with respect to $n \in S$ as

$$
\operatorname{Ap}(S, n):=\{s \in S: s-n \notin S\}
$$

Lemma (Kunz coordinates)
Let $n \in S^{*}$. Then

- $\operatorname{Ap}(S, n)=\left\{w_{0}, w_{1}, \ldots, w_{n-1}\right\}$, where w_{i} is the lowest element of S congruent with $i \bmod n$.
- $c(S)=\max (\operatorname{Ap}(S, n))-n+1$.

Preliminaries

AG polynomial codes problem

AG matdot codes problem

Problem

Let $m, n \in \mathbb{N}^{*}$, we say that $D_{A}, D_{B} \subseteq S$ is a solution to the $A G$ polynomial code problem if
$-\left|D_{A}\right|=m$ and $\left|D_{B}\right|=n$.

- (Non colliding) $a+b \neq a^{\prime}+b^{\prime}$ for every $(a, b),\left(a^{\prime}, b^{\prime}\right) \in D_{A} \times D_{B}$ such that $(a, b) \neq\left(a^{\prime}, b^{\prime}\right)$.

Problem

Let $m, n \in \mathbb{N}^{*}$, we say that $D_{A}, D_{B} \subseteq S$ is a solution to the $A G$ polynomial code problem if

- $\left|D_{A}\right|=m$ and $\left|D_{B}\right|=n$.
- (Non colliding) $a+b \neq a^{\prime}+b^{\prime}$ for every $(a, b),\left(a^{\prime}, b^{\prime}\right) \in D_{A} \times D_{B}$ such that $(a, b) \neq\left(a^{\prime}, b^{\prime}\right)$.
We define its recovery threshold as $\max \left(D_{A}\right)+\max \left(D_{B}\right)$ and we say that the solution is optimal if the recovery threshold is minimum among all the possible solutions.

Notation

Let $A, B \subseteq \mathbb{N}$, we write $A+B$ to denote the Minkowski sum, i.e.,

$$
A+B:=\{a+b \in \mathbb{N}: \quad a \in A, \quad b \in B\} .
$$

Remark
We observe that the non colliding property is equivalent to
$\left|D_{A}+D_{B}\right|=m n$.

Example

Let $S=\langle 2,5\rangle=\{0,2,4,5, \rightarrow\}, m=2$ and $n=3$. Consider the sets:

$$
\begin{aligned}
D_{A} & :=\{0,4\} \\
D_{B} & :=\{4,5,6\} .
\end{aligned}
$$

We see that $D_{A}+D_{B}=\{4,5,6,8,9,10\}$. Since $\left|D_{A}+D_{B}\right|=m n$, this is a solution. It is not an optimal solution but

$$
\begin{aligned}
D_{A}^{\prime} & :=\{4,5\} \\
D_{B}^{\prime} & :=\{0,2,4\} .
\end{aligned}
$$

it is.

Construction (Trivial)

Define the sets

$$
\begin{aligned}
& D_{A}:=\{c(S), c(S)+1, \ldots, c(S)+m-1\}, \\
& D_{B}:=\{c(S), c(S)+m, \ldots, c(S)+(n-1) m\} .
\end{aligned}
$$

This is a solution to the AG polynomial codes problem since

$$
D_{A}+D_{B}=\{2 c(S), 2 c(S)+1, \ldots 2 c(S)+n m-1\}
$$

and so $\left|D_{A}+D_{B}\right|=m n$. Its recovery threshold is $2 c(S)+n m-1$.

Construction (Apéry)

Let $m^{\prime}:=\min \{s \in S: s \geq m\}$. Choose D_{A} as the subset formed by the first m elements of the Apéry set $\operatorname{Ap}\left(S, m^{\prime}\right)$. Define D_{B} as

$$
D_{B}:=\left\{0, m^{\prime}, \ldots,(n-1) m^{\prime}\right\} .
$$

This is a solution for AG polynomial code problem by Lemma of Kunz coordinates. Its recovery threshold satisfies the following upper bound

$$
\max \left(D_{A}\right)+\max \left(D_{B}\right) \leq c(S)+(m+m(S)-1) n-1
$$

If $m \in S$, then $m^{\prime}=m$ and

$$
\max \left(D_{A}\right)+\max \left(D_{B}\right)=c(S)+m n-1
$$

Lemma

Let $D_{A}, D_{B} \subseteq S$ of sizes m and n, respectively. Consider the sets

$$
\begin{array}{ll}
E_{A}:=\left\{d-d^{\prime} \in \mathbb{N}: d, d^{\prime} \in D_{A},\right. & \left.d>d^{\prime}\right\} \\
E_{B}:=\left\{d-d^{\prime} \in \mathbb{N}: d, d^{\prime} \in D_{B},\right. & \left.d>d^{\prime}\right\}
\end{array}
$$

The sets D_{A} and D_{B} are a solution to the $A G$ polynomial code problem if and only if $E_{A} \cap E_{B}=\emptyset$.

Construction (Difference sets)

Consider the sets

$$
\begin{aligned}
& D_{A}:=\{c(S), c(S)+1, \ldots, c(S)+m-1\} \\
& D_{B}:=\left\{m_{1}, m_{2}, \ldots m_{n}\right\}
\end{aligned}
$$

where each m_{i} is defined recursively as

$$
m_{i}:= \begin{cases}0 & \text { if } i=1 \\ \min \left\{s \in S: s \geq m_{i-1}+m\right\} & \text { if } i>1\end{cases}
$$

Applying the previous lemma we conclude that D_{A} and D_{B} form a solution to the AG polynomial code problem, since

$$
\begin{aligned}
& \max \left(E_{A}\right)=m-1, \\
& \min \left(E_{B}\right) \geq m,
\end{aligned}
$$

which implies that $E_{A} \cap E_{B}=\emptyset$.

If $m \in S$ then $m_{i}=m_{i-1}+m$ for each $i=2, \ldots n$ and

$$
\max \left(D_{A}\right)+\max \left(D_{B}\right)=c(S)+m n-1
$$

Proposition (Lower bound)

Let D_{A} and D_{B} be a solution to the $A G$ polynomial code problem. If $m n \geq n(S)$, then

$$
\max \left(D_{A}\right)+\max \left(D_{B}\right) \geq g(S)+m n-1
$$

Proposition (Lower bound)

Let D_{A} and D_{B} be a solution to the $A G$ polynomial code problem. If $m n \geq n(S)$, then

$$
\max \left(D_{A}\right)+\max \left(D_{B}\right) \geq g(S)+m n-1
$$

	if $m \notin S$	if $m \in S$
Trivial	$2 c(S)+m n-1$	$2 c(S)+m n-1$
Apéry	$c(S)+m^{\prime} n-1$	$c(S)+m n-1$
Difference sets	$c(S)+m n-1+\sum_{i=1}^{n-1} \mu_{i}$	$c(S)+m n-1$

Table: Recovery threshold of proposed solutions to the AG polynomial code problem.

Topics to explore:

- Obtain new constructions.
- Obtain optimal constructions.
- Improve the lower bound.
- Any of the anterior but restricting to some semigroup family (generated by two elements, symmetric, sparse, Arf, telescopic...).

Preliminaries

AG polynomial codes problem

AG matdot codes problem

Problem

Given $m \in \mathbb{N}^{*}$, we say that $D_{A}, D_{B} \subseteq S$ is a solution to the $A G$ matdot code problem if

- $\left|D_{A}\right|=\left|D_{B}\right|=m$.
- (Maximum colliding) There exists $d \in D_{A}+D_{B}$ such that there are exactly m pairs $(a, b) \in D_{A} \times D_{B}$ satisfying $d=a+b$.

Problem

Given $m \in \mathbb{N}^{*}$, we say that $D_{A}, D_{B} \subseteq S$ is a solution to the $A G$ matdot code problem if

- $\left|D_{A}\right|=\left|D_{B}\right|=m$.
- (Maximum colliding) There exists $d \in D_{A}+D_{B}$ such that there are exactly m pairs $(a, b) \in D_{A} \times D_{B}$ satisfying $d=a+b$.
We define the recovery threshold as $\max \left(D_{A}\right)+\max \left(D_{B}\right)$ and we say that the solution is optimal if the recovery threshold is minimum among all the possible solutions (observe that d is not fixed, only m is fixed).

Example

Let $S=\langle 2,3\rangle, m=4$. Consider the sets:

$$
\begin{aligned}
D_{A} & :=\{2,3,4,5\} \\
D_{B} & :=\{3,4,5,6\}
\end{aligned}
$$

This is a solution since

$$
d:=8=2+6=3+5=4+4=3+5
$$

It is not an optimal solution but

$$
D_{A}^{\prime}=D_{B}^{\prime}:=\{2,3,4,5\}
$$

it is.

Construction (Trivial)

Define the sets

$$
D_{A}=D_{B}:=\{c(S), c(S)+1, \ldots, c(S)+m-1\} .
$$

These sets form a solution to the AG matdot code problem, where $d=2 c(S)+m-1$. Its recovery threshold is $2(c(S)+m-1)$.

Definition

Let $\delta \in[0, c(S)] \cap S$. Define

$$
n(\delta):=|[\delta, c(S)-1] \cap S|
$$

Proposition (Optimal solution)

Let $m \geq 2 c(S)$. Consider an element $\delta \in[0, c(S)] \cap S$ such that $\delta+2 n(\delta)$ is maximum among all the possible δ. Define $d:=m-1+2 c(S)-2 n(\delta)$. Then

$$
\begin{aligned}
D_{A}=D_{B}:= & ([\delta, c(S)-1] \cap S) \\
& \cup([c(S), d-c(S)]) \\
& \cup(d-[\delta, c(S)-1] \cap S),
\end{aligned}
$$

is an optimal solution to the $A G$ matdot codes problem with recovery threshold $2(m-1+2 c(S)-\delta-2 n(\delta))$.

Remark
Observe that the number δ defined before is independent of m (as long as $m \geq 2 c(S)$), so we only need to compute it once for the chosen semigroup.

Remark

Observe that the number δ defined before is independent of m (as long as $m \geq 2 c(S)$), so we only need to compute it once for the chosen semigroup.

Definition
Define the map Δ given by

$$
\begin{aligned}
\Delta: S \cap[0, c(S)] & \rightarrow \mathbb{N} \\
\delta & \mapsto \delta+2 n(\delta)
\end{aligned}
$$

Remark

Observe that the number δ defined before is independent of m (as long as $m \geq 2 c(S)$), so we only need to compute it once for the chosen semigroup.

Definition
Define the map Δ given by

$$
\begin{aligned}
\Delta: S \cap[0, c(S)] & \rightarrow \mathbb{N} \\
\delta & \mapsto \delta+2 n(\delta)
\end{aligned}
$$

Proposition
The map Δ reaches its maximum in some $\delta \geq c(S) / 2$.

Definition

We say that a numerical semigroup is sparse if it has no consecutive elements lower than the conductor.

Proposition
If S is sparse, then Δ reaches its maximum at $\delta=c(S)$.

Definition

We say that a numerical semigroup is sparse if it has no consecutive elements lower than the conductor.

Proposition
If S is sparse, then Δ reaches its maximum at $\delta=c(S)$.
Proposition
If $S=\langle q, q+1\rangle$ with $q \geq 2$, then Δ reaches its maximum at $\delta=q\lceil(q-1) / 2\rceil$.

Topics to explore:

- Optimal solutions for $m<2 c(S)$.
- Algorithms to compute where Δ reaches its maximum.
- Any of the anterior but restricting to some semigroup family (generated by two elements, symmetric, Arf, telescopic...).

Thank you for your time!

