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Block code
A block code C is a set of M codewords, where all the
codewords are n-tuples and we refer to n as the length of the
code.

Where do the codewords live?
This is not enough, we will work with block linear codes.
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Linear Algebra

Recall:
Let F be a field. Then Fn is a vector space.
Vector subspace
Basis of a vector space.
Dimension of a vector space: number of elements of a
basis
Inner product x · y = ∑ xiyi ∈ F

Example: (1,1) · (1,1) ?
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Linear code
A linear (n, k) block code C is a k -dimensional vector subspace
of Fn.

Note:

(0, . . . ,0) ∈ C
M = qk .

Systematic encoding: G = (I,A)

Generator matrix
A generator matrix G of an (n, k) code C is k × n matrix whose
rows are linearly independent.

Encoding rule: c = uG, where u is the information vector of
length k .
Systematic encoding: G = (I,A)

Diego Ruano Some slides for 1st Lecture, Coding theory



A parity check is a vector h of length n such that

GhT = 0

Parity check matrix

A parity check matrix H for an (n, k) code is an (n− k)× n
matrix whose rows are linearly independent parity checks.

GHT = 0
H = (−AT , I) if G = (I,A)
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How do we detect an error?:

Syndrome

For r ∈ Fn

s = HrT

H(c + e)T = HeT

Dual code

C⊥ = {x ∈ Fn : x · c = 0, ∀c ∈ C}

Rate R = k/n.
Rate of C⊥ = 1−R.
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How many errors can we correct?

Hamming weight

Let x ∈ Fn, w(x) = #{i : xi 6= 0}

t-error correcting

A code is t-error correcting if for all codeword c1, c2 and for any
errors e1,e2 with weight ≤ t , we have

c1 + e1 6= c2 + e2

Hamming distance

Let x , y ∈ Fn, d(x , y) = #{i : xi 6= yi}

Fn is a metric space with this distance.

Hamming distance

d(C) = min{d(x , y) : x , y ∈ C}
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How many errors can we correct?

For linear codes: it is easier to compute d

Lemma 1.2.1
In an (n, k) code the minimum distance is equal to the
minimum weight of a nonzero codeword.

Note: w(x) = d(0, x) and d(x , y) = w(x − y)

Theorem 1.2.1
An (n, k) code is t-error correcting if and only if t < d/2. That
is, if t ≤ b d−1

2 c
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Theorem 1.2.1
An (n, k) code is t-error correcting if and only if t < d/2. That
is, if t ≤ b d−1

2 c

Proof⇒:

Let c1 + e1 = c2 + e2 with ci ∈ C and w(ei) ≤ t
w(c1 − c2) = w(e2 − e1) ≤ w(e2) + w(e1) ≤ 2t < d .
Contradiction.

Proof⇐:

Let t ≥ d/2 and w(c) = d .
Change d d

2 e positions (of the non-zero positions) of c to
zero.
Then, 0 + y = c + (y − c) (think in c1 + e1 = c2 + e2)
Hence, it is not t-error correcting because
d(0, y) ≤ d − d d

2 e ≤ t
d(c, y) = d d

2 e ≤ d
2t
2 e = t
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Lemma 1.2.1
Let C be an (n, k) code and H a parity check matrix for C.

If j columns are linearly dependent, C contains a codeword
with non-zero elements in some of the corresponding
positions
If C contains a word of weight j , then there exist j linearly
dependent columns of H.

Proof: Think in HcT = 0

Lemma 1.2.3
Let C be an (n, k) code with parity check matrix H. Then
minimum distance of C equals the minimum number of linearly
dependent columns of H.

For a binary code d ≥ 3 if and only if the columns of H are
distinct and nonzero.

Diego Ruano Some slides for 1st Lecture, Coding theory



Theorem 1.2.2. Gilbert-Varshamov bound
There exists a binary linear code of length n, with at most m
linearly independent parity checks and minimum distance at
least d , if

1 +

(
n− 1

1

)
+ · · ·+

(
n− 1
d − 2

)
< 2m

For n large, good binary codes exist. How to construct
them?
For n large, can we get even better codes?
Short codes, can have better minimum distances.
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Binary Hamming code
Extended binary Hamming code
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