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Abstract

A new construction of codes from old ones is considered, it is an exten-
sion of the matrix-product construction. Several linear codes that improve
the parameters of the known ones are presented.

1 Introduction

Matrix-Product codes were initially considered in [1, 8]. They are an extension
of several classic constructions of codes from old ones, like the Plotkin u|u + v-
construction. In this article we consider this construction with cyclic codes,
matrix-product codes with polynomials units, where the elements of the matrix
used to define the codes are polynomials instead of elements of the finite field.
The codes obtained with this construction are quasi-cyclic codes [7]. These
codes became important after it was shown that some codes in this class meet
a modified Gilbert-Varshamov bound [6].

An extension of the lower bound on the minimum distance from [8] is ob-
tained. This bound is sharp for a matrix-product code of nested codes, however
it is not sharp in this new setting, that is we obtain codes with minimum distance
beyond this bound. By investigating the construction of the words with possi-
ble minimum weight of a matrix-product code, we are able to sift an exhaustive
search and to obtain three matrix-product codes with polynomials units, that
improve the parameters of the codes in [4]. Another four linear codes, improving
the parameters of the known linear codes, are obtained from the previous ones.

∗F. Hernando is supported in part by the Claude Shannon Institute, Science Founda-
tion Ireland Grant 06/MI/006 (Ireland) and by MEC MTM2007-64704 and Junta de CyL
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2 Matrix-Product Codes with Polynomial Units

Let Fq be the finite field with q elements, C1, . . . , Cs ⊂ Fm
q cyclic codes of

length m and A = (ai,j) an s× l-matrix, with s ≤ l, whose entries are units in
Fq[x]/(xm − 1). A unit in Fq[x]/(xm − 1) is a polynomial of degree lower than
m whose greatest common divisor with xm − 1 is 1 (they are co-prime). We
remark, that the cyclic codes generated by f and by fu, with f | xm − 1 and
gcd(u, xm− 1) = 1, are the same code. The so-called matrix-product code with
polynomial units C = [C1 · · ·Cs] ·A is the set of all matrix-products [c1 · · · cs] ·A
where ci ∈ Ci ⊂ Fq[x]/(xm − 1) for i = 1, . . . , s.

The i-th column of any codeword is an element of the form
∑s

j=1 aj,icj ∈
Fq[x]/(xm − 1), the codewords can be viewed as,

c =

 s∑
j=1

aj,1cj , . . . ,

s∑
j=1

aj,lcj

 ∈ (Fq[x]/(xm − 1))l.

One can generate C with the matrix:

G =


a1,1f1 a1,2f1 · · · a1,sf1 · · · a1,lf1
a2,1f2 a2,2f2 · · · a2,sf2 · · · a2,lf2

...
... · · ·

... · · ·
...

as,1fs as,2fs · · · as,sfs · · · as,lfs

 ,

where fi is the generator polynomial of Ci, i = 1, . . . , s. That is, we have that
C = {(h1, . . . , hs)G | hi ∈ Fq[x] with degree < m− deg(fi), i = 1, . . . , s} and it
follows that C is a quasi-cyclic code.

Proposition 2.1. Let Ci be a [m, ki, di] cyclic code, then the matrix-product
code with polynomial units C = [C1 · · ·Cs] · A is a linear code over Fq with
length lm and dimension k = k1 + · · · + ks if the matrix A has full rank over
Fq[x]/(xm − 1).

Proof. The length follows from the construction of the code. Let A be a s × l
matrix with s ≤ l which has full rank. Let ci ∈ Ci for i = 1, . . . , s such
that [c1, . . . , cs] 6= [0, . . . , 0]. Since A has rank equal to s then [c1, . . . , cs] ·
A 6= [0, . . . , 0]. Therefore, #C = #{[c1, . . . , cs] · A | ci ∈ Ci, i = 1, . . . , s} =
(#C1) · · · (#Cs) = qk1+···+ks .

We denote by Ri = (ai,1, . . . , ai,l) the element of (Fq[x]/(xm−1))l consisting
of the i-th row of A, for i = 1, . . . , s. We consider CRi , the Fq[x]/(xm − 1)-
submodule of (Fq[x]/(xm−1))l generated by R1, . . . , Ri. In other words, CRi is
a linear code over a ring, and we denote by Di the minimum Hamming weight
of the words of CRi

, Di = min{wt(x) | x ∈ CRi
}. We obtain a lower bound for

the minimum distance of C by just extending the proof of the main result in
[8].

Proposition 2.2. Let C be the matrix-product code with polynomial units [C1 · · ·Cs]·
A where A has full rank over Fq[x]/(xm − 1). Then

d(C) ≥ d∗ = min{d1D1, d2D2, . . . , dsDs}, (1)

where di = d(Ci), Di = d(CRi
) and CRi

is as described above.
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Proof. Any codeword of C is of the form c = [c1 · · · cs] ·A. Let us suppose that
cr 6= 0 and ci = 0 for all i > r. It follows that [cj,1x

j−1, · · · , cj,sxj−1] ·A ∈ CRr

for j = 1, . . . ,m, where ci = c1,i + c2,ix + · · · + cm,ix
m−1. Since cr 6= 0 it

has at least dr monomials with non-zero coefficient. Suppose civ,r 6= 0, for
v = 1, . . . , dr. For each v = 1, . . . , dr, the product [civ,1x

j−1, · · · , civ,sxj−1] · A
is a non-zero codeword in CRr

, since A has full rank. Therefore the weight of
[civ,1x

iv−1, · · · , civ,sxiv−1] · A is greater than or equal to Dr and the weight of
c is greater than or equal to drDr.

Remark 2.3. If C1, . . . , Cs ⊂ Fm
q are linear codes of length m and A = (ai,j) ∈

M(Fq, s × l) a matrix with s ≤ l, then C = [C1 · · ·Cs] · A is a matrix-product
code, initially considered in [1, 8]. We denote by Ri = (ai,1, . . . , ai,l) the el-
ement of Fl

q consisting of the i-th row of A, for i = 1, . . . , s. We set Di the

minimum distance of the code CRi
generated by 〈R1, . . . , Ri〉 in Fl

q. In [8] the
following lower bound for the minimum distance of the matrix-product code
C is obtained, d(C) ≥ min{d1D1, d2D2, . . . , dsDs}, where di is the minimum
distance of Ci. If we consider C1, . . . , Cs nested codes, the previous bound is
sharp for matrix-product codes [5]. However, if we consider a matrix-product
code with polynomial units, then the bound from proposition 2.2 is not sharp
in general, as one can see in the examples stated below.

Let us consider the same approach as that of [5] to construct a codeword with
minimum weight in this more general setting: set c1, . . . , cp ∈ Fq[x]/(xm − 1)
such that c1 = · · · = cp, with wt(cp) = dp, and cp+1 = . . . = cs = 0. Let
r =

∑p
i=1 riRi, with ri ∈ Fq[x]/(xm − 1), be a word in CRp

with weight Dp. If
c′i = rici then

[c′1 · · · c′s] ·A = c1

 p∑
j=1

aj,1rj , . . . ,

p∑
j=1

aj,lrj

 = cpr.

Although, for a cyclic code C and a unit g in Fq[x]/(xm − 1), C = {cg | c ∈
C}, the weight of c is different from the one of cg, in general. Hence, the weight
of cpr is greater than or equal to dpDp. We remark that this phenomenon allows
us to obtain codes with minimum distance beyond the lower bound.

3 New linear codes: Plotkin construction with
polynomials

Obtaining a sharper bound than the one in the previous section is a very tough
problem, actually it is the same question as the computation of the minimum
distance of a quasi-cyclic code. However, by analyzing the lower bound d∗

we have performed a search to find codes with good parameters. An exhaustive
search in this family is only feasible if one considers some extra conditions, these
conditions should be necessary for having good parameters, but not sufficient.
We will assume further particular conditions that allowed us to successfully
achieve a search, discarding a significant amount of cases. We have used the
structure obtained in the previous section for matrix-product codes with poly-
nomials units from nested codes and we have obtained some binary linear codes
improving the parameters of the previously known codes.
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Let s = l = 2, and A the matrix

A =

(
g1 g2
0 g4

)
,

where g1, g2, g4 are units in F2[x]/(xm − 1). In this way A is full rank over
F2[x]/(xm − 1) with D1 = 2 and D2 = 1. We may also consider this family of
codes as an extension of the Plotkin u | u + v-construction.

For nested matrix-product codes the bound d∗ = min{d1D1, . . . , dsDs} is
sharp. Furthermore, by [5, Theorem 1] we have some words with weight diDi

for i = 1, . . . , s. We follow the construction of these words and consider a
matrix A in a such a way that they have weight larger than diDi. Let C1 =
(f1) and C2 = (f2), with f1 | f2 (that is, C1 ⊃ C2), and C = [C1C2] · A.
We consider h1, h2 ∈ F2[x] such that wt(f1h1) = d1 and wt(f2h2) = d2, and
r1, r2 ∈ F2[x]/(xm − 1) such that r1R1 + r2R2 is a codeword with minimum
Hamming weight in CR2 , that is with weight 1. Thus, the words [f1h1, 0] ·A =
(f1h1g1, f1h1g2) and [f2h2r1, f2h2r2] · A = (f2h2r1g1, f2h2(r1g2 + r2g4)) have
weight greater than or equal to 2d1 and d2, respectively.

In particular, the words with minimum Hamming weight in CR2
are gener-

ated by R2, for r1 = 0, and g4R1 − g2R2, for r1 = g4, r2 = −g2. Therefore,
the words of C with possible minimum weight are: (f1h1g1, f1h1g2), (0, f2h2g4)
and (f2h2g1g4, 0). Hence, we want to get f1h1g1 or f1h1g2 with weight greater
than d1 and f2h2g4 and f2h2g1g4 with weight greater than d2.

We shall assume also that d2 > 2d1, therefore we only should have f1h1g1
or f1h1g2 with weight greater than d1 in order to have a chance to improve the
lower bound from Proposition 2.2.

Moreover we may consider g1 = 1 without further restriction of gener-
ality: notice that f2 and f2g1 define the same cyclic code, hence a code-
word is of the form (f1h1g1, f1h1g2 + f2h2g1). Multiplying by g−11 we obtain
(f1h1, f1h1(g2/g1) + f2h2) where g = g2/g1 is a unit.

Summarizing, we have performed a sifted search following the criteria: we
consider matrix-product codes with polynomial units C = [C1C2] · A, where
C1, C2 are cyclic nested codes, with same length and d2 larger than 2d1, and a
matrix

A =

(
1 g
0 1

)
,

with g unit in F2[x]/(xm − 1) such that wt(f1h1g) > d1.
We have compared the minimum distance of these binary linear codes with

the ones in [4] using [2]. We pre-computed a table containing all the cyclic
codes up to length 55, their parameters and their words of minimum weight.
We obtained the following linear codes whose parameters are better than the
ones previously known:

From [4] New codes
[94, 25, 26] C1 = [94, 25, 27]
[102, 28, 27] C2 = [102, 28, 28]
[102, 29, 26] C3 = [102, 29, 28]

C1 = [C1, C2] ·A, where C1 = (f1) and C2 = (f2) with:

• f1 = x23 +x22 +x21 +x20 +x18 +x17 +x16 +x14 +x13 +x11 +x10 +x9 +
x5 + x4 + 1,
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• f2 = (x47 − 1)/(x + 1),

• g = x20 + x19 + x13 + x12 + x11 + x9 + x7 + x4 + x3 + x2 + 1.

C2 = [C1, C2] ·A, where C1 = (f1) and C2 = (f2) with:

• f1 = x25 + x23 + x22 + x21 + x20 + x18 + x16 + x11 + x10 + x8 + x7 + x6 +
x5 + x4 + x + 1,

• f2 = (x51 − 1)/(x2 + x + 1),

• g = x20 + x15 + x14 + x10 + x9 + x7 + 1.

C3 = [C1, C2] ·A, where C1 = (f1) and C2 = (f2) with:

• f1 = x24 + x23 + x21 + x19 + x18 + x15 + x14 + x13 + x12 + x11 + x9 + x8 +
x6 + x4 + 1,

• f2 = (x51 − 1)/(x2 + x + 1),

• g = x50 +x49 +x48 +x46 +x44 +x43 +x42 +x41 +x38 +x37 +x36 +x34 +
x32+x29+x27+x25+x24+x19+x17+x15+x13+x12+x10+x8+x5+x+1.

Moreover operating on C3 we get four more codes.

From [4] New codes Method
[101, 29, 26] C4 = [101, 29, 27] Puncture Code(C3,102)
[101, 28, 26] C5 = [101, 28, 28] Shorten Code(C3,101)
[100, 28, 26] C6 = [100, 28, 27] Puncture Code(C5,101)
[103, 29, 27] C7 = [103, 29, 28] Extend Code(C3)

Also, a good number of new quasi-cyclic codes reaching the best known lower
bounds are achieved with this method. One can find 434 of these codes in [3].
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