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Abstract

We consider matrix-product codes [C1 · · ·Cs] · A, where C1, . . . , Cs

are nested linear codes and matrix A has full rank. We compute their
minimum distance and provide a decoding algorithm when A is a non-
singular by columns matrix. The decoding algorithm decodes up to half
of the minimum distance.

1 Introduction

We consider the matrix-product construction, [C1 · · ·Cs] · A, introduced by
Blackmore and Norton in [2] which may also be seen as a generalization of
the Plotkin (u | u + v)-construction. In [2] a lower bound for the minimum dis-
tance when the matrix A has a certain property, called non-singular by columns,
is obtained. Moreover, this bound is sharp if the non-singular by columns ma-
trix is triangular. The same construction and a similar lower bound for the
minimum distance are also given by Özbudak and Stichtenoth in [9], but for an
arbitrary matrix A. In the particular case of non-singular by columns matrices
the bounds coincide. The construction in [9] is a generalization of the one in
[8]. See also [1] and [7] for other generalizations.

In this paper we prove that the lower bound given in [9] is sharp when
the codes C1, . . . , Cs are nested. This key property also enables an efficient
decoding procedure for a class of matrix-product codes. In section 3 we provide
a decoding algorithm for matrix-product codes where the codes C1, . . . , Cs are
nested and the matrix A is non-singular by columns. This decoding algorithm
decodes up to half of the minimum distance.

In section 4 we consider the matrix-product construction when C1, . . . , Cs

are cyclic codes. The resulting codes are quasi-cyclic codes. The quasi-cyclic
class of codes is the natural generalization of the cyclic class, and acquired a
special interest after it was shown that some codes in this class meet a modified
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Gilbert-Varshamov bound [3]. Applying our previous results to this case, we
provide the minimum distance and a decoding algorithm for a class of quasi-
cyclic codes.

2 Matrix-Product Codes

We follow the Blackmore and Norton approach in [2] to introduce matrix-
product codes. With this setting, one can define large codes from small ones.

Definition 2.1. Let C1, . . . , Cs ⊂ Fm
q be linear codes of length m and a matrix

A = (ai,j) ∈ M(Fq, s × l), with s ≤ l. The matrix-product code C =
[C1 · · ·Cs] · A is the set of all matrix-products [c1 · · · cs] · A where ci ∈ Ci is an
m× 1 column vector ci = (c1,i, . . . , cm,i)

T for i = 1, . . . , s. Therefore, a typical
codeword c is

c =

 c1,1a1,1 + · · ·+ c1,sas,1 · · · c1,1a1,l + · · ·+ c1,sas,l
...

. . .
...

cm,1a1,1 + · · ·+ cm,sas,1 · · · cm,1a1,l + · · ·+ cm,sas,l

 . (1)

The matrix-product construction is also presented by Özbudak and Stichtenoth
in [9]. Clearly the i-th column of any codeword is an element of the form∑s

j=1 aj,icj ∈ Fm
q , therefore reading the entries of the m × l-matrix above in

column-major order, the codewords can be viewed as vectors of length ml,

c =

 s∑
j=1

aj,1cj , . . . ,

s∑
j=1

aj,lcj

 ∈ Fml
q . (2)

Henceforth we will use either notation (1) or (2) as required without further
comment.

From the above construction it follows that a generator matrix of C is of the
form:

G =


a1,1G1 a1,2G1 · · · a1,sG1 · · · a1,lG1

a2,1G2 a2,2G2 · · · a2,sG2 · · · a2,lG2

...
... · · ·

... · · ·
...

as,1Gs as,2Gs · · · as,sGs · · · as,lGs

 ,

where Gi is a generator matrix of Ci, i = 1, . . . , s. Moreover, if Ci is a [m, ki, di]
code then one has that [C1 · · ·Cs] ·A is a linear code over Fq with length lm and
dimension k = k1 + · · ·+ ks if the matrix A has full rank and k < k1 + · · ·+ ks
otherwise. In the following we assume A has full rank.

Let us denote by Ri = (ai,1, . . . , ai,l) the element of Fl
q consisting of the i-th

row of A, for i = 1, . . . , s. We denote by Di the minimum distance of the code
CRi generated by 〈R1, . . . , Ri〉 in Fl

q. In [9] the following lower bound for the
minimum distance of the matrix-product code C is obtained,

d(C) ≥ min{d1D1, d2D2, . . . , dsDs}, (3)

where di is the minimum distance of Ci.
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Considering the lower bound (3), since D1 ≥ · · · ≥ Ds, it is clear that, to
obtain a matrix-product code with good parameters, it is advisable to choose
Cj with minimum distance greater than or equal to that of Cj−1. To this aim
it is therefore also advisable to choose Cj with dimension less than or equal to
that of Cj−1. In particular it is wise to choose C1 with large dimension and
Cs with large minimum distance. For this reason, henceforth we will assume
that C1, . . . , Cs are nested codes, C1 ⊃ C2 ⊃ · · · ⊃ Cs, and this condition is not
particularly restrictive. It follows that d1 ≤ · · · ≤ ds. Introducing this property
allows us to obtain several results: the following theorem for computing the
minimum distance and a decoding algorithm in the next section.

Theorem 2.2. Let C be the matrix-product code [C1 · · ·Cs]·A where C1 ⊃ C2 ⊃
· · · ⊃ Cs are linear codes and matrix A ∈M(Fq, s× l) has full rank. Then, the
minimum distance of C is

d(C) = min{d1D1, d2D2, . . . , dsDs}, (4)

where di = d(Ci), Di = d(CRi
) and CRi

is as described above.

Proof. From [9] we have d(C) ≥ min{d1D1, d2D2, . . . , dsDs} (this result is also
valid for C1, . . . , Cs non-nested). We include a rewriting of the proof here for
completeness. Any codeword of C is of the form c = [c1 · · · cs]·A. Let us suppose
that cr 6= 0 and ci = 0 for all i > r. It follows that [cj,1 · · · cj,s] · A ∈ CRr for
j = 1, . . . ,m, where cj,i is the j-th component of the word ci. Since cr 6= 0 it
has at least dr non-zero components. Suppose civ,r 6= 0, for v = 1, . . . , dr. For
each v = 1, . . . , dr, the product [civ,1 · · · civ,s] ·A is a non-zero codeword in CRr

,
since A has full rank. Therefore the weight of [civ,1 · · · civ,s] · A is greater than
or equal to Dr and the weight of c is greater than or equal to drDr.

In order to see that the above bound is sharp, we construct a codeword with
weight drDr, for each r = 1, . . . , s. Choose c1, . . . , cr such that c1 = · · · = cr,
(this is possible since the codes are nested), with wt(c1) = dr, and cr+1 = . . . =
cs = 0. Let f =

∑r
i=1 fiRi, with fi ∈ Fq, be a word in CRr

of weight Dr. If
c′i = fici then s∑

j=1

aj,1c
′
j , . . . ,

s∑
j=1

aj,lc
′
j

 = c1

 r∑
j=1

aj,1fj , . . . ,

r∑
j=1

aj,lfj

 = c1f,

is a codeword in C with weight drDr, and the result holds.

Example 2.3. Consider the ternary linear codes C1, C2, C3 with generator
matrices

G1 =

 1 1 1
0 2 1
0 0 1

 , G2 =

(
1 1 1
0 2 1

)
, G3 =

(
1 1 1

)
,

respectively. The parameters of these codes are [3, 3, 1], [3, 2, 2] and [3, 1, 3],
respectively, and the codes are nested, C1 ⊃ C2 ⊃ C3. Here d1 = 1, d2 = 2 and
d3 = 3.
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We consider the matrix-product code C = [C1C2C3] ·A where

A =

 1 1 1
0 2 1
0 0 1

 . (5)

The minimum distances of the codes CRi
, i = 1, 2, 3 obtained from the matrix

A are D1 = 3, D2 = 2 and D3 = 1.
On construction we find that C is a [9, 6] code. Applying Theorem 2.2 we

find that the minimum distance of C is min{d1D1, d2D2, d3D3} = 3. We note
that 3 is the largest possible minimum distance for a [9, 6] linear code over F3.

Remark 2.4. If the codes C1, . . . , Cs are not nested then the lower bound (3)
for the minimum distance is not necessarily sharp, that is, Theorem 2.2 does
not hold, as the following example shows.

Example 2.5. Consider the ternary cyclic codes C1, C2, C3, C4 with generator
polynomials f1 = (x + 2)(x + 1), f2 = (x2 + 1)(x + 2), f3 = (x2 + 1) and
f4 = (x2 + 1)(x + 1) respectively. Notice that since f1 - f2, the codes are not
nested. The parameters of these codes are [4, 2, 2], [4, 1, 4], [4, 2, 2] and [4, 1, 4]
respectively. So here d1 = 2, d2 = 4, d3 = 2 and d4 = 4.

Consider C = [C1C2C3C4] ·A, where

A =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 . (6)

The minimum distances of the codes CRi , i = 1, . . . , 4 obtained from the matrix
A are D1 = 4, D2 = 1, D3 = 1 and D4 = 1.

On construction we find that C is a [16, 6, 4] code. However, the lower bound
for the minimum distance is only min{d1D1, d2D2, d3D3, d4D4} = 2.

In [2], the following condition for the matrix A is introduced.

Definition 2.6. [2] Let A be a s× l matrix and At be the matrix consisting of
the first t rows of A. For 1 ≤ j1 < · · · < jt ≤ l, we denote by A(j1, . . . , jt) the
t× t matrix consisting of the columns j1, . . . , jt of At.

A matrix A is non-singular by columns if A(j1, . . . , jt) is non-singular
for each 1 ≤ t ≤ s and 1 ≤ j1 < · · · < jt ≤ l. In particular, a non-singular by
columns matrix A has full rank.

By [2] a non-singular by columns matrix A defines MDS codes CRi
, for

i = 1, . . . , s. Also in [2] the following lower bound for the minimum distance of
a matrix-product code with A non-singular by columns is obtained,

d(C) ≥ min{ld1, (l − 1)d2, . . . , (l − s + 1)ds}. (7)

This bound is the particular case of (3) when Di = l − i + 1. Moreover, it
was shown in [2] that if A is non-singular by columns and triangular, (i.e. it is
a column permutation of an upper triangular matrix), then the bound (7) for
the minimum distance is sharp. Here we can deduce, by applying Theorem 2.2,
that if A is non-singular by columns and the codes C1, . . . , Cs are nested, then
this bound (7) is also sharp. It is known from [2] that, for s ≥ 2 there exists an
s× l non-singular by columns matrix over Fq if and only if s ≤ l ≤ q.
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3 Decoding Algorithm

In this section, we present a decoding algorithm for a class of matrix-product
codes: namely, we consider s nested linear codes C1, . . . , Cs ⊂ Fm

q and a non-
singular by columns matrix A ∈ M(Fq, s × l), where s ≤ l (see definition 2.6).
We provide a decoding algorithm for the matrix-product code C = [C1 · · ·Cs] ·
A ⊂ Fml

q , assuming that we have a decoding algorithm DCi for Ci which decodes
up to ti = b(di−1)/2c errors, for i = 1, . . . , s. We assume that each DCi answers
“failure” if there is no codeword in Ci within distance b(di−1)/2c of the received
word.

A codeword in C has the form c = (
∑s

j=1 aj,1cj , . . . ,
∑s

j=1 aj,lcj), where cj ∈
Cj , for all j. Since we consider C1, . . . , Cs to be nested codes, C1 ⊃ · · · ⊃ Cs,
each block

∑s
j=1 aj,icj of c is a codeword in C1. A first approach to decoding

might be to decode each block of a received word by decoder DC1. However,
with this approach, we may not achieve the error correcting capability of the
code. A more sophisticated approach takes place here where we use the decoders
DCi, for i = 1, . . . , s, in a such a way that we can always decode up to the full
error correcting capability of the code, that is, our decoding algorithm for C
decodes up to half of the minimum distance

d(C) = min{ld1, (l − 1)d2, . . . , (l − s + 1)ds}. (8)

We first describe the main steps in our decoding algorithm. The algorithm
is outlined as a whole in procedural form in Algorithm 1.

Consider the codeword c = (
∑s

j=1 aj,1cj , . . . ,
∑s

j=1 aj,lcj), for some cj ∈
Cj , for all j. Suppose that c is sent and that we receive p = c + e, where
e = (e1, e2, . . . , el) ∈ Fml

q is an error vector. Let {i1, . . . , is} ⊂ {1, . . . , l} be
an ordered subset of indices. We now also suppose that e satisfies the extra
property that

wt(eij ) ≤ tj for all j ∈ {1, . . . , s}. (9)

We denote by pi =
∑s

j=1 aj,icj + ei ∈ Fm
q the i-th block of p, for i = 1, . . . , l.

Since C1 ⊃ · · · ⊃ Cs, each block
∑s

j=1 aj,icj of c is a codeword of C1.
Therefore, we decode the i1-th block pi1 of p using DC1. Since wt(ei1) ≤ t1 we
obtain ei1 and

∑s
j=1 aj,i1cj .

We do not know c1, but we can eliminate it in every other block in the
following way: we consider a new vector p2) ∈ Fml

q with components

p
2)
i = pi −

a1,i
a1,i1

(pi1 − ei1) =

s∑
j=2

a
2)
j,icj + ei, for i 6= i1,

where a
2)
j,i = aj,i − a1,i

a1,i1
aj,i1 , and p

2)
i1

= pi1 − ei1 . Since A is a non-singular

by columns matrix, the elements of the first row of A are non-zero, and so the
denominator a1,i1 is non-zero.

Since C2 ⊃ · · · ⊃ Cs, we notice that the i-th block of p2) is a codeword of
C2 plus the error block ei, for i ∈ {1, . . . , s} \ {i1}. We now decode the i2-th

block p
2)
i2

=
∑s

j=2 a
2)
j,i2

cj + ei2 of p2) using DC2. Since w(ei2) ≤ t2 we obtain

ei2 and
∑s

j=2 a
2)
j,i2

cj .

5



As before, we do not know c2, but we can eliminate it in every other block
as follows: we consider a new vector p3) ∈ Fml

q with components

p
3)
i = p

2)
i −

a
2)
2,i

a
2)
2,i2

(p
2)
i2
− ei2) =

s∑
j=3

a
3)
j,icj + ei, for i 6= i1, i2,

where a
3)
j,i = a

2)
j,i −

a
2)
2,i

a
2)
2,i2

a
2)
j,i2

, p
3)
i1

= p
2)
i1

and p
3)
i2

= p
2)
i2
− ei2 .

Notice that the i-th block of p3) is a codeword of C3 plus the error block ei,
for i ∈ {1, . . . , s} \ {i1, i2}.

Then we iterate this process, defining pk) for k = 3, . . . , s, and decoding
the ik-th block using DCk. In this way, we obtain the error blocks ei, and
the corresponding codeword blocks

∑s
j=1 aj,icj , for i ∈ {i1, . . . , is}. The vector

(
∑s

j=1 aj,i1cj , . . . ,
∑s

j=1 aj,iscj) formed from these s decoded blocks is equal to
the product [c1 · · · cs] ·A(i1, . . . , is), where A(i1, . . . , is) is the s×s-submatrix of
A consisting of the columns i1, . . . , is. Since this matrix is full rank, we can now
easily compute c1, . . . , cs by inverting A(i1, . . . , is) or solving the corresponding
linear system. Finally we recover the remaining l−s codeword blocks “for free”
(i.e. no decoding procedure is involved for these blocks) by simply recomputing
the entire codeword c = [c1 · · · cs] ·A = (

∑s
j=1 aj,1cj , . . . ,

∑s
j=1 aj,lcj), since we

know the cj ’s and the matrix A.

For each elimination step in the above procedure, it is necessary that a
k)
k,ik
6=

0, for each k = 2, . . . , s, to avoid zero division. We now prove that this follows
from the non-singular by columns property of A. Let A1) = A. The matrix

Ak) = (a
k)
i,j) ∈ M(Fq, s× l), k = 2, . . . , s, is obtained recursively from Ak−1) by

performing the following l − (k − 1) elementary column operations:

columni(A
k)) = columni(A

k−1))−
a
k−1)
k−1,i

a
k−1)
k−1,ik−1

columnik−1
(Ak−1)),

for each i /∈ {i1, . . . , ik−1}. These operations introduce l−(k−1) additional zero
elements in the k − 1-th row of Ak) at each iteration. Hence the minor of Ak)

given by the first k rows and the i1, . . . , ik columns, is a triangular matrix (in this
case, a column permutation of a lower triangular matrix) whose determinant is

a
k)
1,i1
· · · ak)k,ik . Since A is non-singular by columns, this minor is non-singular. It

follows that the determinant is non-zero, and therefore a
k)
k,ik
6= 0.

The procedure described above will successfully decode the received word, if
wt(e) ≤ b(d(C)−1)/2c, and for a given choice of indices {i1, . . . , is} ⊂ {1, . . . , l},
each error block satisfies wt(eij ) ≤ tj = b(dj − 1)/2c, for all j = 1, . . . , s. The
procedure may fail if wt(eij ) > tj for some j.

If a decoder DCj answers “failure”, that is, it cannot decode p
j)
ij

, since there

is no codeword in Cj within distance tj to the received block p
j)
ij

, then we
consider another ordered subset of indices, and start the procedure again.

Similarly if wt(eij ) > tj and the decoder DCj incorrectly decodes the block

p
j)
ij

, then we can detect this at the end by checking whether the entire decoded

word is a codeword in C or not (overall failure) and by checking that we have not
corrected more than b(d(C)− 1)/2c errors in total (incorrect overall decoding).
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In either case we again consider another ordered subset of indices, and restart
the procedure.

We now prove that for every error vector e with wt(e) ≤ b(d(C) − 1)/2c
there exists a “good” set of indices {i1, . . . , is} ⊂ {1, . . . , l} satisfying condition
(9). We can therefore repeat the procedure described above, with various or-
dered subsets of indices, until a “good” set of indices is chosen and decoding is
successful. It follows that our algorithm decodes all error patterns of weight up
to half the minimum distance of the code.

Theorem 3.1. Let C be the matrix-product code [C1 · · ·Cs]·A, where C1 ⊃ · · · ⊃
Cs and A is a non-singular by columns matrix. Let e = (e1, e2, . . . , el) ∈ Fml

q

be an error vector with wt(e) ≤ b(d(C) − 1)/2c. Then there exists an ordered
subset {i1, . . . , is} ⊂ {1, . . . , l} satisfying wt(eij ) ≤ tj = b(dj − 1)/2c, for all
j ∈ {1, . . . , s}.

Proof. We claim that there exists i1 such that wt(ei1) ≤ t1. Suppose that there
is no i1 ∈ {1, . . . , l} with wt(ei1) ≤ t1, that is, wt(ei) > b(d1 − 1)/2c, for all
i = 1, . . . , l. This implies that wt(ei) ≥ d1/2, for all i. Using (8) we obtain,

wt(e) ≥ ld1
2

>
ld1 − 1

2
≥
⌊
ld1 − 1

2

⌋
≥
⌊
d(C)− 1

2

⌋
which contradicts our assumption.

Let us assume that the property holds for a subset {i1, . . . , ij−1} ⊂ {1, . . . , l}
of size j − 1 < s. We now prove it holds for a subset of size j. Suppose
that there is no ij with wt(eij ) ≤ tj , that is, wt(ei) > b(dj − 1)/2c, for all
i ∈ {1, . . . , l} \ {i1, . . . , ij−1}. This implies that wt(ei) ≥ dj/2, for all i ∈
{1, . . . , l} \ {i1, . . . , ij−1}. Using (8) we obtain,

wt(e) ≥
j−1∑
k=1

wt(eik) +
(l − j + 1)dj

2
>

j−1∑
k=1

wt(eik) +
(l − j + 1)dj − 1

2
≥

≥
⌊

(l − j + 1)dj − 1

2

⌋
≥
⌊
d(C)− 1

2

⌋
which contradicts our assumption and the result holds.

Summarizing, we can now formulate our decoding algorithm for C = [C1 · · ·Cs]·
A ⊂ Fml

q , where C1 ⊃ · · · ⊃ Cs and A is a non-singular by columns matrix, in
procedural form in Algorithm 1.

Remark 3.2. We note that the algorithm becomes more computationally in-
tensive as the number of blocks s that we may need to decode at each iteration,
and the total number of blocks l, increase. So, it is worthwhile to say that for
s = l = 2 (respectively 3) the algorithm only needs, at most, 2 (respectively 6)
iterations to find the right ordered subset of indices. In this case we need to
decode at most 4 (respectively 18) blocks of length m to achieve a successful
decoding of the full-length received word of length ml.

An advantage of using nested codes in our construction, from the point of
view of implementation in an electronic circuit, is that much of the circuitry
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Algorithm 1 Decoding algorithm for C = [C1 · · ·Cs] ·A
Input: Received word p = c + e with c ∈ C and wt(e) ≤ b(d(C) − 1)/2c.

C1 ⊃ · · · ⊃ Cs nested codes and A a non-singular by columns matrix.
Decoder DCi for code Ci, i = 1, . . . , s.

Output: The codeword c.

1: p′ = p; A′ = A;
2: for {i1, . . . , is} ⊂ {1, . . . , l} do
3: p = p′; A = A′;
4: for j = 1, . . . , s do
5: pij = DCj(pij );
6: if pij = “failure” then
7: Break the loop and consider another i1, . . . , is in line 1;
8: end if
9: for k = j + 1, . . . , s do

10: pik = pik −
aj,ik

aj,ij
pij ;

11: columnik(A) = columnik(A)− aj,ik

aj,ij
columnij (A);

12: end for
13: end for
14: Obtain (c1, . . . , cs) from pi1 , . . . , pis ;
15: p = [C1 · · ·Cs] ·A; (see (1) and (2))
16: if p ∈ C and wt(p− p′) ≤ b(d(C)− 1)/2c then
17: RETURN: p;
18: end if
19: end for

used for implementing decoder DC1 can also be used to implement decoders
DC2, . . . , DCs of the subset subcodes C2, . . . , Cs, respectively.

Generalized Reed-Muller codes are iterative matrix-product codes defined
using a non-singular by columns matrix (see [2]). Therefore, Algorithm 1 can
be used to decode this family of codes. Furthermore, Algorithm 1 can be con-
sidered as a generalization of the decoding algorithm for Reed-Muller codes in
[6, Chapter 13].

4 A class of Quasi-Cyclic codes from nested cyclic
codes

Finally we consider the matrix-product code, C = [C1 · · ·Cs] · A, where the
component codes C1, . . . , Cs are cyclic codes of the same length. In this case, a
generator matrix of C can be constructed as an s×l array of truncated circulant
submatrices, and defines a quasi-cyclic code with s generators and index l, [4, 5].

Determining the minimum distance of an arbitrary quasi-cyclic code is not
easy, and a good general decoding algorithm has not yet been developed for
this class of codes. Here we note that when the cyclic codes C1, . . . , Cs are
nested, and A is a non-singular by columns matrix, then Theorem 2.2 provides
the minimum distance, and Algorithm 1 provides a decoding algorithm for a
restricted class of quasi-cyclic codes, obtained by matrix-product construction.
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We now provide an example of how Algorithm 1 proceeds in this case.

Example 4.1. Consider the following linear codes over F3,

• C1 the [13, 10, 3] cyclic code generated by f1 = x3 + x2 + x + 2.

• C2 the [13, 7, 5] cyclic code generated by f2 = (x3 +x2 +x+ 2)(x3 + 2x2 +
2x + 2).

• C3 the [13, 3, 9] cyclic code generated by f3 = (x + 2)(x3 + x + 2)(x3 +
x2 + x + 2)(x3 + 2x2 + 2x + 2).

Let C = [C1C2C3] ·A, where A is the non-singular by columns matrix

A =

 1 1 1
0 2 1
0 0 1

 .

We use decoder DCi for Ci, which decodes up to half the minimum distance,
i.e., DC1, DC2, DC3 decode up to t1 = 1, t2 = 2 and t3 = 4 errors, respectively.

One may easily check that D1 = 3, D2 = 2 and D3 = 1. Therefore, d(C) =
min{d1D1, d2D2, d3D3} = 9 by Theorem 2.2, thus we may correct up to t = 4
errors in a codeword of C.

We consider polynomial notation for codewords of Ci, for all i, that is the
codewords of length 13 in Ci are polynomials in Fq[x]/(x13 − 1) and words in
C are elements in (Fq[x]/(x13 − 1))3. Let p = c + e be the received word, with
codeword c = (0, 0, 0) and the error vector of weight t = 4

e = (e1, e2, e3) = (1 + x, 2x2, 2x11).

• Consider, i1 = 1, i2 = 2, i3 = 3.

We decode the first block p1 = 1 + x of p, using DC1. There is only one
word, 1 + x + x4, in C1 within distance one to p1, so DC1 decodes p1 to

p
2)
1 = 1 + x + x4. Notice that it is incorrectly decoded, but we cannot

detect it at this moment. Proceeding, we compute

p
2)
2 = p2 − p

2)
1 = 2 + 2x + 2x2 + 2x4,

p
2)
3 = p3 − p

2)
1 = 2 + 2x + 2x4 + 2x11.

The new matrix of coefficient is

A2) =

 1 0 0
0 2 1
0 0 1

 .

Then, we decode p
2)
2 using DC2. There is only one word, 2 + 2x + 2x2 +

x4 + x11, in C2 within distance two to p
2)
2 . Thus, DC2 decodes p

2)
2 to

p
3)
2 = 2 + 2x + 2x2 + x4 + x11. We compute

p
3)
3 = p

2)
3 − 2p

3)
2 = 1 + x + 2x2.

9



Finally, we decode p
3)
3 using DC3. Since there is only one word, 0, in C3

within distance four to p
3)
3 , DC3 decodes p

3)
3 to p

4)
3 = 0.

Notice that the distance of the decoded word (p
2)
1 , p

3)
2 , p

4)
3 ) to p is 6 > t =

4, thus we have corrected more errors than the error correction capability
of the code which implies that we should consider another set of indices.

• Second attempt, consider i1 = 2, i2 = 1, i3 = 3.

We decode the second block p2 = 1 + x of p, using DC1. There is only
one word, 0, in C1 within distance one to p1. Thus, DC1 decodes p2 to

p
2)
2 = 0. Proceeding, we compute

p
2)
1 = p1 − p

2)
2 = p1 = 1 + x,

p
2)
3 = p3 − p

2)
2 = p3 = 2x11.

The new matrix of coefficient is

A2) =

 0 1 0
1 2 2
0 0 1

 .

Then, we decode p
2)
1 using DC2. There is only one word, 0, in C2 within

distance two to p
2)
1 . Thus, DC2 decodes p

2)
1 to p

3)
1 = 0. We compute

p
3)
3 = p

2)
3 − p

3)
1 = p3 = 2x11.

We decode p
3)
3 using DC3. Since there is only one word, 0, in C3 within

distance four to p
3)
3 , DC3 decodes p

3)
3 to p

4)
3 = 0. And since the weight of

p− p3) is equal to 4, we have decoded the received word successfully.
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