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Let F be a field. A subset K of F that is itself a field under the
operations of F is called a subfield of F.

A field that containing no proper subfields is called a prime field.J

F,, is a prime field. J

Let K be a subfield of F and 6 € F. If 6 satisfies a nontrivial
polynomial equation with coefficients in k, i.e. if

an" + - - -+ a0 + ag = 0, with a; € K not all being 0, then 0 is
said to be algebraic over K.
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Anideal /in aring R is a subgroup of (R, +) such that Ax € I,
forevery A € Rand x € |.

F[X] is a principal ideal domain, that is every ideal is generated
by only one element.

How do we find such an element?, using the Euclidean
algorithm.

J={feK[X]:f(0) =0}
is an ideal of K[X].

IF 6 is algebraic over K, then the uniquely determined monic
polynomial g € K[X] is called the minimal polynomial of 6 over
K.
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Theorem

If 0 € F is algebraic over K, then its minimal polynomial g over
K has the following properties:

@ g is irreducible in K[X].
@ For f € K[X] we have f(8) = 0 if and only if g divides f.

@ g is the monic polynomial in K[X] of least degree having 6
as a root.
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If L is and extension field of K then L may be viewed as a
vector space over K.

| A

Theorem
Let 6 € F be algebraic over K and g its minimal polynomial
over K (of degree n). Then:
@ K(0) is isomorphic to K[X]/(g)
@ The dimension of K(6) over K (as vector space) is n and a
basisis {1,0,...,0" "}

y
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Let IF4 be the finite field with g = p” elements. Then every
subfield of IF4 has order p™, where m is a positive divisor of n.
Conversely, if mis a positive divisor of n, then there is exactly
one subfield of IF4 with p™ elements.

Why do we need to perform extensions in practice?
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Let f € IF4 be a polynomial of degree m > 1 with f(0) # 0.
Then there exists a positive integer e < g™ — 1 such that f(x)
divides x¢ — 1.

e is called the order of 1.

Theorem

Let f € F4[X] be an irreducible polynomial over [, of degree m
with f(0) # 0. Then the order of f is equal to the order of any
root of f in the multiplicative group IF,.

| A\

Let f € F4[X] of degree m > 1, f is called primitive over Fy if it
is the minimal polynomial over [F4 of a primitive element of IFgm.

Theorem

A polynomial f € F4[X] of degree m, f is a primitive polynomial
over [Fq if and only if is monic, f(0) # 0 and the order of f is
qm—1.
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A third representation of the elements of F,q

Letf=ay+a X+ +ap_ 1 X" 1+ X" € Fp[X] an irreducible
polynomial. We consider its companion matrix:

000 -+ 0 -—a
100 -~ 0 —a
Al o010 - 0 -—a
000 1 —ay

f(A) =0, thatis ag/ +ajA+--- +a,_1A"" + A", where [ is
the n x nidentity matrix. Hence, A is like a root of f:

The polynomials in A over [F, of degree less than nyield a
representation of the elements of IF,.

Example: f = X2 + 1 € F3[X]. The companion matrix is....?
Construct [Fg!
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Finite fields

Example

o GF(p") finite field with p”

elements.

® GF(p") ~ GF(p)/q(x),
with q(x) any irreducible

polynomial of deg n

@ q(x) is primitive if for any

root a, GF (p")* =
{&0,...,a"2}.

@ @ primitive, a root =

elements can be
represented as

e & 0<k<p'—1
easy multiplication

o f(a),deg(f) <n
easy addition

—1

GF(5) finite field

g = x? — 2 irreducible
GF(5%) = GF(5)(a),
aroot of q.

a =2a a'' =2a

g = x? + 4x + 2 primitive
GF(5%) = GF(5)(a),
aroot of q.
a®=4a+3,a"=3a+2

Diego Ruano
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Singular is free a computer algebra system that is part of

SAGE.
SINGULAR /
A Computer Algebra System for Polynomial Computations / version 3-0-3
0<
by: G.-M. Greuel, G. Pfister, H. Schoenemann \ May 2007
FB Mathematik der Universitaet, D-67653 Kaiserslautern \

>

One can work with polynomial rings over a finite field: GF (p")

> ring R=(2"3,a), (x,y),1p;
> minpoly;
1xa”3+1lxa”~1+1xa”0

R = Fglx, y] with the lexicographical order, a is a root of the
primitive polynomial x + x + 1. Singular has a table with
primitive polynomials for GF(p"), with p < 256 and p" < 216,
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Representation of GF(p”) in Singular

GF(p") = {& a',...,.a2}u{o}
@ Multiplication is easy: aa@ = a'*/ mod (P"~1)
@ ad+ad=2a(1+a mdFE-1)

> 1+aj;
a3

There is a table with the values 1 + &, with i =0, ... p" — 2. J

One can define a finite field using his favourite irreducible
polynomial. In this case, elements are represented as
polynomials of degree lower than or equal to nin GF(p)|[x].
One can define in this way finite fields with more elements, but
computations are not as fast as before.
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Extending from a finite field

Example
@ GF(p)=2/(p) =Fp e GF(2)=TF,
e GF(p') =TFy(a) e GF(2%) = FFy(a),
o GF(p™) = Fy(b) minpoly = & +a+ 1
e /|m= GF(p) — o GF(2°) = Fa(b),
GF(p™) minpoly = b8 + b+ 1
@ But a—??
By exhaustive search:
One possibility: (K2 4+ (b )+1=0

exhaustive search
for k = 27,54, 45.
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Easy extension

® GF(p') = Fp(a), GF(p™) = Fy(b)
@ Mpn=p"—1

@ The smallest power of b that generates GF(p') is
v = bMp.m/ Mp,i

@ We have an easy extension if a = v

@ Equivalently, if ggr(pm)(x) | qGF(pI>(XMp,m/Mp,/)

o GF(2%) = Fo(a), GF(2°) = Fa(b)
o M2’3 = 7, ng@ = 63, ngs/ngg =9
@ We require a = b°.
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Compatibility condition

$PsF = PEF © PsE
This condition is satisfied with the previous requirement.

GF(p®) = Fp(a) < GF(p®) = Fy(b) — GF(p') = Fp(c)
a— bVMee/Mos by Mot/ Moo

4

a < cMor/Mos
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Conway polynomials-Definition

Cp,n Conway polynomial:
@ primitive of deg n
@ (compatible) Cp | Cp (X
@ (unique) Cp n minimal wrt <jgy:

Mp,n/Mp’,,/ )Vn’ | n

agx?+ -+ ag <jex bgx? + ... + by

iff for some /, a; = b for all j </ and
(—1)d"a,- < (*1)d_lb,'
where 0 <1 < ... <p—1inZp.

Example: Computation of Cs ¢

Cot=x+1,Cop=x>+x+1and Cog = x>+ x+1

> factorize (gcd(x°63+1, x2172+x21+1, x973+x9+1) };
X0+x5+x2+x+1; x6+x5+1; x6+x4+x3+x+1

The Conway polynomial C, g is x& + x* + x3 + x + 1.
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@ Conway polynomials were introduced by R. Parker in 1990,
they were used in data bases like the Modular Atlas
character tables [Jansen, Lux, Parker, Wilson].

@ The existence of Conway polynomials is shown using the
Chinese Remainder theorem.

@ There is no algebraic reason for the requirement that the
Conway polynomial is minimal wrt <ey.

Applications

@ To have an standard notation for elements in GF(P").

@ To perform an extension from GF(P") to GF(P") , with
n | n.

@ Data can be easily ported between different computer
algebra systems like Sage, Macaulay2 and Magma.
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First algorithm: (improved) exhaustive search

QG=

gcd({Cp (XMp'f/Mp'e)})’
n’ maximal divisor of n.

© lterate through all

polynomials C of deg n,

and check:

e Cisirreducible
e C|G
o Cis primitive

Diego Ruano

Example
Computation of Cy 5:
Q G= 02'1(X31) =x3 41
@ x° 41, notirreducible
x® 4+ x + 1, not irreducible
x° + x2 + 1, Conway
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Frank Libeck

@ For a project concerning the Lyons simple group it was
needed the Conway Polynomial for GF (6718).

@ Libeck estimated that it was needed 10'° years to
compute it using the exhaustive search in GAP

@ Using many computers in parallel he was able to compute
Cs7,18. He wrote a parallelized program based on the
second algorithm (i.e. list the compatible polynomials).

@ One can download from his webpage a huge list of
Conway Polynomials. For instance, 24°° and 1099874.

http://www.math.rwth-aachen.de:8001/~Frank.Luebeck/data/ConwayPol,
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Further Algorithms?

For large finite fields, exhaustive search may take a lot of time.
Especially when there are few compatible polynomials.

@ GF(p"), withn=q{" ---g5°.

@ For1<i<s,di=n/qgiand m; = Mpn/Mpg.

@ g=gcd(my,...,ms).

The number of monic polynomials of degree n compatible with
the lower order Conway polynomials is g (and some of them
are not primitive).

Then, assuming that these polynomials are distributed
randomly (uniformly) in the lexicographical listing of all degree n
polynomials we expect to text p” /g polynomials before finding
the first acceptable one. For composite n (and even n
moderately large) this is impractical.
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Q@ D={d, ... ds},
maximal divisors of n
Q m= Mp,n/Mp,d,-
Q g =gcdi<i<s({mi})
Q z=x9,
G = gcd({Cp g (2™/9)})
@ Z, root of Gin GF(p").

Q@ For all a, primitive g-th root
of zy, compute the minimal
polynomials.

@ Return the
lexicographically smaller
one.

Diego Ruano

Second algorithm: based on polynomials ean. coon, os

Example: Computation of Cs6:

Q@ D=1{23}

e my :21,m2:9

Qg=3

Q G=gcd(z"*+ 2" +
1,294+ 2241) =
4542442241

Q 7 =a"
GF(2%) = Fy(a),
a+a+1=0

Q ac{a°a® a*}. The
minimal polynomials are
X+ X2+ x4+ x+1,
X8+ x4+ x3+ x +1,
x84+ x54+1.

Cog = x84+ x4+ x3 + x+1
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Third algorithm: based on elements [Heath, Loehr 04]

Warning: not any root of Cp, 4,

Q@ D={d,..,ds}, works.
maximal divisors of n @ xMim — X/mj _ ijf
, - aF
Q@ x arootof Gy g in G"(p"). @ Therefore, {x;} must
© x such that x™ = x;. satisfy
Q For all &, primitive g-th root m e
of x, compute the minimal X' =X V(i ).
polynomials.

@ If not, choose another root.

° Return the (The roots of Gy, 4, are
lexicographically smaller. di—1

{xi, xP, ... xP" )
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