PhD course: Finite Fields Some slides for 2nd Lecture

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

12-12-2012

Diego Ruano PhD course: Finite Fields. Some slides for 2nd Lecture

Let *F* be a field. A subset *K* of *F* that is itself a field under the operations of *F* is called a subfield of *F*.

A field that containing no proper subfields is called a prime field.

 \mathbb{F}_{p} is a prime field.

Let *K* be a subfield of *F* and $\theta \in F$. If θ satisfies a nontrivial polynomial equation with coefficients in *k*, i.e. if $a_n\theta^n + \cdots + a_1\theta + a_0 = 0$, with $a_i \in K$ not all being 0, then θ is said to be algebraic over *K*.

Diego Ruano PhD course: Finite Fields. Some slides for 2nd Lecture

An ideal *I* in a ring *R* is a subgroup of (R, +) such that $\lambda x \in I$, for every $\lambda \in R$ and $x \in I$.

F[X] is a principal ideal domain, that is every ideal is generated by only one element. How do we find such an element?, using the Euclidean algorithm.

$$J = \{f \in \mathcal{K}[X] : f(\theta) = 0\}$$

is an ideal of K[X].

IF θ is algebraic over K, then the uniquely determined monic polynomial $g \in K[X]$ is called the minimal polynomial of θ over K.

Theorem

If $\theta \in F$ is algebraic over *K*, then its minimal polynomial *g* over *K* has the following properties:

- g is irreducible in K[X].
- For $f \in K[X]$ we have $f(\theta) = 0$ if and only if g divides f.
- g is the monic polynomial in K[X] of least degree having θ as a root.

If *L* is and extension field of *K* then *L* may be viewed as a vector space over *K*.

Theorem

Let $\theta \in F$ be algebraic over K and g its minimal polynomial over K (of degree n). Then:

• $K(\theta)$ is isomorphic to K[X]/(g)

The dimension of *K*(θ) over *K* (as vector space) is *n* and a basis is {1, θ, ..., θⁿ⁻¹}

Theorem

Let \mathbb{F}_q be the finite field with $q = p^n$ elements. Then every subfield of \mathbb{F}_q has order p^m , where *m* is a positive divisor of *n*. Conversely, if *m* is a positive divisor of *n*, then there is exactly one subfield of \mathbb{F}_q with p^m elements.

Why do we need to perform extensions in practice?

Diego Ruano PhD course: Finite Fields. Some slides for 2nd Lecture

Let $f \in \mathbb{F}_q$ be a polynomial of degree $m \ge 1$ with $f(0) \ne 0$. Then there exists a positive integer $e \le q^m - 1$ such that f(x) divides $x^e - 1$. *e* is called the order of *f*.

Theorem

Let $f \in \mathbb{F}_q[X]$ be an irreducible polynomial over \mathbb{F}_q of degree m with $f(0) \neq 0$. Then the order of f is equal to the order of any root of f in the multiplicative group \mathbb{F}_q^* .

Let $f \in \mathbb{F}_q[X]$ of degree $m \ge 1$, f is called **primitive** over \mathbb{F}_q if it is the minimal polynomial over \mathbb{F}_q of a primitive element of \mathbb{F}_{q^m} .

Theorem

A polynomial $f \in \mathbb{F}_q[X]$ of degree m, f is a primitive polynomial over \mathbb{F}_q if and only if is monic, $f(0) \neq 0$ and the order of f is $q^m - 1$.

A third representation of the elements of $\mathbb{F}_q q$

Let $f = a_0 + a_1X + \cdots + a_{n-1}X^{n-1} + X^n \in \mathbb{F}_p[X]$ an irreducible polynomial. We consider its companion matrix:

$$A = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & 0 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & -a_{n-1} \end{pmatrix}$$

f(A) = 0, that is $a_0I + a_1A + \cdots + a_{n-1}A^{n-1} + A^n$, where *I* is the $n \times n$ identity matrix. Hence, *A* is like a root of *f*:

The polynomials in *A* over \mathbb{F}_p of degree less than *n* yield a representation of the elements of \mathbb{F}_q .

Example: $f = X^2 + 1 \in \mathbb{F}_3[X]$. The companion matrix is....? Construct \mathbb{F}_9 !

- *GF*(*pⁿ*) finite field with *pⁿ* elements.
- $GF(p^n) \simeq GF(p)/q(x)$, with q(x) any irreducible polynomial of deg *n*
- q(x) is primitive if for any root a, $GF(p^n)^* = \{a^0, \dots, a^{p^n-2}\}.$
- *q* primitive, *a* root ⇒ elements can be represented as
 - a^k , $0 \le k \le p^n 1$ easy multiplication
 - *f*(*a*), deg(*f*) ≤ *n*−1 easy addition

Example

- *GF*(5) finite field
- $q = x^2 2$ irreducible
- *GF*(5²) = *GF*(5)(*a*), *a* root of *q*.

- $q = x^2 + 4x + 2$ primitive
- *GF*(5²) = *GF*(5)(*a*), *a* root of *q*.
- $a^3 = 4a + 3$, $a^{11} = 3a + 2$

Singular is free a computer algebra system that is part of SAGE.

One can work with polynomial rings over a finite field: $GF(p^n)$

```
> ring R=(2^3,a),(x,y),lp;
> minpoly;
1*a^3+1*a^1+1*a^0
```

 $R = \mathbb{F}_8[x, y]$ with the lexicographical order, *a* is a root of the primitive polynomial $x^3 + x + 1$. Singular has a table with primitive polynomials for $GF(p^n)$, with p < 256 and $p^n < 2^{16}$

Representation of $GF(p^n)$ in Singular

$$GF(p^n) = \{a^0, a^1, \dots, a^{p^n-2}\} \cup \{0\}$$

• Multiplication is easy: $a^i a^j = a^{i+j \mod (p^n-1)}$

•
$$a^i + a^j = a^i (1 + a^{j-i \mod (p^n - 1)})$$

There is a table with the values $1 + a^i$, with $i = 0, ..., p^n - 2$.

One can define a finite field using his favourite irreducible polynomial. In this case, elements are represented as polynomials of degree lower than or equal to n in GF(p)[x]. One can define in this way finite fields with more elements, but computations are not as fast as before.

Extending from a finite field

•
$$GF(p) = \mathbb{Z}/(p) = \mathbb{F}_p$$

- $GF(p') = \mathbb{F}_p(a)$
- $GF(p^m) = \mathbb{F}_p(b)$
- $I \mid m \Rightarrow GF(p^{l}) \hookrightarrow GF(p^{m})$
- But $a \hookrightarrow ???$

One possibility: exhaustive search

Example

- $GF(2) = \mathbb{F}_2$
- $GF(2^3) = \mathbb{F}_2(a)$, minpoly = $a^3 + a + 1$
- $GF(2^6) = \mathbb{F}_2(b)$, minpoly = $b^6 + b + 1$

By exhaustive search:

 $(b^k)^3 + (b^k) + 1 = 0$

for k = 27, 54, 45.

Easy extension

- $GF(p^l) = \mathbb{F}_p(a), \ GF(p^m) = \mathbb{F}_p(b)$
- $M_{p,n} = p^n 1$
- The smallest power of *b* that generates $GF(p^{l})$ is $\gamma = b^{M_{p,m}/M_{p,l}}$
- We have an easy extension if $a = \gamma$
- Equivalently, if $q_{GF(p^m)}(x) \mid q_{GF(p^l)}(x^{M_{p,m}/M_{p,l}})$

Example

- $GF(2^3) = \mathbb{F}_2(a), \ GF(2^6) = \mathbb{F}_2(b)$
- $M_{2,3} = 7$, $M_{2,6} = 63$, $M_{2,6} / M_{2,3} = 9$
- We require $a = b^9$.

Compatibility condition

$$\phi_{S \hookrightarrow F} = \phi_{E \hookrightarrow F} \circ \phi_{S \hookrightarrow E}$$

This condition is satisfied with the previous requirement.

$$GF(p^{s}) = \mathbb{F}_{p}(a) \hookrightarrow GF(p^{e}) = \mathbb{F}_{p}(b) \hookrightarrow GF(p^{f}) = \mathbb{F}_{p}(c)$$

$$a \hookrightarrow b^{M_{
ho,e}/M_{
ho,s}}, \ \ b \hookrightarrow c^{M_{
ho,f}/M_{
ho,e}}$$

 $a \hookrightarrow c^{M_{p,f}/M_{p,s}}$

1

Conway polynomials-Definition

- $C_{p,n}$ Conway polynomial:
 - primitive of deg n
 - (compatible) $C_{p,n} \mid C_{p,n'}(x^{M_{p,n'}/M_{p,n'}}) \forall n' \mid n$
 - (unique) C_{p,n} minimal wrt <_{lex}:

$$a_d x^d + \dots + a_0 <_{lex} b_d x^d + \dots + b_0$$

iff for some *i*, $a_j = b_j$ for all j < i and $(-1)^{d-i}a_i < (-1)^{d-i}b_i$ where 0 < 1 < ... < p - 1 in \mathbb{Z}_p .

Example: Computation of $C_{2,6}$

$$C_{2,1} = x + 1$$
, $C_{2,2} = x^2 + x + 1$ and $C_{2,3} = x^3 + x + 1$

> factorize(gcd(x^63+1, x21^2+x21+1, x9^3+x9+1)); x6+x5+x2+x+1; x6+x5+1; x6+x4+x3+x+1

The Conway polynomial $C_{2,6}$ is $x^6 + x^4 + x^3 + x + 1$.

- Conway polynomials were introduced by R. Parker in 1990, they were used in data bases like the Modular Atlas character tables [Jansen, Lux, Parker, Wilson].
- The existence of Conway polynomials is shown using the Chinese Remainder theorem.
- There is no algebraic reason for the requirement that the Conway polynomial is minimal wrt <*lex*.

Applications

- To have an standard notation for elements in $GF(P^n)$.
- To perform an extension from $GF(P^{n'})$ to $GF(P^n)$, with $n' \mid n$.
- Data can be easily ported between different computer algebra systems like Sage, Macaulay2 and Magma.

First algorithm: (improved) exhaustive search

• G = $gcd(\{C_{p,n'}(x^{M_{p,f}/M_{p,e}})\}),$ n' maximal divisor of n.

- Iterate through all polynomials C of deg n, and check:
 - C is irreducible
 - C | G
 - C is primitive

Example

Computation of $C_{2,5}$:

- $G = C_{2,1}(x^{31}) = x^{31} + 1$
- 2 $x^5 + 1$, not irreducible $x^5 + x + 1$, not irreducible $x^5 + x^2 + 1$, Conway

Frank Lübeck

- For a project concerning the Lyons simple group it was needed the Conway Polynomial for $GF(67^{18})$.
- Lübeck estimated that it was needed 10¹⁰ years to compute it using the exhaustive search in GAP
- Using many computers in parallel he was able to compute $C_{67,18}$. He wrote a parallelized program based on the second algorithm (i.e. list the compatible polynomials).
- One can download from his webpage a huge list of Conway Polynomials. For instance, 2⁴⁰⁹ and 109987⁴.

http://www.math.rwth-aachen.de:8001/~Frank.Luebeck/data/ConwayPol

Further Algorithms?

For large finite fields, exhaustive search may take a lot of time. Especially when there are few compatible polynomials.

- $GF(p^n)$, with $n = q_1^{e_1} \cdots q_s^{e_s}$.
- For $1 \le i \le s$, $d_i = n/q_i$ and $m_i = M_{p,n}/M_{p,d_i}$.
- $g = gcd(m_1, ..., m_s).$

The number of monic polynomials of degree n compatible with the lower order Conway polynomials is g (and some of them are not primitive).

Then, assuming that these polynomials are distributed randomly (uniformly) in the lexicographical listing of all degree npolynomials we expect to text p^n/g polynomials before finding the first acceptable one. For composite n (and even nmoderately large) this is impractical.

Second algorithm: based on polynomials [Heath, Loehr, 04]

- $D = \{d_1, ..., d_s\},$ maximal divisors of n
- $m_i = M_{p,n}/M_{p,d_i}$
- $\begin{array}{l} \bullet \quad z = x^{g}, \\ G = gcd(\{C_{p,d_{i}}(z^{m_{i}/g})\}) \end{array} \end{array}$
- **5** z_0 root of G in $GF(p^n)$.
- For all α , primitive *g*-th root of z_0 , compute the minimal polynomials.
- Return the lexicographically smaller one.

Example: Computation of $C_{2,6}$:

1 $D = \{2, 3\}$

2
$$m_1 = 21, m_2 = 9$$

3 *g* = 3

- $G = gcd(z^{14} + z^7 + 1, z^9 + z^3 + 1) = z^6 + z^5 + z^4 + z^2 + 1$
- $z_0 = a^{15}$ $GF(2^6) = \mathbb{F}_2(a),$ $a^6 + a + 1 = 0$
- $\alpha \in \{a^5, a^{26}, a^{47}\}$. The minimal polynomials are $x^6 + x^5 + x^2 + x + 1$, $x^6 + x^4 + x^3 + x + 1$, $x^6 + x^5 + 1$.

Diego Ruano

• $C_{2.6} = x^6 + x^4 + x^3 + x + 1$ PhD course: Finite Fields. Some slides for 2nd Lecture

Third algorithm: based on elements [Heath, Loehr 04]

- $D = \{d_1, ..., d_s\},$ maximal divisors of n
- 2 x_i a root of C_{p,d_i} in $G^F(p^n)$.
- 3 x such that $x^{m_i} = x_i$.
- For all α, primitive g-th root of x, compute the minimal polynomials.
- Return the lexicographically smaller.

Warning: not any root of C_{p,d_i} works.

- $x^{m_im_j} = x_i^{m_j} = x_j^{m_i}$
- Therefore, {*x_i*} must satisfy

$$x_i^{m_j} = x_j^{m_i} \forall (i, j).$$

• If not, choose another root. (The roots of C_{p,d_i} are $\{x_i, x_i^p, \dots, x_i^{p^{d_i-1}}\}$.)