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Structure of this talk

1 Short Review to Secret Sharing and Quantum Information
2 Sharing Quantum Secrets by Quantum Stabilizer Codes
3 Sharing Classical Secrets by Quantum Stabilizer Codes
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Most famous secret sharing scheme (Shamir-Blakley)

Goal: Share a secret 𝑠 so that only qualified sets of participants know 𝑠.
F𝑞 ∋ 𝑠: a secret
𝑛: the number of participants
F𝑞 ∋ 𝛼1, …, 𝛼𝑛: distinct nonzero elements

1 Choose a polynomial 𝑓(𝑥) = 𝑠 + 𝑎1𝑥 +⋯+ 𝑎𝑘−1𝑥𝑘−1 at random.
2 Distribute 𝑓(𝛼𝑖) to the 𝑖-th participant.

𝑘 − 1 or less participants has no information about 𝑠.
𝑘 or more participants can reconstruct 𝑠 (by solving linear equations).

A share: a piece of information distributed to a participant (𝑓(𝛼𝑖) in this
example)
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Access structure in secret sharing

Forbidden set: a set of participants who collectively have no information
about the secret, that is, their shares are statistically independent of the
secret, as random variables.
Example: A set of 𝑘 − 1 or less participants in the Shamir-Blakley scheme.

Qualified set: a set of participants who can collectively reconstruct the
secret, that is, there exists a map from their shares to the secret.
Example: A set of 𝑘 or more participants in the Shamir-Blakley scheme.

Intermediate set: a set of participants that is neither qualified nor
forbidden.

Access structure: set of forbidden sets and set of qualified sets, that is,
the structure of forbidden and qualified sets.

Secret sharing will be abbreviated as SS. Ramp SS allows intermediate
sets, while perfect SS does not. Ramp SS enables higher coding rate (=
size of secret / average size of shares).
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Review of qubits

QUantum BIT: a unit of quantum information that can store 1 classical
bit, and expressed by two-dimensional complex linear space C2. Its

orthonormal basis is often written as {|0⟩ = ( 1
0 ) , |1⟩ = ( 0

1 )} (ket-zero

and ket-one).

𝑛 qubits are expressed as a vector in (C2)⊗𝑛 of dimension 2𝑛.
|𝑎⟩ ⊗ |𝑏⟩ is often abbreviated as |𝑎𝑏⟩.

Example: Two typical orthonormal bases of 2 qubits are
{|00⟩, |01⟩, |10⟩, |11⟩} and

⎧⎪
⎨⎪
⎩

|0ℓ⟩ + (−1)𝑚|1(1 − ℓ)⟩
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(the Bell

basis).
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Using Quantum Shares

In conventional SS, shares are bits (classical information).
Quantum shares

enable sharing of quantum secrets, which will be useful for
quantum internet (information network carrying quantum
information), and
realize higher efficiency (higher coding rate) with the same access
structure, for classical secrets.

SS with quantum shares can be constructed by quantum stabilizer codes.
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Review of the non-binary quantum stabilizer codes

For ( ⃗𝑎| ⃗𝑏) = (𝑎1, …, 𝑎𝑛|𝑏1, …, 𝑏𝑛), and ( ⃗𝑐| ⃗𝑑) = (𝑐1, …, 𝑐𝑛|𝑑1, …, 𝑑𝑛) ∈ F2𝑛𝑞 , the
symplectic inner product is defined as

⟨( ⃗𝑎| ⃗𝑏), ( ⃗𝑐| ⃗𝑑)⟩𝑠 = ⟨ ⃗𝑎, ⃗𝑑⟩𝐸 − ⟨ ⃗𝑏, ⃗𝑐⟩𝐸,

where ⟨, ⟩𝐸 denotes the Euclidean inner product.

A symplectic self-orthogonal space 𝐶 ⊂ 𝐶⟂𝑠 ⊂ F2𝑛𝑞 with dim𝐶 = 𝑛 − 𝑘
gives an [[𝑛, 𝑘, 𝑑]]𝑞 quantum stabilizer code, encoding 𝑘 qudits ∈ (C𝑞)⊗𝑘
into 𝑛 qudits ∈ (C𝑞)⊗𝑛, detecting ≤ 𝑑 − 1 quantum errors, and correcting
≤ 𝑑 − 1 quantum erasures.
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Example of [[4, 2, 2]]2 stabilizer code

Let 𝑞 = 2, 𝑛 = 4, 𝑘 = 1, and F82 ⊃ 𝐶 be spanned by (1, 1, 1, 1|0, 0, 0, 0) and
(0, 0, 0, 0|1, 1, 1, 1). This is a CSS code from {(1, 1, 1, 1), 0⃗} ⊂ F42.

2-qubit quantum message can be written as
𝛼00|00⟩ + 𝛼01|01⟩ + 𝛼10|10⟩ + 𝛼11|11⟩. (𝛼𝑖𝑗 are complex coefficients.)

The above message is encoded to 4-qubit quantum codeword
(unnormalized)
𝛼00(|0000⟩ + |1111⟩ + |0110⟩ + |1001⟩)
+𝛼01(|0011⟩ + |1100⟩ + |1010⟩ + |0101⟩)
+𝛼10(|0000⟩ + |1111⟩ − |0110⟩ − |1001⟩)
+𝛼11(|0011⟩ − |1100⟩ − |1010⟩ + |0101⟩).
This is a non-standard encoding for this CSS code.

Any single bit error, phase error, bit+phase error can be detected, and any
single erasure can be corrected.
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Quantum error-correcting code and SS

QECC encoder and erasure decoder are given. An SS can be obtained by
1 Encode a quantum secret by the given encoder. Then distribute each
qubit in the quantum codeword to a participant.

2 Participants in a qualified set can reconstruct the quantum secret by
the given erasure decoder.

R. Cleve, D. Gottesman and H.-K. Lo, “How to Share a Quantum Secret,”
Phys. Rev. Lett., 1999.

There have been few papers on quantum ramp SS.
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Access structure when quantum secret is shared

{1, …, 𝑛} ⊃ 𝐴: a set of participants/shares.

𝐴 is qualified iff 𝐴 = {1, …, 𝑛} ⧵ 𝐴 is forbidden (Cleve et al, 1999 and Ogawa
et al. 2005).

The speaker clarified (Quantum. Inf. Process 2017) that, for an SS defined
by a stabilizer 𝐶 ⊂ F2𝑛𝑞 ,

𝐴 is qualified iff erasures in 𝐴 is correctable iff 𝐶⟂𝑠 ∩ F𝐴𝑞 = 𝐶 ∩ F𝐴𝑞 , and
𝐴 is forbidden iff 𝐶⟂𝑠 ∩ F𝐴𝑞 = 𝐶 ∩ F𝐴𝑞

where F𝐴𝑞 = {(𝑎1, 𝑏1, …, 𝑎𝑛, 𝑏𝑛) ∈ F2𝑛𝑞 ∣ 𝑗 ∈ 𝐴 ⇒ (𝑎𝑗, 𝑏𝑗) = (0, 0)}. Observe
dimF𝐴𝑞 = 2|𝐴|.
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Unitary reconstruction of quantum secrets

Ogawa et al.’s quantum SS (2005) is constructed from the RS codes,
and is a special case of stabilizer-based SS.
Their reconstruction of secrets is a unitary procedure, whose
quantum circuit operates on 𝑘 qubits, while an erasure correction
procedure operates on 𝑛 qubits, for an [[𝑛, 𝑘]] code.

The speaker proposed a generic construction of unitary reconstruction
procedure of quantum secrets (Quantum. Inf. Process 2017). An example
next page.
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Reconstruction circuits for the [[5, 1, 3]]2 stabilizer code

Reconstruction circuits from 3 quantum shares (3 qubits in a codeword),
constructed by my student Shogo Chiwaki.
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From the next slide, we consider sharing classical secrets.
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Gottesman’s quantum secret sharing (PRA 2000)
Secret is 2 classical bits (ℓ,𝑚).
There are 2 participants.
The 1st participant has the 1st qubit and
the 2nd one has the 2nd qubit of

|0ℓ⟩ + (−1)𝑚|1(1 − ℓ)⟩
√2

(called a Bell state).

{1, 2} is qualified.
The (matrix expression of) quantum state (i.e. density matrix) of each
share is 𝐼2×2/2 and independent of values (ℓ,𝑚), therefore ∅, {1} and
{2} are forbidden.
Coding rate = size of secret / average size of shares = 2, as 1 qubit can
store at most 1 bit.
The access structure is perfect, i.e., every set is either forbidden or
qualified.
When shares are classical and SS is perfect, coding rate must ≤ 1.
This example shows high coding rate impossible by classical shares.
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Sharing classical secrets by quantum stabilizer codes

Show a general framework (Matsumoto, Quantum Inf. Processing,
2020) of quantum secret sharing based on quantum stabilizer codes
that includes Gottesman’s example as a special case.
Compare stabilizer-based SS for classical secrets and quantum secrets.
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Encoding classical secrets in quantum secret sharing

An [[𝑛, 𝑘]]𝑞 quantum stabilizer code is a 𝑞𝑘-dimensional complex
subspace 𝑄 of (C𝑞)⊗𝑛.
𝑄 can encode (𝑘 log2 𝑞) classical bits to 𝑛 qudits ∈ (C𝑞)⊗𝑛. Let
{| ⃗𝑣⟩ ∣ ⃗𝑣 ∈ F𝑘𝑞} be an orthonormal basis of 𝑄.
Classical secret ⃗𝑣 ∈ F𝑘𝑞 is encoded to | ⃗𝑣⟩ ∈ 𝑄, then each participant has
each qudit in the quantum codeword | ⃗𝑣⟩ ∈ (C𝑞)⊗𝑛.

The access structure depends on the choice of bases
{| ⃗𝑣⟩ ∣ ⃗𝑣 ∈ F𝑘𝑞} ⊂ 𝑄 ⊂ (C𝑞)⊗𝑛. So I will express choices of {| ⃗𝑣⟩ ∣ ⃗𝑣 ∈ F𝑘𝑞} in
an algebraic coding theoretic way.

Matsumoto (Tokyo Tech. & AAU) Sharing Secrets by Quantum Stabilizer Codes SecureCAT 16 / 29



Proposed encoding in quantum secret sharing

For any 𝐶 ⊂ 𝐶⟂𝑠 ⊂ F2𝑛𝑞 there always exists self-dual 𝐶max = 𝐶⟂𝑠
max such that

𝐶 ⊂ 𝐶max = 𝐶⟂𝑠
max ⊂ 𝐶⟂𝑠.

𝐶max = 𝐶⟂𝑠
max defines a commutative group 𝑆 of complex Pauli matrices.

Commutativity enables us to diagonalize all matrices in 𝑆 by single
common orthonormal basis.

Each complex vector in an orthonormal basis {| ⃗𝑣⟩ ∣ ⃗𝑣 ∈ F𝑘𝑞} of 𝑄 is chosen
as a simultaneous eigenvector of all complex unitary matrices in 𝑆.
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Example 1: Gottesman’s example as a stabilizer code

Gottesman’s secret sharing scheme by a quantum stabilizer. Let 𝑝 = 2,
𝑛 = 2 and 𝐶 be the zero-dimensional linear space consisting of only the
zero vector. Then 𝐶⟂𝑠 = F42. We choose 𝐶max as the space spanned by
(1, 1|0, 0) (corresponding to 𝑋 ⊗𝑋) and (0, 0|1, 1) (corresponding to 𝑍⊗𝑍).

𝑋 ⊗ 𝑋 and 𝑍 ⊗ 𝑍 decompose C⊗2
2 into 4 orthogonal spaces of dimension 1

whose bases are

|0ℓ⟩ + (−1)𝑚|1(1 − ℓ)⟩
√2

(called a Bell state).

2-bit classical secret (ℓ,𝑚) is encoded into one of the above four quantum
states.
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Example 2: [[4, 2, 2]]2 CSS code

Let 𝑞 = 2, 𝑛 = 4, 𝑘 = 2, and F82 ⊃ 𝐶 be spanned by (1, 1, 1, 1|0, 0, 0, 0) and
(0, 0, 0, 0|1, 1, 1, 1). This is a CSS code from {(1, 1, 1, 1), 0⃗} ⊂ F42. 𝐶 defines
a [[4, 2, 2]]2 code 𝑄 ⊂ C⊗4

2 , shown earlier in page 9.

Let 𝐶max be spanned by 𝐶 and (0, 1, 1, 0|0, 0, 0, 0) and (0, 0, 0, 0|0, 1, 1, 0).
𝐶⟂𝑠
max = 𝐶max and 𝐶max defines a [[4, 0, 2]]2 CSS code.

Complex matrices corresponding to 𝐶max decompose 𝑄 (the [[4, 2, 2]]2
code shown above) into 4 orthogonal spaces of dimension 1 whose bases
are
|0000⟩ + |1111⟩ + |0110⟩ + |1001⟩,
|0011⟩ + |1100⟩ + |1010⟩ + |0101⟩,
|0000⟩ + |1111⟩ − |0110⟩ − |1001⟩,
|0011⟩ − |1100⟩ − |1010⟩ + |0101⟩.

2-bit classical secret is encoded into one of the above four quantum states.
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Access structure

𝐶 ⊂ 𝐶max = 𝐶⟂𝑠
max ⊂ 𝐶⟂𝑠 ⊂ F2𝑛𝑞 with dim𝐶 = 𝑛 − 𝑘. Classical secrets have

(𝑘 log2 𝑞) bits.

{1, …, 𝑛} ⊃ 𝐴: a set of participants/shares.
F𝐴𝑞 = {(𝑎1, 𝑏1, …, 𝑎𝑛, 𝑏𝑛) ∈ F2𝑛𝑞 ∣ 𝑗 ∈ 𝐴 ⇒ (𝑎𝑗, 𝑏𝑗) = (0, 0)}.

𝐴 is qualified iff dim𝐶max ∩ F𝐴𝑞 /𝐶 ∩ F𝐴𝑞 = 𝑘, and
𝐴 is forbidden iff dim𝐶max ∩ F𝐴𝑞 /𝐶 ∩ F𝐴𝑞 = 0.

More precisely, shares in 𝐴 have (log2 𝑞 × dim𝐶max ∩ F𝐴𝑞 /𝐶 ∩ F𝐴𝑞 ) bits of
information about secret (measured by the Holevo information quantity).
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Relation of access structures for classical/quantum
secrets

A quantum stabilizer 𝐶(⊂ 𝐶max = 𝐶⟂𝑠
max ⊂ 𝐶⟂𝑠 ⊂ F2𝑛𝑞 ) with dim𝐶 = 𝑛 − 𝑘

can encode 𝑘 log2 𝑞-(qu)bit classical/quantum secrets into 𝑛 quantum
shares. For 𝐴 ⊂ {1, …, 𝑛}, we have the following relation of necessary and
sufficient conditions of 𝐴 being qualified/forbidden:

𝐴 is for quantum secrets for classical secrets
forbidden 𝐶⟂𝑠 ∩ F𝐴𝑞 = 𝐶 ∩ F𝐴𝑞 ⇒ dim𝐶max ∩ F𝐴𝑞 /𝐶 ∩ F𝐴𝑞 = 0

qualified 𝐶⟂𝑠 ∩ F𝐴𝑞 = 𝐶 ∩ F𝐴𝑞 ⇒ dim𝐶max ∩ F𝐴𝑞 /𝐶 ∩ F𝐴𝑞 = 𝑘

F𝐴𝑞 = {(𝑎1, 𝑏1, …, 𝑎𝑛, 𝑏𝑛) ∈ F2𝑛𝑞 ∣ 𝑗 ∈ 𝐴 ⇒ (𝑎𝑗, 𝑏𝑗) = (0, 0)}.

Sufficient conditions in terms of symplectic weights will be given next.
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Symplectic weights

For ⃗𝑥 = ( ⃗𝑎| ⃗𝑏) = (𝑎1, 𝑏1, …, 𝑎𝑛, 𝑏𝑛) ∈ F2𝑛𝑞 , the symplectic weight
𝑤𝑠( ⃗𝑥) = |{𝑖 ∣ (𝑎𝑖, 𝑏𝑖) ≠ (0, 0)}|.

For a set 𝐶 ⊂ F2𝑛𝑞 , 𝑤𝑠(𝐶) denotesmin{𝑤𝑠( ⃗𝑥) ∣ ⃗𝑥 ∈ 𝐶 ⧵ {0⃗}} in this talk.
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Relation among weights and access structures

A quantum stabilizer 𝐶(⊂ 𝐶max = 𝐶⟂𝑠
max ⊂ 𝐶⟂𝑠 ⊂ F2𝑛𝑞 ) with dim𝐶 = 𝑛 − 𝑘

can encode 𝑘 log2 𝑞-(qu)bit classical/quantum secrets into 𝑛 quantum
shares. For 𝐴 ⊂ {1, …, 𝑛}, we have the following relation:

𝐴 is for quantum secrets for classical secrets
forbidden iff 𝐶⟂𝑠 ∩ F𝐴𝑞 = 𝐶 ∩ F𝐴𝑞 ⇒ dim𝐶max ∩ F𝐴𝑞 /𝐶 ∩ F𝐴𝑞 = 0

⇑ ⇑
forbidden if |𝐴| ≤ 𝑤𝑠(𝐶⟂𝑠 ⧵ 𝐶) − 1 ⇒ |𝐴| ≤ 𝑤𝑠(𝐶max ⧵ 𝐶) − 1

qualified iff 𝐶⟂𝑠 ∩ F𝐴𝑞 = 𝐶 ∩ F𝐴𝑞 ⇒ dim𝐶max ∩ F𝐴𝑞 /𝐶 ∩ F𝐴𝑞 = 𝑘
⇑ ⇑

qualified if |𝐴| ≥ 𝑛 + 1 − 𝑤𝑠(𝐶⟂𝑠 ⧵ 𝐶) ⇒ |𝐴| ≥ 𝑛 + 1 − 𝑤𝑠(𝐶⟂𝑠 ⧵ 𝐶max)

where F𝐴𝑞 = {(𝑎1, 𝑏1, …, 𝑎𝑛, 𝑏𝑛) ∈ F2𝑛𝑞 ∣ 𝑗 ∈ 𝐴 ⇒ (𝑎𝑗, 𝑏𝑗) = (0, 0)}. Note that
𝑤𝑠(𝐶max ⧵ 𝐶) is oftenmuch larger than 𝑤𝑠(𝐶⟂𝑠 ⧵ 𝐶), as 𝐶max is smaller
than 𝐶⟂𝑠.
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Relative generalied symplectic weights (added)

For linear spaces 𝑉2 ⊂ 𝑉1 ⊂ F2𝑛𝑞 , the 𝑖-th relative generalized symplectic
weight is

𝑑𝑖𝑠(𝑉1, 𝑉2) = min{|𝐴| ∶ dimF𝐴𝑞 ∩ 𝑉1 − dimF𝐴𝑞 ∩ 𝑉2 ≥ 𝑖}.

We have 𝑑1𝑠 (𝑉1, 𝑉2) = 𝑤𝑠(𝑉1 ⧵ 𝑉2).

Recall that shares in 𝐴 have (log2 𝑞 × dim𝐶max ∩ F𝐴𝑞 /𝐶 ∩ F𝐴𝑞 ) bits of
information about secret.

⇓
If |𝐴| ≤ 𝑑𝑖𝑠(𝐶max, 𝐶) − 1 then shars in 𝐴 has at most (𝑖 − 1) log2 𝑞 bits of
information, and
If |𝐴| ≥ 𝑛 + 1 − 𝑑𝑖𝑠(𝐶⟂𝑠, 𝐶max) then shares in 𝐴 has at least (𝑘 + 1 − 𝑖) log2 𝑞
bits of information.

From the next slide I will discuss randomness in encoding.
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Randomization in encoding of classical secrets into
classical shares

Classical shares are chosen randomly for a given classical secret in
Shamir’s scheme.

Suppose that a share 𝑋 depends on the value of a classical secret 𝑆 (which
is almost always true), and that encoding is deterministic. Then 𝑋 has
nonzero information about 𝑆 (the mutual information 𝐼(𝑆; 𝑋) is nonzero).

No randomness in encoding means that forbidden sets consist of only the
empty set ∅.

Randomization is indispensable with encoding classical secrets into
classical shares.
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Randomization in encoding of quantum secrets

Quantum shares are deterministically encoded from a quantum secret by
a QECC.

Suppose that we have a randomized encoder of a quantum secret into
quantum shares. Then that randomized encoder can be realized by
discarding some shares encoded by a deterministic encoder (Cleve et al,
1999 and Ogawa et al. 2005).

Randomization is useless in encoding quantum secrets into quantum
shares.
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Randomization in encoding of classical secrets into
quantum shares

Quantum shares are deterministically encoded from a classical secret by a
quantum stabilizer (in the speaker’s proposal).

Randomness in encoding enables a wider class of access structures
constructed from the same stabilizer (Matsumoto, Des. Codes. Crypt.,
2020).

Randomization is useful but dispensable with encoding classical secrets
into quantum shares.
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Summary

Secret sharing by quantum stabilizers
Relations among the (relative generalized) minimum weights of
codes and access structures
Differences among classical/quantum secrets/shares in
randomization of encoding
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