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Conway Polynomials from Second lecture
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Another representation of the finite field’s elements

Fp = Z/pZ = {0, · · · ,p− 1}

Usually we represent the elements of Fp by

0, . . . p− 1

However, it can be practical to consider

−p− 1
2

, . . . ,
p− 1

2

Consider a computation over Z which solution S is bounded by
−p/2 < S < p/2, then we can perform the computations in
over Fp and then reconstruct the solution uniquely over Z.
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Berlekamp’s algorithm

Wikipedia

How do we factorize polynomials in Sage?

Diego Ruano PhD course: Finite Fields. Some slides for 3rd Lecture

http://en.wikipedia.org/wiki/Berlekamp's_algorithm


Horner’s rule

Let f = f0 + f1X + · · ·+ fnX n a polynomial in F [X ]. How many

additions and multiplications do we need to evaluate f at a
single point of F?

Can we do this in more clever way?

Horner’s rule

f (u) = (· · · (fnu + fn−1)u + · · ·+ f1)u + f0

How many additions and multiplications do we need now?
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Polynomials can be considered as functions

Actually, any function over a finite field can be represented by a
polynomial, thanks to Lagrange interpolation

The Lagrange interpolant

li = ∏
0≤j<n,j 6=i

x − uj

ui − uj

has the property that li(uj) = 0 if i 6= j and li(ui) = 1.

For arbitrary v0, . . . vn−1, the Lagrange polynomial

f = ∑
0≤i<n

vi li

verifies f (ui) = vi for all i .
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Complexity

Evaluating a polynomial f ∈ F [X ] of degree less than n at n
distinct points u0, . . . ,un−1 takes 2n2 − 2n operations and the
Lagrange interpolation takes 7n2 − 8n + 1 operations.

One can also understand evaluation as the F -linear map:

(f0, . . . , fn−1) 7→ ( ∑
0≤j<n

fju
j
0, . . . ∑

0≤j<n
fju

j
n−1)

that can be represented using the Vandermonde matrix
1 u0 u2

0 · · · un−1
0

1 u1 u2
1 · · · un−1

1
1 u2 u2

2 · · · un−1
2

...
...

...
...

...
1 un−1 u2

n−1 · · · un−1
n−1


and interpolation by the inverse matrix.
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Multiplication of polynomials: DFT and FFT

The naive multiplication algorithm for polynomials has quadratic
complexity. Can we do it faster?, yes. For instance we have
Karatsuba’s algorithm (with complexity O(nlog 3)) and, if we
have a primitive n-th root of unity, we have DFT and FFT.

Let ω ∈ F (field), we say that it is a primitive n-th root of unity if
ωn = 1 and w ` − 1 6= 0 for all 1 ≤ ` < n.

Lemma
For a prime power q and n ∈N, a finite field Fq contains a
primitive n-th root of unity if and only if n divides q − 1.
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Discrete Fourier Transform

The following F -linear map is called Discrete Fourier Transform:

DFTω : F n → F n

f 7→ (f (1), f (ω), . . . , f (ωn−1))

The convolution of two polynomials f ,g ∈ F [X ] is

f ∗n g := fg rem X n − 1
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Fast convolution algorithm

INPUT: f ,g of degree less than n = 2k , ω primitive n-th
root of unity
OUTPUT: f ∗ g

1 Compute ω2, . . . ,ωn−1

2 α = DFTω(f ), β = DFTω(g)
3 γ = α · β
4 RETURN DFT−1

ω = (1/n) DFTω−1
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To evaluate f at the powers ω, . . . ,ωn−1, we divide f by
xn/2 − 1 and xn/2 + 1 with remainder

f = q0(xn/2 − 1)r0 = q1(xn/2 + 1) + r1

We do not need q0 and q1.
We can easily rompute r0 and r1. If f = F1xn/2 + F0:

r0 = F0 + F1 and r1 = F0 − F1

f (ω2`) = q0(ω
2`)(ωn` − 1) + r0(ω

2`) = r0(ω
2`)

f (ω2`+1) = q1(ω
2`+1)(ωn`ωn/2 − 1) + r1(ω

2`) = r1(ω
2`)

But r1(ω
2`) = r ∗1 (ω

2`) for r ∗1 = (ωx).
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Fast Fourier Transform

INPUT: f of degree less than n = 2k , ω, . . . ,ωn−1.
OUTPUT: DFT ω(f ) = (f (1), f (ω), . . . , f (wn−1))

1 IF n = 1, RETURN f0
2

r0 = ∑
0≤j<n/2

(fj + fj+n/2)x j

r ∗1 = ∑
0≤j<n/2

(fj − fj+n/2)ωx j

3 Call algorithm recursively to evaluate r0 and r ∗1 at the
powers of ω2

4 RETURN
(r0(1), r ∗1 (1), r0(ω

2), r ∗1 (ω
2), . . . , r0(ω

n−2), r ∗1 (ω
n−2))
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Complexity

FFT ((3/2)n log n field operations
Fast convolution: (9/2)n log n + O(n) field operations

1 n− 2 multiplications
2 2n log n additions and n log n multiplications by powers of ω
3 n multiplications
4 n log n additions, (1/2)n log n multiplications by powers of

ω and n divisions by n.

We reduce the complexity from O(n2) to O(n log n).
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