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Prerrequisites on error correcting
codes

A linear code is a vector subspace C ⊆ Fn
q where:

◦ n(C) = n is its length,
◦ k(C) = k is its dimension as Fq-vector space.
◦ d(C) = d is its minimum Hamming distance.

The Hamming distance on Fn
q is defined by:

dH(x,y) = | {i ∈ {1, . . . , n} | xi 6= yi} |

A t-decoder for C is an algorithm DC taking as input x ∈ Fn
q and

returning:
◦ c ∈ C such that dH(x, c) ≤ t it exists.
◦ ? or FAILURE else.



Prerrequisites on error correcting
codes

A linear code is a vector subspace C ⊆ Fn
q where:

◦ n(C) = n is its length,
◦ k(C) = k is its dimension as Fq-vector space.
◦ d(C) = d is its minimum Hamming distance.

Let C ⊆ Fn
qm be a code. Its subfield subcode is defined by

C ∩ Fn
q

Many algebraic codes derive from GRS codes using this operation:

Goppa Codes, BCH codes, Srivastava codes, etc



Outline

1. History of code-based cryptography

2. Algebraic cryptanalysis in code-based cryptography

3. How to design secure schemes with codes?



Public Key Cryptography



Public Key Cryptography vs Secret Key
Cryptography



Do we need PKC?



Public Key Cryptography (PKC)
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PKC - Famous example
Trapdoor one-way functions - Integer Factorization



The largest known prime number (in May
2019) is

282.589.933 − 1

this number has 24.862.048 digits and was
found by Patrick Laroche in 2018 as part of
the proyect Great Internet Mersenne Prime
Search (GIMPS)

3000$ rewards

PKC - Famous example
Trapdoor one-way functions - Integer Factorization



RSA

Ronald Rivest (1947)

RSA is a public key cryptographic system developed in 1979 at
the Massachusetts Institute of Technology (MIT). It is the

algorithm of PKC most widely used today.
The security of the RSA relies on the Integer Factorization

Adi Shamir (1952)

Leonard Adleman (1945)



There are 2 quantum algorithms that affect cryptography:

Post-quantum Cryptography



There are 2 quantum algorithms that affect cryptography:

◦ Grover’s Algorithm: Finds b-bit preimages in 2
b
2 quantum

operations. It requieres:

– 2× key size in Symmetric ciphers
– Longer output sizes in Hash Functions

Lov Grover

Post-quantum Cryptography



There are 2 quantum algorithms that affect cryptography:

◦ Grover’s Algorithm: Finds b-bit preimages in 2
b
2 quantum

operations. It requieres:

– 2× key size in Symmetric ciphers
– Longer output sizes in Hash Functions

◦ Shor’s Algorithm: Has dramatic effects on PKC, it breaks:

– RSA cryptosystem.
– Cryptosystems based on Discret log in finite fields and elliptic

curves.

Lov Grover Peter Shor

Post-quantum Cryptography



IBM Q system One - 2019

Preparing for the Cryptopocalypse



Crypto-apocalypse

Preparing for the Cryptoapocalypse



Crypto-apocalypse

NIST (National Institute of Standards and Technology)
starts a proyect entitled:

Post-Quantum Cryptography standardization.

◦ It start in November 2017: 69 proposals where sent.

◦ July 2022: 4 submissions were announced

Preparing for the Cryptoapocalypse



Coding Theory vs. Cryptography



How to use Coding Theory in Cryptography?



It starts with two articles

[1] E.R. Berlekamp, R.J. McEliece and H.C.A. Van Tilborg.
On the inherent intractability of certain coding problems. IEEE
Trans. Inform. Theory 24(2), 1978.

[2] R.J. McEliece. A public key cryptosystem based on algebraic
coding theory. DSN Progress Report 44; 1978.



It starts with two articles

[1] E.R. Berlekamp, R.J. McEliece and H.C.A. Van Tilborg.
On the inherent intractability of certain coding problems. IEEE
Trans. Inform. Theory 24(2), 1978.

[2] R.J. McEliece. A public key cryptosystem based on algebraic
coding theory. DSN Progress Report 44; 1978.

In the article [1]
The proof that the following problem is NP-complete:
Bounded decoding problem. Given C ⊆ Fn

q , y ∈ Fn
q and t ≥ 0.

Does there exists c ∈ C such that:

dH(c,y) ≤ t?



It starts with two articles

[1] E.R. Berlekamp, R.J. McEliece and H.C.A. Van Tilborg.
On the inherent intractability of certain coding problems. IEEE
Trans. Inform. Theory 24(2), 1978.

[2] R.J. McEliece. A public key cryptosystem based on algebraic
coding theory. DSN Progress Report 44; 1978.

In article [2] McEliece proposes a new PKC encryption scheme.



Trapdoor One-Way Functions - McEliece



McEliece presented in the literature

Secret Key:

– G a k × n generator matrix of a code C.
– S a k × k non-singular matrix.
– P a n× n permutation matrix.

Public Key: (G′ = SGP, t)

Encryption: Enc(m) = mG′ + e with e ∈ Fnq uniformly random of
weight t.

Decryption:

1. Right multiply by P−1: (mG′ + e)× P−1 = mSG+ eP−1

2. Decode to get mS
3. Right multiply by S−1 to get m
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We could present it differently:
A. Couvreur’s IDEA

◦ F denotes a family of codes of length n and dimension k.

◦ S denotes a set of “secrets” with a surjective map
C : S −→ F sending a secret s ∈ S into a code C(s).

◦ To any s ∈ S is associated a decoding algorithm D(s) for C(s) cor-
recting up to t errors.



We could present it differently:
A. Couvreur’s IDEA

◦ F denotes a family of codes of length n and dimension k.

◦ S denotes a set of “secrets” with a surjective map
C : S −→ F sending a secret s ∈ S into a code C(s).

◦ To any s ∈ S is associated a decoding algorithm D(s) for C(s) cor-
recting up to t errors.

Secret Key: s ∈ S
Public Key: (G, t) where G is a k × n generator matrix for C(s).

Encryption: Enc(m) = mG+ e where e ∈ Fnq is a uniformly random
vector of weight t.

Decryption: Apply D(s) to mG+ e to recover m.



◦ Let n, k be positive integers with 1 ≤ k ≤ n ≤ q.

◦ a = (a1, . . . , an) ∈ Fnq with ai 6= aj for all i 6= j.

◦ b = (b1, . . . , bn) ∈ Fnq with bi 6= 0 for all i.

◦ Polynomial space:

Lk = Fq[X]<k = {f(X) ∈ Fq[X] | deg(f) < k}

Lk is a vector space of dimension k, with canonical basis:
B = {1, . . . , xk−1}

◦ Evaluation map:

eva,b : Lk −→ Fnq
f(X) 7−→ b ∗ f(a) = (b1f(a1), . . . , bnf(an))

Example - GRS codes

Definition: GRS codes

GRSk(a,b) = {eva,b(f) | f ∈ Lk}



Example - GRS codes

◦ F the set of [n, k] GRS codes,

◦ S =
{
(a,b) ∈ Fnq × Fnq | ai 6= aj and bi 6= 0, ∀i, j ∈ {1, . . . , n}, i 6= j

}
◦ D(s) is our favorite decoder for GRS, e.g. Berlekamp Welch algorithm

with t = bn−k
2
c

Definition: GRS codes

GRSk(a,b) = {eva,b(f) | f ∈ Lk}



Example - Alternant codes

Definition: Alternant codes
Let a = (a1, . . . , an) ∈ Fn

qm be a vector with distinct entries
and b = (b1, . . . , bn) ∈ Fn

qm with bi 6= 0. An alternant code of
degree r is the code:

Ar(a,b) = GRSr(a,b)
⊥ ∩ Fn

q



Example - Alternant codes

◦ F the set of alternant codes of length n and degree r.

◦ S =
{
(a,b) ∈ Fnqm × Fnqm | ai 6= aj and bi 6= 0, ∀i, j ∈ {1, . . . , n}, i 6= j

}
◦ D(s) is our favorite decoder for alternant codes, e.g. Berlekamp Welch

algorithm.

Definition: Alternant codes
Let a = (a1, . . . , an) ∈ Fn

qm be a vector with distinct entries
and b = (b1, . . . , bn) ∈ Fn

qm with bi 6= 0. An alternant code of
degree r is the code:

Ar(a,b) = GRSr(a,b)
⊥ ∩ Fn

q



Example - Classical Goppa codes - McEliece 1978

Definition: Classical Goppa codes
Let a ∈ Fn

qm be a vector with distinct entries and g ∈ Fqm [x]≤t
be a polynomial sucha that g(ai) 6= 0∀i. The Goppa code
associated to (a, g) is

G(a, g) = Adeg(g)(a, g(a)
−1) ∩ Fn

q

where g(a)−1 = (g(a1)
−1, . . . , g(an)

−1)



Example - Classical Goppa codes - McEliece 1978

◦ F the set of classical Goppa codes of length n and degree r.

◦ S =
{
(a, g) ∈ Fnqm × Fqm [x]≤t | ...

}
◦ D(s) is our favorite decoder for Goppa codes.

Definition: Classical Goppa codes
Let a ∈ Fn

qm be a vector with distinct entries and g ∈ Fqm [x]≤t
be a polynomial sucha that g(ai) 6= 0∀i. The Goppa code
associated to (a, g) is

G(a, g) = Adeg(g)(a, g(a)
−1) ∩ Fn

q

where g(a)−1 = (g(a1)
−1, . . . , g(an)

−1)



Example - MDPC codes

Definition: QC-MDPC codes
Let n be a positive even integer and f, g ∈ F2[x]≤n be two
polynomials of weight O(

√
n). An [2n, n] QC-MPDC code is

the kernel of the sparse matrix: f0 f1 . . . fn−1 g0 g1 . . . gn−1
fn−1 f0 . . . fn−2 gn−1 g0 . . . gn−2

. . .
. . .

. . .
. . .

. . .
. . .





Example - MDPC codes

◦ F the set of [2n, n] MDPC codes

◦ S = {(f, g) ∈ Fq[x]≤n of weight O(
√
n)}

◦ D(s) is our favorite decoder for MDPC codes, e.g. Bit Flipping algorithm.

Definition: QC-MDPC codes
Let n be a positive even integer and f, g ∈ F2[x]≤n be two
polynomials of weight O(

√
n). An [2n, n] QC-MPDC code is

the kernel of the sparse matrix: f0 f1 . . . fn−1 g0 g1 . . . gn−1
fn−1 f0 . . . fn−2 gn−1 g0 . . . gn−2

. . .
. . .

. . .
. . .

. . .
. . .





Example - Algebraic geometry codes

Definition: Algebraic geometry codes
Let X be a smooth projective geometrically connected curve
over Fq, G be a divisor on X and P = (P1, . . . , Pn) be a set of
Fq-points of X . We define

CL(X ,P, G) = {(f(P1), . . . , f(Pn) | f ∈ L(G)}



Example - Algebraic geometry codes

◦ F the set of AG codes of length n from the curve X
◦ S =

{
(P, G) ∈ X (Fq)n ×DivFq (X ) | Pi 6= Pj∀i 6= j

}
◦ D(s) is our favorite decoder for AG codes, e.g. Error Correcting Pairs

algorithm.

Definition: Algebraic geometry codes
Let X be a smooth projective geometrically connected curve
over Fq, G be a divisor on X and P = (P1, . . . , Pn) be a set of
Fq-points of X . We define

CL(X ,P, G) = {(f(P1), . . . , f(Pn) | f ∈ L(G)}



The following classes of codes:

◦ CGeneralized Reed-Solomon codes (GRS codes).

◦ Cyclic codes

◦ Alternant codes

◦ Goppa codes

◦ Algebraic geometry codes (AG codes)

... have efficient decoding algorithms:

◦ Arimoto, Peterson, Gorenstein, Zierler

◦ Berlekamp, Massey, Sakata

◦ Justensen et al. Vladut-Skorobatov

◦ Error-correcting pairs (ECP)

Efficient Decoding Algorithms



We have mainly 2 different ways of cryptanalyzing the McEliece
cryptosystem:

1. Generic Decoding Attacks - Message recovery
attacks The best known techniques needs exponential time in
the code length.

2. Structural Attacks - Key recovery attacks Retrieve
the code structure rather than use an unspecific decoding
algorithm, i.e. recover s ∈ S such that the public key
Cpub = C(s).
Requirement: Distinguishing a prescribed structure code from a
random one.

We focus on Key Recovery Attacks on this talk.

Attacks on the McEliece PKC



We reduce the problem of Bounded decoding problem to the
security of McEliece under the assumption:

The generator matrix of the public [n, k] code looks random.

That is:

The uniform distribution on the public [n, k] code in family F is
computationally indistinguishable from the uniform distribution on

the whole family of [n, k] codes.

Security Proofs of McEliece



Chronology

Proposals
Attacks
Broken
Partially Broken

1978: McEliece - Binary Goppa Codes



Chronology

Proposals
Attacks
Broken
Partially Broken

1978: McEliece - Binary Goppa Codes

1986: Niederreiter - GRS codes



Chronology

Proposals
Attacks
Broken
Partially Broken

1978: McEliece - Binary Goppa Codes

1992: Sidelnikov-Shestakov

1986: Niederreiter - GRS codes



Chronology

Proposals
Attacks
Broken
Partially Broken

1978: McEliece - Binary Goppa Codes

1992: Sidelnikov-Shestakov

1986: Niederreiter - GRS codes

1994: Sidelnikov-Shestakov - Reed-Muller codes



Chronology

Proposals
Attacks
Broken
Partially Broken

1978: McEliece - Binary Goppa Codes

1992: Sidelnikov-Shestakov

1986: Niederreiter - GRS codes

1994: Sidelnikov-Shestakov - Reed-Muller codes

1996: Janwa-Moreno - AG codes and their subfield subcodes



Chronology

Proposals
Attacks
Broken
Partially Broken

1978: McEliece - Binary Goppa Codes

1992: Sidelnikov-Shestakov

1986: Niederreiter - GRS codes

1994: Sidelnikov-Shestakov - Reed-Muller codes

1996: Janwa-Moreno - AG codes and their subfield subcodes

2001: Berger-Loidreau - Subcodes of GRS codes



Chronology

Proposals
Attacks
Broken
Partially Broken

1978: McEliece - Binary Goppa Codes

1992: Sidelnikov-Shestakov

1986: Niederreiter - GRS codes

1994: Sidelnikov-Shestakov - Reed-Muller codes

1996: Janwa-Moreno - AG codes and their subfield subcodes

2001: Berger-Loidreau - Subcodes of GRS codes

2005: Gaborit - Quasi-Cyclic subcodes of BCH codes



Chronology

Proposals
Attacks
Broken
Partially Broken

1978: McEliece - Binary Goppa Codes

1992: Sidelnikov-Shestakov

1986: Niederreiter - GRS codes

1996: Janwa-Moreno - AG codes and their subfield subcodes

2001: Berger-Loidreau - Subcodes of GRS codes

2005: Gaborit - Quasi-Cyclic subcodes of BCH codes

2007: Minder Shokrollahi Subexponential time attack on RM codes

1994: Sidelnikov-Shestakov - Reed-Muller codes



Chronology

Proposals
Attacks
Broken
Partially Broken

1978: McEliece - Binary Goppa Codes

1992: Sidelnikov-Shestakov

1986: Niederreiter - GRS codes

2001: Berger-Loidreau - Subcodes of GRS codes

2005: Gaborit - Quasi-Cyclic subcodes of BCH codes

2007: Minder Shokrollahi Subexponential time attack on RM codes

1994: Sidelnikov-Shestakov - Reed-Muller codes

1996: Janwa-Moreno - AG codes and their subfield subcodes

2008: Faure-Minder: Attack on AG codes for genus ≤ 2



Chronology

Proposals
Attacks
Broken
Partially Broken

1978: McEliece - Binary Goppa Codes

1992: Sidelnikov-Shestakov

1986: Niederreiter - GRS codes

2001: Berger-Loidreau - Subcodes of GRS codes

2005: Gaborit - Quasi-Cyclic subcodes of BCH codes

2007: Minder Shokrollahi Subexponential time attack on RM codes

1994: Sidelnikov-Shestakov - Reed-Muller codes

1996: Janwa-Moreno - AG codes and their subfield subcodes

2008: Faure-Minder: Attack on AG codes for genus ≤ 2

2008: Berger, Cayrel, Gaborit, Otmani - QC Alternant codes



Chronology

Proposals
Attacks
Broken
Partially Broken

1978: McEliece - Binary Goppa Codes

1992: Sidelnikov-Shestakov

1986: Niederreiter - GRS codes

2001: Berger-Loidreau - Subcodes of GRS codes

2005: Gaborit - Quasi-Cyclic subcodes of BCH codes

2007: Minder Shokrollahi Subexponential time attack on RM codes

1994: Sidelnikov-Shestakov - Reed-Muller codes

1996: Janwa-Moreno - AG codes and their subfield subcodes

2008: Faure-Minder: Attack on AG codes for genus ≤ 2

2008: Berger, Cayrel, Gaborit, Otmani - QC Alternant codes

2010: Bernstein-Lange-Peters: q-ary “wild” Goppa codes



Chronology

Proposals
Attacks
Broken
Partially Broken

1978: McEliece - Binary Goppa Codes

1992: Sidelnikov-Shestakov

1986: Niederreiter - GRS codes

2001: Berger-Loidreau - Subcodes of GRS codes

2005: Gaborit - Quasi-Cyclic subcodes of BCH codes

2007: Minder Shokrollahi Subexponential time attack on RM codes

1994: Sidelnikov-Shestakov - Reed-Muller codes

1996: Janwa-Moreno - AG codes and their subfield subcodes

2008: Faure-Minder: Attack on AG codes for genus ≤ 2

2008: Berger, Cayrel, Gaborit, Otmani - QC Alternant codes

2010: Bernstein-Lange-Peters: q-ary “wild” Goppa codes

2010: Otmani, Tillich, Dallot, Faugère, Perret, Otmani - Attacks on QC-codes



Chronology

Proposals
Attacks
Broken
Partially Broken

1978: McEliece - Binary Goppa Codes

1992: Sidelnikov-Shestakov

1986: Niederreiter - GRS codes

2001: Berger-Loidreau - Subcodes of GRS codes

2007: Minder Shokrollahi Subexponential time attack on RM codes

1994: Sidelnikov-Shestakov - Reed-Muller codes

1996: Janwa-Moreno - AG codes and their subfield subcodes

2008: Faure-Minder: Attack on AG codes for genus ≤ 2

2010: Bernstein-Lange-Peters: q-ary “wild” Goppa codes

2010: Otmani, Tillich, Dallot, Faugère, Perret, Otmani - Attacks on QC-codes

2005: Gaborit - Quasi-Cyclic subcodes of BCH codes

2008: Berger, Cayrel, Gaborit, Otmani - QC Alternant codes



Chronology

Proposals
Attacks
Broken
Partially Broken

1978: McEliece - Binary Goppa Codes

1992: Sidelnikov-Shestakov

1986: Niederreiter - GRS codes

2001: Berger-Loidreau - Subcodes of GRS codes

2007: Minder Shokrollahi Subexponential time attack on RM codes

1994: Sidelnikov-Shestakov - Reed-Muller codes

1996: Janwa-Moreno - AG codes and their subfield subcodes

2008: Faure-Minder: Attack on AG codes for genus ≤ 2

2010: Bernstein-Lange-Peters: q-ary “wild” Goppa codes

2010: Otmani, Tillich, Dallot, Faugère, Perret, Otmani - Attacks on QC-codes

2005: Gaborit - Quasi-Cyclic subcodes of BCH codes

2008: Berger, Cayrel, Gaborit, Otmani - QC Alternant codes

2010: Wieschebrink’s C ? C attack



Chronology

Proposals
Attacks
Broken
Partially Broken

1978: McEliece - Binary Goppa Codes

1992: Sidelnikov-Shestakov

1986: Niederreiter - GRS codes

2007: Minder Shokrollahi Subexponential time attack on RM codes

1994: Sidelnikov-Shestakov - Reed-Muller codes

1996: Janwa-Moreno - AG codes and their subfield subcodes

2008: Faure-Minder: Attack on AG codes for genus ≤ 2

2010: Bernstein-Lange-Peters: q-ary “wild” Goppa codes

2010: Otmani, Tillich, Dallot, Faugère, Perret, Otmani - Attacks on QC-codes

2005: Gaborit - Quasi-Cyclic subcodes of BCH codes

2008: Berger, Cayrel, Gaborit, Otmani - QC Alternant codes

2010: Wieschebrink’s C ? C attack

2001: Berger-Loidreau - Subcodes of GRS codes



Chronology

Proposals
Attacks
Broken
Partially Broken

1978: McEliece - Binary Goppa Codes

1992: Sidelnikov-Shestakov

1986: Niederreiter - GRS codes

2007: Minder Shokrollahi Subexponential time attack on RM codes

1994: Sidelnikov-Shestakov - Reed-Muller codes

1996: Janwa-Moreno - AG codes and their subfield subcodes

2008: Faure-Minder: Attack on AG codes for genus ≤ 2

2010: Bernstein-Lange-Peters: q-ary “wild” Goppa codes

2010: Otmani, Tillich, Dallot, Faugère, Perret, Otmani - Attacks on QC-codes

2005: Gaborit - Quasi-Cyclic subcodes of BCH codes

2008: Berger, Cayrel, Gaborit, Otmani - QC Alternant codes

2010: Wieschebrink’s C ? C attack

2001: Berger-Loidreau - Subcodes of GRS codes

2011: Faugère, Gautier, Otmani, Perret, Tillich - Distinghisher for High rate Goppa codes



Chronology

Proposals
Attacks
Broken
Partially Broken

1978: McEliece - Binary Goppa Codes

1992: Sidelnikov-Shestakov

1986: Niederreiter - GRS codes

2007: Minder Shokrollahi Subexponential time attack on RM codes

1994: Sidelnikov-Shestakov - Reed-Muller codes

1996: Janwa-Moreno - AG codes and their subfield subcodes

2008: Faure-Minder: Attack on AG codes for genus ≤ 2

2010: Bernstein-Lange-Peters: q-ary “wild” Goppa codes

2010: Otmani, Tillich, Dallot, Faugère, Perret, Otmani - Attacks on QC-codes

2005: Gaborit - Quasi-Cyclic subcodes of BCH codes

2008: Berger, Cayrel, Gaborit, Otmani - QC Alternant codes

2010: Wieschebrink’s C ? C attack

2001: Berger-Loidreau - Subcodes of GRS codes

2011: Faugère, Gautier, Otmani, Perret, Tillich - Distinghisher for High rate Goppa codes

2012: Misoczki, Tillich, Sendrier, Barreto - MDPC codes



Chronology

Proposals
Attacks
Broken
Partially Broken

1978: McEliece - Binary Goppa Codes

1992: Sidelnikov-Shestakov

1986: Niederreiter - GRS codes

2007: Minder Shokrollahi Subexponential time attack on RM codes

1994: Sidelnikov-Shestakov - Reed-Muller codes

1996: Janwa-Moreno - AG codes and their subfield subcodes

2008: Faure-Minder: Attack on AG codes for genus ≤ 2

2010: Bernstein-Lange-Peters: q-ary “wild” Goppa codes

2010: Otmani, Tillich, Dallot, Faugère, Perret, Otmani - Attacks on QC-codes

2005: Gaborit - Quasi-Cyclic subcodes of BCH codes

2008: Berger, Cayrel, Gaborit, Otmani - QC Alternant codes

2010: Wieschebrink’s C ? C attack

2001: Berger-Loidreau - Subcodes of GRS codes

2011: Faugère, Gautier, Otmani, Perret, Tillich - Distinghisher for High rate Goppa codes

2012: Misoczki, Tillich, Sendrier, Barreto - MDPC codes

2014: Couvreur-Márquez-Corbella-Pellikaan - Attacks on AG codes

1996: Janwa-Moreno - AG codes and their subfield subcodes

2008: Faure-Minder: Attack on AG codes for genus ≤ 2



Chronology

Proposals
Attacks
Broken
Partially Broken

1978: McEliece - Binary Goppa Codes

1992: Sidelnikov-Shestakov

1986: Niederreiter - GRS codes

2007: Minder Shokrollahi Subexponential time attack on RM codes

1994: Sidelnikov-Shestakov - Reed-Muller codes

2010: Bernstein-Lange-Peters: q-ary “wild” Goppa codes

2010: Otmani, Tillich, Dallot, Faugère, Perret, Otmani - Attacks on QC-codes

2005: Gaborit - Quasi-Cyclic subcodes of BCH codes

2008: Berger, Cayrel, Gaborit, Otmani - QC Alternant codes

2010: Wieschebrink’s C ? C attack

2001: Berger-Loidreau - Subcodes of GRS codes

2011: Faugère, Gautier, Otmani, Perret, Tillich - Distinghisher for High rate Goppa codes

2012: Misoczki, Tillich, Sendrier, Barreto - MDPC codes

2014: Couvreur-Márquez-Corbella-Pellikaan - Attacks on AG codes

1996: Janwa-Moreno - AG codes and their subfield subcodes

2008: Faure-Minder: Attack on AG codes for genus ≤ 2

2014: Couvreur-Otmani-Tillich - Goppa codes with m = 2
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2001: Berger-Loidreau - Subcodes of GRS codes

2011: Faugère, Gautier, Otmani, Perret, Tillich - Distinghisher for High rate Goppa codes

2012: Misoczki, Tillich, Sendrier, Barreto - MDPC codes

2014: Couvreur-Márquez-Corbella-Pellikaan - Attacks on AG codes

1996: Janwa-Moreno - AG codes and their subfield subcodes

2008: Faure-Minder: Attack on AG codes for genus ≤ 2

2014: Couvreur-Otmani-Tillich - Goppa codes with m = 2

2010: Bernstein-Lange-Peters: q-ary “wild” Goppa codes

2014: Faugère-Perret-Portzamparc : Some Goppa codes with m = 2, 3
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2014: More attacks on QC and QD codes

2017: NIST’s call for post-quantum crypto
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Algebraic world:

– Binary Goppa code (NIST’s classic McEliece and NTS KEM).
– Goppa codes for m ≥ 2.
– Goppa codes with ”small” automorphism group.
– Subfield subcodes of AG codes.

Advantages: Short ciphertexts, no decoding failure.

What is still surviving?

Probabilistic world:

– QC MDPC codes

Advantages: Short Keys

Promising alternatives:

– HQC, RQC.

◦ Advantages: do not rely on indistinguishability. Promising
application of algebraic codes.



1978: McEliece’s - Binary Goppa codes

Public Key Size: 32kB for 65 bits of security

(with respect to Prange algorithm).

2018: NIST proposals with Binary Goppa codes:

– Classic McEliece
Public Key Size: 1-1.3MByte for > 256 bits of security.

– NTS KEM 319 KBytes for > 128 bits security.

Original Proposal - Binary Goppa codes



1978: McEliece’s - Binary Goppa codes

Public Key Size: 32kB for 65 bits of security

(with respect to Prange algorithm).

2018: NIST proposals with Binary Goppa codes:

– Classic McEliece
Public Key Size: 1-1.3MByte for > 256 bits of security.

– NTS KEM 319 KBytes for > 128 bits security.

Original Proposal - Binary Goppa codes

During these 40 years many attempts to get shorter keys... but
HOW?



IDEA 1 : Reducing the extension degree

Definition: Alternant codes
Let a = (a1, . . . , an) ∈ Fn

qm be a vector with distinct entries
and b = (b1, . . . , bn) ∈ Fn

qm with bi 6= 0. An alternant code of
degree r is the code:

Ar(a,b) = GRSr(a,b)
⊥ ∩ Fn

q



Fact. The larger the m the worse the parameters. But:

◦ The case m = 1 is broken (Sidelnikov-Shestakov 1992).

◦ Some specific cases of m=2 and 3 called wild Goppa codes are
broken too:

– Couvreur, Otmani, Tillich, 2014.
– Faugère, Perret, de Portzamparc, 2014.

IDEA 1 : Reducing the extension degree

Definition: Alternant codes
Let a = (a1, . . . , an) ∈ Fn

qm be a vector with distinct entries
and b = (b1, . . . , bn) ∈ Fn

qm with bi 6= 0. An alternant code of
degree r is the code:

Ar(a,b) = GRSr(a,b)
⊥ ∩ Fn

q



IDEA 1 : Reducing the extension degree

Further construction from GRS codes

◦ 2001: Berger-Loidreau

Subcodes of GRS codes.

◦ 2006: Wieschebrink

Adds random columns in GRS code’s generator matrix.

◦ 2013: Baldi, Bianchi, Chiaraluce, Rosenthal, Schipani

Multiply the GRS code by a sparse matrix.

◦ 2016: Wang’s RLCE system

Replaces some columns of a GRS’s generator matrix by linear
combinations of GRS and random columns.



IDEA 2 : Using codes with a non trivial automorphism
group

Definition: Given a code C ⊆ Fn
q with a group action G, one

can define the invariant code:

CG = {x ∈ C | ∀σ ∈ Gσ(x) = x}

If the action of G is public, then CG is computable in polynomial
time.



IDEA 2 : Using codes with a non trivial automorphism
group

Definition: Given a code C ⊆ Fn
q with a group action G, one

can define the invariant code:

CG = {x ∈ C | ∀σ ∈ Gσ(x) = x}

If the action of G is public, then CG is computable in polynomial
time.

In 2005 Gaborit proposes to use codes with a non-trivial
automorphism group G:

◦ Quasi-cyclic codes (QC-codes) : G = Z/lZ
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IDEA 2 : Using codes with a non trivial automorphism
group

Definition: Given a code C ⊆ Fn
q with a group action G, one

can define the invariant code:

CG = {x ∈ C | ∀σ ∈ Gσ(x) = x}

If the action of G is public, then CG is computable in polynomial
time.

In 2005 Gaborit proposes to use codes with a non-trivial
automorphism group G:

◦ Quasi-cyclic codes (QC-codes) : G = Z/lZ
◦ Quasi-dyadic codes (QC-codes) : G = (Z/2Z)γ

◦ Advantage: Permits to reduce the public key size.

◦ Advantage: No incidence on the security w.r.t. generic decoding.

◦ Disadvantage: Affect the security w.r.t. key recovery attacks.



IDEA 2 : Using codes with a non trivial automorphism
group

Some key recovery attacks:

– QC-BCH codes
Otmani-Tillich-Dallot (2008)

– QC-Alternant codes
Faugère - Otmani - Perret - Tillich (2010)

– QC and QD - Alternant codes
Faugère - Otmani - Perret - Tillich - Portzamparc (2016)

– QD - Alternant codes (DAGS)
Barelli - Couvreur (2018)



Outline

1. History of code-based cryptography

2. Algebraic cryptanalysis in code-based cryptography

2.1. Sidelnikov-Shestakov like attack.
2.2. Algebraic attacks by solving a polynomial system.
2.3. ?-product.

3. How to design secure schemes with codes?



Sidelnikov-Shestakov - 1992

Theorem: Sidelnikov-Shestakov
Given as input any matrix G generating the code GRSk(a,b),
there exists an algorithm running in time O(n4) that outputs
a′,b′ such that:

GRSk(x,y) = GRSk(x
′,y′)

Moreover,
x = ax+b1

cx+d1 and y′ = λy



Sidelnikov-Shestakov - 1992

Public Key: C ⊆ GRSk(x,y)

Secret Key: s = (x,y)

Sidelnikov-Shestakov Attack:

Step 1. In our search for x, one can arbitrarily fix 3 points, say:

xn−2 = 1, xn−1 = 0 and xn =∞

Step 2. From a generator matrix G of a code GRSk(x,y)
compute two minimum weight codewords whose supports are
close.

From G, by Gaussian elimination we can find:

u = ( 0 . . . 0 0 1 uk+1 . . . un ) −→ f(x)
v = ( 0 . . . 0 1 0 vk+1 . . . vn ) −→ g(x)



Sidelnikov-Shestakov - 1992

u = ( 0 . . . 0 0 1 uk+1 . . . un ) −→ f(x)
v = ( 0 . . . 0 1 0 vk+1 . . . vn ) −→ g(x)

Lemma If two elements f, g ∈ Fq[x]≤k share k − 2 zeroes, then

φ(x) =
f(x)

g(x)
=
αx+ β

γx+ δ

u ? v−1 = ( 0 . . . 0 ⊥ uk+1

vk+1
. . . un

vn
) −→ f(x)

1. Solve in (α, β, γ, δ) the system φ(xi) =
ui
vi

with
i = n− 2, n− 1, n we find φ

2. Solve the equation φ(xi) =
ui
vi

for each i ∈ [k + 1, n− 3] we
find xk+1, . . . , xn−3

Step 3. Once x is known, one can easily find a valid y by solving
a linear system.



Sidelnikov-Shestakov - 1992

Remark: Computing minimum weight codewords is hard but...

is only Gaussian elimination for GRS codes!!!



Sidelnikov-Shestakov - 1992

Remark: Computing minimum weight codewords is hard but...

is only Gaussian elimination for GRS codes!!!

Some attacks deriving form Sidelnikov-Shestakov:

◦ Minder-Shokrollahi (2007) - Broke Sidelnikov’s proposal based on
binary Reed-Muller codes.

Subexponential time attack

◦ Faure-Minder (2008) - Broke AG codes from hyperelliptic curves.

The attack has exponential cost in the curve’s genus

In orange due to the cost of computing minimum weight
codewords.



Algebraic attacks by polynomial system solving

Idea: A code Ar(x,y) is contained in the kernel of a matrix of
the form:

H =


y1 . . . yn
x1y1 . . . xnyn

...
. . .

...
xr−11 y1 . . . xr−1n yn


Put xi, yi as formal variables Xi, Yi and solve the polynomial
system:

H(Xi, Yi)
T ·G = 0

For usual McEliece parameters, the resolution of such a
polynomial system is out of reach. But...



Algebraic attacks by polynomial system solving

Idea: A code Ar(x,y) is contained in the kernel of a matrix of
the form:

H =


y1 . . . yn
x1y1 . . . xnyn

...
. . .

...
xr−11 y1 . . . xr−1n yn


Put xi, yi as formal variables Xi, Yi and solve the polynomial
system:

H(Xi, Yi)
T ·G = 0

For usual McEliece parameters, the resolution of such a
polynomial system is out of reach. But...

◦ Attacks on QC and QD Alternant codes
Faugère- Otmani- Perret- Portzamparc, Tillich (2010)



For all a,b ∈ Fn
q we define

? product:

a ∗ b = (a1b1, . . . , anbn) ∈ Fn
q

? product of two codes: Let A, B ⊆ Fn
q we define

A ∗B = 〈{a ∗ b | a ∈ A and b ∈ B}〉

For B = A then we denote by A2 = A ∗A

? product



? product - Attack

Theorem: Cascudo-Cramer-Mirandola-Zémor 2013
Let C be a random [n, k]-code then

Prob

(
dim(C2) < min

(
n,

(
k + 1

2

)))
n→∞−−−−→ 0
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Let C be a random [n, k]-code then

Prob
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Proposition:
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2 . Then, GRSk(a,b)
2 = GRS2k−1(a,b ∗ b)
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2 then,(
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? product - Attack

Theorem: Cascudo-Cramer-Mirandola-Zémor 2013
Let C be a random [n, k]-code then

Prob

(
dim(C2) < min

(
n,

(
k + 1

2

)))
n→∞−−−−→ 0

Proposition:
◦ If k ≤ n+1

2 . Then, GRSk(a,b)
2 = GRS2k−1(a,b ∗ b)

◦ If k > n+1
2 then,(

GRSk(a,b)
⊥)2 = GRS2(n−k)−1(a,b

⊥ ∗ b⊥)

Proposition: Similar result for AG codes

CL(X ,P, G)2 = CL(X ,P, 2G)

under some condition on deg(G).
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◦ Berger-Loidreau propose in 2005 to use subcodes of GRS codes

◦ This proposal was broken by Wieschebrink in 2010.

First use of ?-product - Wieschebrink 2010

Public Key: C ⊆ GRSk(a,b)

Secret Key: s = (a,b)

Fact: With high probability:

C2 = GRSk(a,b)
2 = GRS2k−1(a,b ∗ b)

Wieschebrink’s attack:

Step 1. Compute C2

Step 2. Perform Sidelnikov-Shestakov attack on C2 to recover
(a,b ∗ b)
Step 3. Deduce (a,b).



Filtration Attack (Application of ?-product)
Illustrative example on GRS codes

Suppose we know the codes

Ck = GRSk(a,b) and Ck−1 = GRSk−1(a,b)
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Filtration Attack (Application of ?-product)
Illustrative example on GRS codes

Suppose we know the codes

Ck = GRSk(a,b) and Ck−1 = GRSk−1(a,b)

Proposition: If 2k − 1 ≤ n− 2, then:

Ck−2 = GRSk−2(a,b)

can be computed as the set

c ∈ Ck−1 y c ∗ Ck ⊆ (Ck−1)
2

Proof: [Sketch]

Ck−1 ∗ Ck = (Ck−1)
2

(b ∗ f(a)) ∗ (b ∗ g(a)) = (b ∗ b) (fg)(a)

with deg(f) < k − 1 , deg(g) < k ⇒ deg(fg) < 2k − 2



Filtration Attack (Application of ?-product)
Illustrative example on GRS codes

Suppose we know the codes

Ck = GRSk(a,b) and Ck−1 = GRSk−1(a,b)

Proposition: If 2k − 1 ≤ n− 2, then:

Ck−2 = GRSk−2(a,b)

can be computed as the set

c ∈ Ck−1 y c ∗ Ck ⊆ (Ck−1)
2

Then, reiterate the process we deduce the filtration:

GRSk(a,b) ⊇ GRSk−1(a,b) ⊇ GRSk−2(a,b) ⊇ · · · ⊇ GRS1(a,b)

Thus we get: GRS1(a,b) =
{
αb | α ∈ F∗q

}
Where we can deduce b and a solving a linear system.



Filtration Attack (Application of ?-product)
Illustrative example on GRS codes

Suppose we know the codes

Ck = GRSk(a,b) and Ck−1 = GRSk−1(a,b)

Proposition: If 2k − 1 ≤ n− 2, then:

Ck−2 = GRSk−2(a,b)

can be computed as the set

c ∈ Ck−1 y c ∗ Ck ⊆ (Ck−1)
2

Then, reiterate the process we deduce the filtration:

GRSk(a,b) ⊇ GRSk−1(a,b) ⊇ GRSk−2(a,b) ⊇ · · · ⊇ GRS1(a,b)

Remark: We do not need to know both GRSk(a,b) and
GRSk−1(a,b) but GRSk−1(a,b) can be replaced by a shortening of
GRSk(a,b) at one position.



Filtration Attack (Application of ?-product)

Same idea is behind:

◦ Alternative attack on GRS codes

Couvreur-Gautier-Gaborit-Otmani-Tillich (2015)

◦ AG codes and their subcodes

Couvreur-M.-Pellikaan (2014-17)

◦ Wild Goppa codes for m = 2

Couvreur-Otmani-Tillich (2014-17)

Remark: No more need to compute minimum weight codewords!!
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How to evaluate the security of
algebraic codes?

◦ Sufficiently many codes in the family
Support Splitting Algorithm (N. Sendrier).

◦ Low weight codewords should be hard to compute.
Avoid Sidelnikov-Shestakov like attacks.

◦ No square code distinguiser.
– C2, (C⊥)2 should behave like random codes.
– Also their shortenings.

◦ And if you use some automorphism group, check the above prop-
erties for both C and CG .

◦ It should resist attacks by algebraic systems solving – This is
difficult to analyze.



Thanks


