Distributed Matrix Multiplication

Umberto Martinez-Penas
University of Valladolid (UVa)

SecureCAT Workshop,
Aguilar de Campoo 2023

Martinez-Penas, U. Distributed Matrix Multiplication 1/33

Distributed Matrix Multiplication

@ Let Ac FS*" and B ¢ F$*! forr,s,t € Z, and a field FF.
@ We want to compute C = ATB in a distributed way.
@ If we have mn workers, we divide

A= (Ao,A1,.. . ,Am_1) and B= (Bo,B1,...,Bn_1),
with appropriate sizes A; € F$*" and B; € F$*!', r = mr’ and
=nt'.

@ Each worker computes a smaller product ATB;, and we recover C
by appending these products, since

AlBy AlBi ... AlB,
comp_| AB AB . AB
Al By AT By ... AT B,

Martinez-Penas, U. Distributed Matrix Multiplication 2/33

Distributed Matrix Multiplication

@ In this way, we parallelize the multiplication of two large matrices.

@ A typical problem is that some workers may take too long to
perform the computation (stragglers).

@ In fact, the stragglers may take orders of magnitude longer, and
thus they are considered non-responsive.

@ However, in the previous parallelization method, the output of
every worker is necessary to recover the whole product C = ATB.

@ Solution: Error-correcting codes.

Martinez-Penas, U. Distributed Matrix Multiplication 3/33

Distributed Matrix Multiplication

data assignment

inputs Q
Ay By

Worker 0 AyBg

A=Ay A ... A, Q output

Worker 1 = Q : L LT
ali

1By
Master
B=|By B, ... B,

\\orlm N-1

Martinez-Penas, U. Distributed Matrix Multiplication 4/33

Polynomial Codes

@ Polynomial codes are essentially Reed—Solomon codes, but with
the previous matrix subdivision and appropriate degree choices.
@ We have N workers and divide

A= (Ao,A1,...,Am_1) and B:(Bo,B1,...,Bn_1),

and as before, we only need to compute A B; for all /, /.
@ For «, 5 € Z4, we define the («, 5)-polynomial code by

m—1 n—1
A,' = Z Ainaj and B,' = Z Ble-ﬂk,
j=0 k=0
for distinct points xg, X1, ..., Xxn_1 € F.

@ Now, the ith worker computes
_ o m—1n—1 - k
Ci=AB=> > ABxV~
j=0 k=0

Martinez-Penas, U. Distributed Matrix Multiplication 5/33

Polynomial Codes

@ Now, the ith worker computes
m—1n—1
6,‘ = Z\}-B, = Z Z A}-BkXiajJer.
j=0 k=0
@ To recover the mn products AjTBk, we need to choose («, /) such
that no two products share the same monomial x®/*5k.
@ In this scenario, a simple choice is («, 5) = (1, m), that is,

m—1n—1

6,' = Z\;ré, = Z ZA}-BKXI[Jka.
/=0 k=0

@ We define now the matrix polynomial

m—1n—1

h(x) =YY ATBux! Tk e " <V[x].

j=0 k=0

Martinez-Penas, U. Distributed Matrix Multiplication [FEE]

Polynomial Codes

@ We define now the matrix polynomial

m—1n—1

h(x) = > ATBx Tk e B x].
j=0 k=0

@ Since deg(h(x)) = mn —1, and the products Af B, appear with
different monomials, then we only need to collect outputs from mn
workers and apply Lagrange interpolation.

@ The number of workers N is arbitrary with N > mn.
@ Hence the polynomial code can tolerate up to N — mn stragglers.

[Q.Yu, M. Maddah-Ali and S. Avestimehr.
Polynomial codes: an optimal design for high-dimensional coded
matrix multiplication.
Advances in Neural Information Processing Systems, 30, 2017.

Martinez-Penas, U. Distributed Matrix Multiplication 71733

Polynomial Codes

data assignment

inputs

L

B 7 Worker 0 AB,
. Q output
L - / Worker 1 ' Q : CA AR
4 B AR,

Master
B=|By B, ... B, °

Worker N — 1

ed Matrix Multiplication 8/33

Martinez-Penas, U.

MatDot Codes

@ Polynomial codes are optimal only for some metrics (more later).
@ Consider now A, B € FN*N and let's compute C = AB.
@ As a toy example, for polynomial codes we subdivide A and B as

Ao
A:<A1> and B:(Bo B1)
@ The product C = AB can be decomposed as

an_ [AdBy AoBs
C_AB_<A1BO A1 B; >

@ As we have seen, for these codes we need to recover (by
interpolation) the polynomial

Martinez-Penas, U. Distributed Matrix Multiplication 9/33

MatDot Codes

@ Polynomial codes are optimal only for some metrics (more later).
@ Consider now A, B € FN*N and let's compute C = AB.
@ As a toy example, for MatDot codes we subdivide A and B as

A=(Ay Ar) and B:(go).
1

@ With this decomposition, we simply have
C = AB = AyBy + A Bs.
@ If we set pa(x) = Ag + A1x and pg(x) = Byx + By, then
h(x) = pa(X)ps(x) = AoB; + (AuBy + A1B1)x + A Byx2.

@ We can recover AB = ApBy + A1B; from any 3 workers by
collecting 3 evaluations h(x;), h(x;,) and h(x;,).

Martinez-Penas, U. Distributed Matrix Multiplication 10/33

MatDot Codes

@ In general, for MatDot codes we subdivide
By
A:(AO A1 Am—1) and B= ,
Bm—1

where m | N, A, B € FN*N, A, ¢ FN<N/m B, ¢ pN/mxN,
@ We choose distinct xq, X2, ..., xp € F, and set

m—1
pa(x)=>_ Aix' and pp(x) = ZBX’" =
i=0
@ The ith worker obtains pa(x;) and pg(x;) and computes
h(X,') = pA(X,')pB(X,'), fori = 1,2,..., P.
@ We have that AB = Zj";fﬂ A;B; is the coefficient of x™~1 in h(x).
@ Since deg(h(x)) < 2m — 2, we only need to collect the evaluations
of 2m — 1 (out of P) workers.

Martinez-Penas, U. Distributed Matrix Multiplication 11733

PolyDot Codes

@ We can also obtain hybrid solutions: PolyDot codes.
@ Toy example: We split A, B ¢ FN*N as

A (Avo Ao) and B — < Byo By,)

@ We have that

AB — (Ao0,0B0,0 + A0, 1B1o AooBo1 + Ao 1B+) .
A1,0Boo +A11B1o A10Bo1 + A1 1B+

@ Set pa(x) = Ao,o + Aq oX + AO71X2 + A171X3 and
pa(x) = Boox? + By g+ By 1x® + By 1x°.
@ The 4 block components of AB are the coefficients of

3 9

X<, x°, x° and Xx7.

@ We may recover AB from 4 evaluations of h(x) = pa(x)ps(x).

Martinez-Penas, U. Distributed Matrix Multiplication 12/33

Hybrid Solution: PolyDot Codes

@ In general: We split A, B € FN*N as
Avo - Aost Boo ... Bos-1
A=| s o |B=
A1 o Aris Bi 10 .- Bi_1s-1

@ We define
t—1 s—1

palx) =Y "> Ayxt,
i=0 j=0
s—1 t-—1

pA(X) _ Z Z Bk7IXt(S_1_k)+t(28_1)I-

k=0 I=0
@ If h(x) = pa(x)ps(x), then
h(X) _ Z AijBk /Xi+t(sf1+jfk)+t(2$—1)l'
ijk,l

Martinez-Penas, U. Distributed Matrix Multiplication 13733

Hybrid Solution: PolyDot Codes

@ If h(x) = pa(x)ps(x), then

h(X) _ Z AijBk /Xi+t(s_1+j_k)+[(23_1)/.
ij.k,l

@ It can be shown that for different pairs of (/, jk, /) we get different
powers of x.

@ For the powers such that j — k = 0, we have the term
s—1
(Z A; By I) xit(s=1)+t(2s—1)/ _ Ci /Xi+t(sf1)+t(2$f1)li
k=0

@ Notice that
deg(h(x)) <t—1+2t(s—1)+t(2s—1)(t—1) = 3(2s — 1).

@ Thus we need t?(2s — 1) responses from the workers.

Martinez-Penas, U. Distributed Matrix Multiplication 14/33

Communication - Recovery Trade-Off

@ We have divided A, B € FN*N into m := st submatrices. Each
worker stores 2N2/m symbols in F.
@ Keeping storage cost constant, i.e. m = st constant, the recovery

threshold
> 25—1

S2
decreases as s increases, i.e., increases as t increases.

@ In terms of communication cost, the master node sends O(N?/m)
symbols to each worker, and each worker sends O(N?/t?)
symbols to the fusion node.

@ Since we collect outputs from t2(2s — 1) workers, the total
communication cost from the workers to the fusion node is

0 <t2(23 . ’;’f) — O(N?(25 1)),

?(2s — 1)

@ which increases as s increases, i.e., decreases as f increases.

Martinez-Penas, U. Distributed Matrix Multiplication 15733

Communication - Recovery Trade-Off

Communication - Recovery Threshold Trade-off (m = 36)
80 T T T T T T

t=1,s=m
<~ (MatDot Code) -

~1
(=]
T

[=2}
o
T

2]
o
T

t:m,é}:\/ﬁ

/ t=m,s=1 |
(Polynomial Code)

w
o
T

Communication Cost (# symbols/N?)
o N
S S

—_
o
T

0 \ | | | |
0 200 400 600 800 1000 1200 1400

Recovery Threshold

Martinez-Penas, U. Distributed Matrix Multiplication 16/33

Computation - Recovery Trade-Off

@ We have divided A, B € FN*N into m := st submatrices. Each
worker stores 2N2/m symbols in .

@ Keeping storage cost constant, i.e. m = st constant, the recovery
threshold

> 25—1

52

decreases as s increases, i.e., increases as f increases.

@ In terms of computation cost, each worker computes the product
of N/t x N/sand N/s x N/t matrices, which has a computational

cost (over F) of
N3 N3
o(g2) =0 (e s):

@ which increases as s increases, i.e., decreases as ! increases.
@ For the decoding to be negligible in comparison, we need

P(2s—1)=m

m4
mPt2 = <z = o).

Martinez-Penas, U. Distributed Matrix Multiplication 17733

Computation - Recovery Trade-Off

Computation - Recovery Threshold Trade-off (N = 72,m = 36)
= 12000 T w T T T ‘

t=1,s=m

(MatDot Code) _

10000
8000 |

6000 [

t=+m,s=ym

4000

t=m,s=1

(Polynomial Code) .

i

0 200 400 600 800 1000 1200 1400
Recovery Threshold

2000

Computational Cost (# multiplications/worker)

Martinez-Penas, U. Distributed Matrix Multiplication 18/33

PolyDot Codes

@ MatDot codes and PolyDot codes, together with the previous
trade-offs, were introduced in

[§ S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe
and P. Grover.
On the optimal recovery threshold of coded matrix
multiplication.
IEEE Trans. Info. Theory, 66(1):278-301, 2019.

@ They also give upper bounds and show that PolyDot codes always
attain the bounds.

@ For IF = R or C, the number of workers is unrestricted, the main
issues have to do with numerical stability:

[{ M. Fahim and V. Cadambe.
Numerically stable polynomially coded computing.
IEEE Trans. Info. Theory, 67(5):2758—-2785, 2021.

Martinez-Penas, U. Distributed Matrix Multiplication 19/33

PolyDot Codes

@ For IF = [Fy, numerical stability is not a problem, but the g may be.
@ We need the number of workers to satisfy P < q.
@ But the recovery threshold also needs to satisfy

t22s—1)<P
@ Hence PolyDot codes require

2s —1

g>t22s—1)=m?. =

@ Alternatives: 1) Using ideas from Algebraic-Geometry codes?
Problem: Degrees. Maybe we need to choose algebraic functions
appropriately.

@ Alternatives: 2) Using polynomials in several variables and/or
certain evaluation points.

@ Alternatives: 3) Using ideas from subfield subcodes.

Martinez-Penas, U. Distributed Matrix Multiplication 20/33

Secure Distributed Matrix Multiplication

@ We now consider the problem of multiplying two matrices in a
secure way.

@ We want to multiply A and B using N workers in a way that no T of
them can obtain any information about A or B (in an IT sense).

@ In this scenario, we assume all N workers are responsive (on time
and correct) (honest but curious).

@ For this problem, it is usual to consider as performance metric the
download rate, which is inverse to the communication cost.

@ Recall that for PolyDot codes the communication cost was
O(N3(2s — 1)),
which is minimum for polynomial codes, s = 1.

@ For this reason, most works on SDMM follow the same matrix
subdivision as polynomial codes.

Martinez-Penas, U. Distributed Matrix Multiplication 21/33

Secure Distributed Matrix Multiplication

We start with the matrix subdivision of polynomial codes

Aq
Ao
A=) and B:(B1 B ... BL)7
Ak
so that
ABy AB ... AB
AB; AB> ... AB
C=AB= 2_1 2.2 . 2.L
AxBi AxBs ... AxB

Martinez-Penas, U. Distributed Matrix Multiplication 22/33

Secure Distributed Matrix Multiplication

@ We fix T such that no T workers will be able to obtain any
information about A or B.

@ Fix degree sequences

a=(a1,az,...,axer) and B =(B1,82,...,BL47)

@ Generate random matrices Ry, Ro,...,Rrand 51, S5, ..., ST, of
appropriate sizes, and define

K T
f(X) = Z ApXxk + Z Ry x K+t
k=1 t=1

L T
g(x) = BuxPr 43 " SixPret,
= t—1

Martinez-Penas, U. Distributed Matrix Multiplication 23/33

Secure Distributed Matrix Multiplication

@ Fix also distinct ay, a0, ..., ay € F. We send f(a;) and g(a;) to the
ith worker, who computes

h(a;) = f(ai)g(ai).

@ As in Shamir's scheme, we want to recover all products AxB;, from
h(ai), h(az), .. ., h(an),

@ while no information about A and B (i.e., the matrices A and By)
is leaked from any T evaluations of h(x):

I(f(ai1)a g(ai1)a ceey f(ai'r)v g(air); A’ B) =0.
@ The download rate of the scheme is defined as

KL
R—W.

Martinez-Penas, U. Distributed Matrix Multiplication 24733

Secure Distributed Matrix Multiplication

@ We define the degree table as

ar+p1 ... o+ Bt

a®df= : .. :
aksT+B1 o akyT+ Byt

@ The scheme satisfies the recovery and secrecy conditions iff
® ak+ B # akx + P, forall (k,) € [K] x [L] and all
(K',L'ye [K+T]x[L+T].
® akit # akyp and By # By, forall t # t' € [T].

51 61 BL+1 BrLiT
i ai + /1 a1 + B, a1+ fr+1 a1+ BraT
aK ar + 061 ax + AL ag + BL+1 aK + BL+T
OK+1 a1+ 1 ag+1 + 6L axt1+ BrLit ag 11+ BrLar
agqr | ager+581 -0 agger+B8L | agyr + 841 o agar +BLar

Martinez-Penas, U. Distributed Matrix Multiplication 25/33

Secure Distributed Matrix Multiplication

A first valid choice of « and (3 is

k-1 if1 <k <K,
TV KL+t—1 ifk=K+tand1<t<T,

8 = K(—1) ift<e<lL,
Ty KL+t—1 ift=L+tand1<t<T,
if L< K, and

[K=1) if1<e<lL,
TN KL+t—1 if¢=L+ttand1<t<T,

B — k—1 if1< k<K,
K=l KL+t—1 ifk=K+tand1<t<T,
if K< L.

Martinez-Penas, U. Distributed Matrix Multiplication 26 /33

Secure Distributed Matrix Multiplication

k-1 if1< k<K,
TV KL+t—1 ifk=K-+tand1<t<T,

8 K(—1) if1<e<lL,
"1 KL+t—1 if¢=L+tand1<t<T,

B1=0 BL=K(L-1) Bry1 =KL Brip=KL+1 --- PBryr=KL+T-1
a1 =0 0 K(L-1) KL KL+1 KL+T-1
ax =K -1 K-1 KL -1 KL+K-1 KL+ K KL+K+T-2
ag+1 =KL KL 2KL — K 2KL 2KL+1 2KL+T -1
akto=KL+1 KL+1 2KL — K +1 2KL +1 2KL+2 2KL+T
akir=KL4+T—1 | KL+T—1 .. 2KL-K+T—1|2KL+T—1 OKL+T KL+ 9T -2
Martinez-Penas, U. Distributed Matrix Multiplication 27/33

Secure Distributed Matrix Multiplication

@ The number of workers is given by
N:{ (K+T)(L+1)—1 ifT <K,

2KL+2T —1 if T>K,
if L< K, and
o
N — (L+T)(K+1)—1 if T <L,
2KL+2T — 1 if T>L,
if L< K.

@ The rate is given by R = KL/N with N as above.

@ They all satisfy N< (K+ T)(L+1)—1,s0

KL
(K+T)(L+1)-1"

Martinez-Penas, U. Distributed Matrix Multiplication 28/33

R =

Secure Distributed Matrix Multiplication

@ This scheme was introduced in

[{ R. DOliveira, S. El Rouayheb and D. Karpuk.
GASP codes for secure distributed matrix multiplication.
IEEE Trans. Info. Theory, 66(7):4038—4050, 2020.
@ They also provide another scheme that is slightly better for

T < max{K, L}.

K=20, L=20

—©—GASPbig
~%—GASPsmall

=6~ GASPbig
~%—GASPsmall

download rate
2 8 g
download rate

R
R

20 %0 w0 50 £ 10 20) 10
T = security level T = security level

Martinez-Penas, U. Distributed Matrix Multiplication 29/33

Secure Distributed Matrix Multiplication

@ As in the case of recovery, for F = R or C, the main problem
seems to be numerical stability.

@ For F = g, since the number of workers is about
N=(K+ T)(L+1)—1, therefore we need

g>(K+T)(L+1)—1.

@ Alternative solutions may require algebraic-geometry codes,
multivariate polynomials, etc.

@ The previous work only considered communication cost (i.e.
download rate) as performance metric.

@ Finding good codes for other metrics, such as recovery threshold
(i.e. PolyDot codes) seems to be an open problem.

Martinez-Penas, U. Distributed Matrix Multiplication EEE]

Related Problems

@ Private computation consists in distributing a computation among
workers while maintaining private the computation itself.

[d N. Raviv and D. Karpuk.
Private polynomial computation from Lagrange encoding.
IEEE Trans. Info. Forensics and Security, 15:553-563, 2019.

@ Another approach to distributed matrix multiplication is using
partial results from all workers:

[@ N. Ferdinand and S. Draper.
Anytime stochastic gradient descent: A time to hear from all
the workers.
56th Allerton Conf. Comm. Control Comp., 552-559, 2018.

[@ S. Kianidehkordi, N. Ferdinand and S. Draper.
Hierarchical coded matrix multiplication.
IEEE Trans. Info. Theory, 67(2):726—754, 2020.

Martinez-Penas, U. Distributed Matrix Multiplication 31/33

Related Problems

@ There are works considering simultaneously recovery, security
and privacy.

@ Q. W, S. Li, N. Raviv, S. Kalan, M. Soltanolkotabi,
S. Avestimehr.
Lagrange coded computing: Optimal design for resiliency,
security, and privacy.
22nd Int. Conf. Artif. Intel. Stat., 1215—1225, 2019.

@ There are coding solutions to straggler mitigation for specific
Machine Learning algorithms, such as gradient descent:

[N.Raviv, I. Tamo, R. Tandon and A. Dimakis.
Gradient coding from cyclic MDS codes and expander graphs.

IEEE Trans. Info. Theory, 66(12):7475-7489, 2020.

Martinez-Penas, U. Distributed Matrix Multiplication 32/33

Conclusion

Thank you for your attention.

Martinez-Penas, U. Distributed Matrix Multiplication 33/33

