Numerical semigroup problems motivated by Distributed Matrix Multiplication using AG codes

Adrián Fidalgo-Díaz (Joint work with Umberto Martínez-Peñas)

University of Valladolid

Motivation: Umberto's talk.

Preliminaries

AG polynomial codes problem

AG matdot codes problem

Let $S \subseteq \mathbb{N}$. We say that S is a numerical semigroup if:

- ▶ S is a submonoid of \mathbb{N} , i.e, $s_1 + s_2 \in S$ for all $s_1, s_2 \in S$ and $0 \in S$.
- ▶ $\mathbb{N} \setminus S$ is finite.

Let $S \subseteq \mathbb{N}$. We say that S is a numerical semigroup if:

- ▶ S is a submonoid of \mathbb{N} , i.e, $s_1 + s_2 \in S$ for all $s_1, s_2 \in S$ and $0 \in S$.
- ▶ $\mathbb{N} \setminus S$ is finite.

Notation Let $A \subseteq \mathbb{N}$, we write $A^* := A \setminus \{0\}$.

Definition

Let S be a numerical semigroup we define the following:

- The conductor is the lowest number c(S) such that if s ≥ c(S) then s ∈ S.
- $g(S) := |\mathbb{N} \setminus S|$, the number of elements of \mathbb{N} not in S.
- n(S) is the number of elements of S strictly lower than c(S).

Let $n \in S^*$, we define the Apéry set with respect to $n \in S$ as

$$\mathsf{Ap}(S,n) := \{s \in S : s - n \notin S\}$$

Lemma (Kunz coordinates)

Let $n \in S^*$. Then

• Ap $(S, n) = \{w_0, w_1, \dots, w_{n-1}\}$, where w_i is the lowest element of S congruent with $i \mod n$.

•
$$c(S) = \max(\operatorname{Ap}(S, n)) - n + 1.$$

Preliminaries

AG polynomial codes problem

AG matdot codes problem

Problem

Let $m, n \in \mathbb{N}^*$, we say that $D_A, D_B \subseteq S$ is a solution to the AG polynomial code problem if

▶
$$|D_A| = m \text{ and } |D_B| = n.$$

• (Non colliding)
$$a + b \neq a' + b'$$
 for every $(a, b), (a', b') \in D_A \times D_B$ such that $(a, b) \neq (a', b')$.

Problem

Let $m, n \in \mathbb{N}^*$, we say that $D_A, D_B \subseteq S$ is a solution to the AG polynomial code problem if

▶
$$|D_A| = m \text{ and } |D_B| = n.$$

▶ (Non colliding)
$$a + b \neq a' + b'$$
 for every
(a, b), $(a', b') \in D_A \times D_B$ such that $(a, b) \neq (a', b')$.

We define its recovery threshold as $\max(D_A) + \max(D_B)$ and we say that the solution is optimal if the recovery threshold is minimum among all the possible solutions.

Notation Let $A, B \subseteq \mathbb{N}$, we write A + B to denote the Minkowski sum, i.e.,

$$A+B:=\{a+b\in\mathbb{N}:\ a\in A,\quad b\in B\}.$$

Remark

We observe that the non colliding property is equivalent to $|D_A + D_B| = mn$.

Example

Let $S = \langle 2, 5 \rangle = \{0, 2, 4, 5, \rightarrow\}$, m = 2 and n = 3. Consider the sets:

$$D_A := \{0, 4\}$$

 $D_B := \{4, 5, 6\}.$

We see that $D_A + D_B = \{4, 5, 6, 8, 9, 10\}$. Since $|D_A + D_B| = mn$, this is a solution. It is not an optimal solution but

$$D'_A := \{4, 5\}$$

 $D'_B := \{0, 2, 4\}.$

it is.

Construction (Trivial)

Define the sets

$$D_A := \{c(S), c(S) + 1, \dots, c(S) + m - 1\},\$$

$$D_B := \{c(S), c(S) + m, \dots, c(S) + (n - 1)m\}.$$

This is a solution to the AG polynomial codes problem since

$$D_A + D_B = \{2c(S), 2c(S) + 1, \dots 2c(S) + nm - 1\}$$

and so $|D_A + D_B| = mn$. Its recovery threshold is 2c(S) + nm - 1.

Construction (Apéry)

Let $m' := \min\{s \in S : s \ge m\}$. Choose D_A as the subset formed by the first m elements of the Apéry set Ap(S, m'). Define D_B as

$$D_B := \{0, m', \dots, (n-1)m'\}.$$

This is a solution for AG polynomial code problem by Lemma of Kunz coordinates. Its recovery threshold satisfies the following upper bound

$$\max(D_A) + \max(D_B) \leq c(S) + (m + m(S) - 1)n - 1.$$

If $m \in S$, then m' = m and

$$\max(D_A) + \max(D_B) = c(S) + mn - 1.$$

Lemma

Let $D_A, D_B \subseteq S$ of sizes m and n, respectively. Consider the sets

$$E_A := \{ d - d' \in \mathbb{N} : d, d' \in D_A, d > d' \},$$

 $E_B := \{ d - d' \in \mathbb{N} : d, d' \in D_B, d > d' \}.$

The sets D_A and D_B are a solution to the AG polynomial code problem if and only if $E_A \cap E_B = \emptyset$.

Construction (Difference sets)

Consider the sets

$$D_A := \{c(S), c(S) + 1, \dots, c(S) + m - 1\},\ D_B := \{m_1, m_2, \dots, m_n\},$$

where each m_i is defined recursively as

$$m_i := \begin{cases} 0 & \text{if } i = 1\\ \min\{s \in S : s \ge m_{i-1} + m\} & \text{if } i > 1. \end{cases}$$

Applying the previous lemma we conclude that D_A and D_B form a solution to the AG polynomial code problem, since

$$\max(E_A) = m - 1,$$

$$\min(E_B) \ge m,$$

which implies that $E_A \cap E_B = \emptyset$.

If $m \in S$ then $m_i = m_{i-1} + m$ for each $i = 2, \dots n$ and $\max(D_A) + \max(D_B) = c(S) + mn - 1.$

Proposition (Lower bound)

Let D_A and D_B be a solution to the AG polynomial code problem. If $mn \ge n(S)$, then

 $\max(D_A) + \max(D_B) \ge g(S) + mn - 1.$

Proposition (Lower bound)

Let D_A and D_B be a solution to the AG polynomial code problem. If $mn \ge n(S)$, then

$$\max(D_A) + \max(D_B) \ge g(S) + mn - 1.$$

Table: Recovery threshold of proposed solutions to the AG polynomial code problem.

Topics to explore:

- Obtain new constructions.
- Obtain optimal constructions.
- Improve the lower bound.
- Any of the anterior but restricting to some semigroup family (generated by two elements, symmetric, sparse, Arf, telescopic...).

Preliminaries

AG polynomial codes problem

AG matdot codes problem

Problem

Given $m \in \mathbb{N}^*$, we say that $D_A, D_B \subseteq S$ is a solution to the AG matdot code problem if

$$\blacktriangleright |D_A| = |D_B| = m.$$

 (Maximum colliding) There exists d ∈ D_A + D_B such that there are exactly m pairs (a, b) ∈ D_A × D_B satisfying d = a + b.

Problem

Given $m \in \mathbb{N}^*$, we say that $D_A, D_B \subseteq S$ is a solution to the AG matdot code problem if

$$\blacktriangleright |D_A| = |D_B| = m.$$

 (Maximum colliding) There exists d ∈ D_A + D_B such that there are exactly m pairs (a, b) ∈ D_A × D_B satisfying d = a + b.

We define the recovery threshold as $\max(D_A) + \max(D_B)$ and we say that the solution is optimal if the recovery threshold is minimum among all the possible solutions (observe that d is not fixed, only m is fixed).

Example Let $S = \langle 2, 3 \rangle$, m = 4. Consider the sets: $D_A := \{2, 3, 4, 5\}$ $D_B := \{3, 4, 5, 6\}$

This is a solution since

$$d := 8 = 2 + 6 = 3 + 5 = 4 + 4 = 3 + 5$$

It is not an optimal solution but

$$D'_A = D'_B := \{2, 3, 4, 5\}$$

it is.

Construction (Trivial)

Define the sets

$$D_A = D_B := \{c(S), c(S) + 1, \dots, c(S) + m - 1\}.$$

These sets form a solution to the AG matdot code problem, where d = 2c(S) + m - 1. Its recovery threshold is 2(c(S) + m - 1).

Definition Let $\delta \in [0, c(S)] \cap S$. Define

$$n(\delta) := |[\delta, c(S) - 1] \cap S|,$$

Proposition (Optimal solution)

Let $m \ge 2c(S)$. Consider an element $\delta \in [0, c(S)] \cap S$ such that $\delta + 2n(\delta)$ is maximum among all the possible δ . Define $d := m - 1 + 2c(S) - 2n(\delta)$. Then

$$egin{aligned} D_{A} &= D_{B} := ([\delta, c(S) - 1] \cap S) \ & \cup ([c(S), d - c(S)]) \ & \cup (d - [\delta, c(S) - 1] \cap S), \end{aligned}$$

is an optimal solution to the AG matdot codes problem with recovery threshold $2(m - 1 + 2c(S) - \delta - 2n(\delta))$.

Remark

Observe that the number δ defined before is independent of m (as long as $m \ge 2c(S)$), so we only need to compute it once for the chosen semigroup.

Remark

Observe that the number δ defined before is independent of m (as long as $m \ge 2c(S)$), so we only need to compute it once for the chosen semigroup.

Definition

Define the map Δ given by

$$\Delta: S \cap [0, c(S)] \to \mathbb{N}$$

 $\delta \mapsto \delta + 2n(\delta).$

Remark

Observe that the number δ defined before is independent of m (as long as $m \ge 2c(S)$), so we only need to compute it once for the chosen semigroup.

Definition

Define the map Δ given by

$$\Delta: S \cap [0, c(S)] \to \mathbb{N}$$

 $\delta \mapsto \delta + 2n(\delta).$

Proposition

The map Δ reaches its maximum in some $\delta \geq c(S)/2$.

We say that a numerical semigroup is sparse if it has no consecutive elements lower than the conductor.

Proposition

If S is sparse, then Δ reaches its maximum at $\delta = c(S)$.

We say that a numerical semigroup is sparse if it has no consecutive elements lower than the conductor.

Proposition

If S is sparse, then Δ reaches its maximum at $\delta = c(S)$.

Proposition

If $S = \langle q, q+1 \rangle$ with $q \ge 2$, then Δ reaches its maximum at $\delta = q \lceil (q-1)/2 \rceil$.

Topics to explore:

- Optimal solutions for m < 2c(S).
- Algorithms to compute where Δ reaches its maximum.
- Any of the anterior but restricting to some semigroup family (generated by two elements, symmetric, Arf, telescopic...).

Thank you for your time!