PhD course: Finite Fields Some slides for 3rd Lecture

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

14-12-2012

Conway Polynomials from Second lecture

Another representation of the finite field's elements

$$\mathbb{F}_{p} = \mathbb{Z}/p\mathbb{Z} = \{\overline{0}, \cdots, \overline{p-1}\}$$

Usually we represent the elements of \mathbb{F}_{ρ} by

0, . . . *p* – 1

However, it can be practical to consider

$$\frac{p-1}{2},\ldots,\frac{p-1}{2}$$

Consider a computation over \mathbb{Z} which solution *S* is bounded by -p/2 < S < p/2, then we can perform the computations in over \mathbb{F}_p and then reconstruct the solution uniquely over \mathbb{Z} .

Wikipedia

How do we factorize polynomials in Sage?

Let $f = f_0 + f_1 X + \cdots + f_n X^n$ a polynomial in F[X]. How many

additions and multiplications do we need to evaluate f at a single point of F?

Can we do this in more clever way?

Horner's rule

$$f(u) = (\cdots (f_n u + f_{n-1})u + \cdots + f_1)u + f_0$$

How many additions and multiplications do we need now?

Polynomials can be considered as functions

Actually, any function over a finite field can be represented by a polynomial, thanks to Lagrange interpolation

The Lagrange interpolant

$$I_i = \prod_{0 \le j < n, j \ne i} \frac{x - u_j}{u_i - u_j}$$

has the property that $I_i(u_j) = 0$ if $i \neq j$ and $I_i(u_i) = 1$.

For arbitrary v_0, \ldots, v_{n-1} , the Lagrange polynomial

$$f = \sum_{0 \le i < n} v_i l_i$$

verifies $f(u_i) = v_i$ for all *i*.

Complexity

Evaluating a polynomial $f \in F[X]$ of degree less than *n* at *n* distinct points u_0, \ldots, u_{n-1} takes $2n^2 - 2n$ operations and the Lagrange interpolation takes $7n^2 - 8n + 1$ operations.

One can also understand evaluation as the *F*-linear map:

$$(f_0,\ldots,f_{n-1})\mapsto (\sum_{0\leq j< n}f_ju_0^j,\ldots\sum_{0\leq j< n}f_ju_{n-1}^j)$$

that can be represented using the Vandermonde matrix

$$\begin{pmatrix} 1 & u_0 & u_0^2 & \cdots & u_0^{n-1} \\ 1 & u_1 & u_1^2 & \cdots & u_1^{n-1} \\ 1 & u_2 & u_2^2 & \cdots & u_2^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & u_{n-1} & u_{n-1}^2 & \cdots & u_{n-1}^{n-1} \end{pmatrix}$$

and interpolation by the inverse matrix.

The naive multiplication algorithm for polynomials has quadratic complexity. Can we do it faster?, yes. For instance we have Karatsuba's algorithm (with complexity $O(n^{\log 3})$) and, if we have a primitive *n*-th root of unity, we have DFT and FFT.

Let $\omega \in F$ (field), we say that it is a primitive *n*-th root of unity if $\omega^n = 1$ and $w^{\ell} - 1 \neq 0$ for all $1 \leq \ell < n$.

Lemma

For a prime power q and $n \in \mathbb{N}$, a finite field \mathbb{F}_q contains a primitive *n*-th root of unity if and only if *n* divides q - 1.

The following *F*-linear map is called **Discrete Fourier Transform**:

 $DFT_{\omega}: F^{n} \to F^{n}$ $f \mapsto (f(1), f(\omega), \dots, f(\omega^{n-1}))$

The convolution of two polynomials $f, g \in F[X]$ is

 $f *_n g := fg \operatorname{rem} X^n - 1$

Fast convolution algorithm

- INPUT: *f*, *g* of degree less than $n = 2^k$, ω primitive *n*-th root of unity
- OUTPUT: *f* * *g*
- Compute ω²,..., ωⁿ⁻¹
 α = DFT_ω(f), β = DFT_ω(g)
 γ = α · β
 RETURN DFT_ω⁻¹ = (1/n) DFT_ω⁻¹

To evaluate *f* at the powers $\omega, \ldots, \omega^{n-1}$, we divide *f* by $x^{n/2} - 1$ and $x^{n/2} + 1$ with remainder

$$f = q_0(x^{n/2} - 1)r_0 = q_1(x^{n/2} + 1) + r_1$$

- We do not need q_0 and q_1 .
- We can easily rompute r_0 and r_1 . If $f = F_1 x^{n/2} + F_0$:

$$r_{0} = F_{0} + F_{1} \text{ and } r_{1} = F_{0} - F_{1}$$

$$f(\omega^{2\ell}) = q_{0}(\omega^{2\ell})(\omega^{n\ell} - 1) + r_{0}(\omega^{2\ell}) = r_{0}(\omega^{2\ell})$$

$$f(\omega^{2\ell+1}) = q_{1}(\omega^{2\ell+1})(\omega^{n\ell}\omega^{n/2} - 1) + r_{1}(\omega^{2\ell}) = r_{1}(\omega^{2\ell})$$

But
$$r_1(\omega^{2\ell}) = r_1^*(\omega^{2\ell})$$
 for $r_1^* = (\omega x)$.

Fast Fourier Transform

- INPUT: *f* of degree less than $n = 2^k, \omega, \dots, \omega^{n-1}$.
- OUTPUT: $DFT_{\omega}(f) = (f(1), f(\omega), \dots, f(w^{n-1}))$
- 1 IF n = 1, RETURN f_0

$$r_{0} = \sum_{0 \le j < n/2} (f_{j} + f_{j+n/2}) x^{j}$$
$$r_{1}^{*} = \sum_{0 \le j < n/2} (f_{j} - f_{j+n/2}) \omega x^{j}$$

- 3 Call algorithm recursively to evaluate r_0 and r_1^* at the powers of ω^2
- RETURN

2

 $(r_0(1), r_1^*(1), r_0(\omega^2), r_1^*(\omega^2), \dots, r_0(\omega^{n-2}), r_1^*(\omega^{n-2}))$

Complexity

- FFT ((3/2)n log n field operations
- Fast convolution: $(9/2)n \log n + O(n)$ field operations
 - n 2 multiplications
 - 2 $n \log n$ additions and $n \log n$ multiplications by powers of ω
 - In multiplications
 - In log *n* additions, (1/2)*n* log *n* multiplications by powers of ω and *n* divisions by *n*.

We reduce the complexity from $O(n^2)$ to $O(n \log n)$.