
PhD course: Finite Fields
Some slides for 3rd Lecture

Diego Ruano

Department of Mathematical Sciences
Aalborg University

Denmark

14-12-2012

Diego Ruano PhD course: Finite Fields. Some slides for 3rd Lecture

Conway Polynomials from Second lecture

Diego Ruano PhD course: Finite Fields. Some slides for 3rd Lecture

Another representation of the finite field’s elements

Fp = Z/pZ = {0, · · · ,p− 1}

Usually we represent the elements of Fp by

0, . . . p− 1

However, it can be practical to consider

−p− 1
2

, . . . ,
p− 1

2

Consider a computation over Z which solution S is bounded by
−p/2 < S < p/2, then we can perform the computations in
over Fp and then reconstruct the solution uniquely over Z.

Diego Ruano PhD course: Finite Fields. Some slides for 3rd Lecture

Berlekamp’s algorithm

Wikipedia

How do we factorize polynomials in Sage?

Diego Ruano PhD course: Finite Fields. Some slides for 3rd Lecture

http://en.wikipedia.org/wiki/Berlekamp's_algorithm

Horner’s rule

Let f = f0 + f1X + · · ·+ fnX n a polynomial in F [X]. How many

additions and multiplications do we need to evaluate f at a
single point of F?

Can we do this in more clever way?

Horner’s rule

f (u) = (· · · (fnu + fn−1)u + · · ·+ f1)u + f0

How many additions and multiplications do we need now?

Diego Ruano PhD course: Finite Fields. Some slides for 3rd Lecture

Polynomials can be considered as functions

Actually, any function over a finite field can be represented by a
polynomial, thanks to Lagrange interpolation

The Lagrange interpolant

li = ∏
0≤j<n,j 6=i

x − uj

ui − uj

has the property that li(uj) = 0 if i 6= j and li(ui) = 1.

For arbitrary v0, . . . vn−1, the Lagrange polynomial

f = ∑
0≤i<n

vi li

verifies f (ui) = vi for all i .

Diego Ruano PhD course: Finite Fields. Some slides for 3rd Lecture

Complexity

Evaluating a polynomial f ∈ F [X] of degree less than n at n
distinct points u0, . . . ,un−1 takes 2n2 − 2n operations and the
Lagrange interpolation takes 7n2 − 8n + 1 operations.

One can also understand evaluation as the F -linear map:

(f0, . . . , fn−1) 7→ (∑
0≤j<n

fju
j
0, . . . ∑

0≤j<n
fju

j
n−1)

that can be represented using the Vandermonde matrix
1 u0 u2

0 · · · un−1
0

1 u1 u2
1 · · · un−1

1
1 u2 u2

2 · · · un−1
2

...
...

...
...

...
1 un−1 u2

n−1 · · · un−1
n−1


and interpolation by the inverse matrix.

Diego Ruano PhD course: Finite Fields. Some slides for 3rd Lecture

Multiplication of polynomials: DFT and FFT

The naive multiplication algorithm for polynomials has quadratic
complexity. Can we do it faster?, yes. For instance we have
Karatsuba’s algorithm (with complexity O(nlog 3)) and, if we
have a primitive n-th root of unity, we have DFT and FFT.

Let ω ∈ F (field), we say that it is a primitive n-th root of unity if
ωn = 1 and w ` − 1 6= 0 for all 1 ≤ ` < n.

Lemma
For a prime power q and n ∈N, a finite field Fq contains a
primitive n-th root of unity if and only if n divides q − 1.

Diego Ruano PhD course: Finite Fields. Some slides for 3rd Lecture

http://en.wikipedia.org/wiki/Karatsuba_algorithm

Discrete Fourier Transform

The following F -linear map is called Discrete Fourier Transform:

DFTω : F n → F n

f 7→ (f (1), f (ω), . . . , f (ωn−1))

The convolution of two polynomials f ,g ∈ F [X] is

f ∗n g := fg rem X n − 1

Diego Ruano PhD course: Finite Fields. Some slides for 3rd Lecture

Fast convolution algorithm

INPUT: f ,g of degree less than n = 2k , ω primitive n-th
root of unity
OUTPUT: f ∗ g

1 Compute ω2, . . . ,ωn−1

2 α = DFTω(f), β = DFTω(g)
3 γ = α · β
4 RETURN DFT−1

ω = (1/n) DFTω−1

Diego Ruano PhD course: Finite Fields. Some slides for 3rd Lecture

To evaluate f at the powers ω, . . . ,ωn−1, we divide f by
xn/2 − 1 and xn/2 + 1 with remainder

f = q0(xn/2 − 1)r0 = q1(xn/2 + 1) + r1

We do not need q0 and q1.
We can easily rompute r0 and r1. If f = F1xn/2 + F0:

r0 = F0 + F1 and r1 = F0 − F1

f (ω2`) = q0(ω
2`)(ωn` − 1) + r0(ω

2`) = r0(ω
2`)

f (ω2`+1) = q1(ω
2`+1)(ωn`ωn/2 − 1) + r1(ω

2`) = r1(ω
2`)

But r1(ω
2`) = r ∗1 (ω

2`) for r ∗1 = (ωx).

Diego Ruano PhD course: Finite Fields. Some slides for 3rd Lecture

Fast Fourier Transform

INPUT: f of degree less than n = 2k , ω, . . . ,ωn−1.
OUTPUT: DFT ω(f) = (f (1), f (ω), . . . , f (wn−1))

1 IF n = 1, RETURN f0
2

r0 = ∑
0≤j<n/2

(fj + fj+n/2)x j

r ∗1 = ∑
0≤j<n/2

(fj − fj+n/2)ωx j

3 Call algorithm recursively to evaluate r0 and r ∗1 at the
powers of ω2

4 RETURN
(r0(1), r ∗1 (1), r0(ω

2), r ∗1 (ω
2), . . . , r0(ω

n−2), r ∗1 (ω
n−2))

Diego Ruano PhD course: Finite Fields. Some slides for 3rd Lecture

Complexity

FFT ((3/2)n log n field operations
Fast convolution: (9/2)n log n + O(n) field operations

1 n− 2 multiplications
2 2n log n additions and n log n multiplications by powers of ω
3 n multiplications
4 n log n additions, (1/2)n log n multiplications by powers of

ω and n divisions by n.

We reduce the complexity from O(n2) to O(n log n).

Diego Ruano PhD course: Finite Fields. Some slides for 3rd Lecture

