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Public-key crytography (from Wikipedia)

The key used to encrypt a message is not the same as the
key used to decrypt it.
Each user has a pair of cryptographic keys-a public key
and a private key. The private key is kept secret, while the
public key may be widely distributed.
Messages are encrypted with the recipient’s public key and
can only be decrypted with the corresponding private key.
The keys are related mathematically, but the private key
cannot feasibly (ie, in actual or projected practice) be
derived from the public key.
The discovery of algorithms that could produce
public/private key pairs revolutionized the practice of
cryptography beginning in the middle 1970s.

[Wikipedia]
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You considered RSA in Algebra 1. We will consider three
cryptosystems in Algebra 2:

1 Knapsack (Merkle-Hellman)
2 ElGamal,
3 McEliece

Knapsack is very fast and elegant, but was broken in 1982.
However, there have been several improvements that have also
been broken (in the 80’s and 90’s)

ElGamal is nowadays used in practice. It has been improved
using elliptic curves: it has smaller key sizes and faster
operations. New standards are coming.

McEliece is sequre against quantum computer attacks.
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Knapsack crytosystem (Merkle-Hellman)

A knapsack problem:

Consider a knapsack (or rucksack) with volume N
Consider n objects with volume e1, . . . ,en

Maybe we cannot put everything in the knapsack, but we
want to fill it. That is, we want to find I ⊂ {1, . . . ,n} such
that

∑
i∈I

ei = N

Our knapsack problem
Given e1, . . . ,en ∈N and N ∈N, find a binary number k with n
bits k = (λ1, . . . ,λn) (λi = 0 means object ei is not in the
knapsack) such that:

n

∑
i=1

λiei = N
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Our knapsack problem is NP-Complete, but there is an easy
case:

ei >
i−1

∑
j=1

ej , ∀ i

Example: (e1, . . . ,e5) = (2,3,7,15,31) and N = 24.
24− 15 = 9 → e4
9− 7 = 2 → e3
2− 2 = 0 → e1
Hence N = 2 + 7 + 15 and k = (1,0,1,1,0) = 24.
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Message: is binary (0’s and 1’s). We cut it in blocks of length n.
Consider that we send M, a block of length n.

1 Bob chooses an easy knapsack (e1, . . . ,en) and N ∈N

such that N > ∑n
i=1 ei (why?→ unique encryption). He also

chooses w ∈N such that 0 < w < N and gcd(w ,N) = 1
(why?)

2 Bob computes [w−1]N ([w ][w−1] = [1]) and (a1, . . . an),
with 0 < ai < N where

ai ≡ wei(mod N)

Secret Key: (e1, . . . ,en),N,w ,w−1

Public Key: (a1, . . . ,an)
3 Alice wants to send M = (M1 . . . ,Mn) ∈ (Z/2Z)n. She

computes

C =
n

∑
i=1

Miai

and sends it to Bob
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4 Bob gets C. He computes [Cw−1]N because

w−1C ≡
n

∑
i=1

w−1aiMi ≡
n

∑
i=1

eiMi(mod N)

We have [Cw−1]N = [∑ Miei ]N . Note that
∑ Miei ≤ ∑ ei < N, then 0 < ∑ Miei < N and encryption is
unique.

5 Bob uses the easy knapsack to find (M1, . . . ,Mn) from
∑ Miei .

6 Eve?, she gets C = ∑n
i=1 Miai , but it is not an easy

knapsack.
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Example knapsack

M = (1,1,0,0,1)
N = 61, w = 17, gcd(17,61) = 1
w−1 ≡ 18(mod 61)
a1 = 17 · 2 ≡ 34(mod 61)
a2 = 17 · 3 ≡ 51(mod 61)
a3 = 17 · 7 ≡ 58(mod 61)
a4 = 17 · 15 ≡ 11(mod 61)
a5 = 17 · 31 ≡ 39(mod 61)
Public Key=(34,51,58,11,39), so to encrypt (1,1,0,0,1) we
have 34 + 51 + 39 = 124. Alice sends 124.
Bob receives 124 and computes 124 · 18 ≡ 36(mod 61).
Then he has an easy knapsack for 36:
36− 31 = 5 → e5
5− 3 = 2 → e2
2− 2 = 0 → e1, and recovers M = (1,1,0,0,1)
Eve could do: 124 = a1 + a2 + a5 = 34 + 51 + 39 but this
is a difficult knapsack (for large numbers!)
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ElGamal

Based on discrete logarithm problem:

Given a prime p and y ,g ∈N, find x such that

y ≡ gx (mod p)

1 Alice and Bob choose p, a big prime, and g ∈N s.t.
0 < g < p and g has order p− 1 in (Z/pZ)∗ (a generator
of (Z/pZ)∗)

2 Alice chooses a, with 0 < a < p and computes [ga]p.
Secret Key=a
Public Key=[ga]p

3 Bob chooses b with 0 < b < p and computes [gb]p.
Secret Key=b
Public Key=[gb]p
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4 Alice wants to send a message m, 0 < m < p to Bob. She
sends: (

[ga]p, [m(gb)a]p
)

5 Bob gets ([x1]p, [x2]p) and computes

[x2]p([xb
1 ]p)

−1 = [mgab]p([gab]p)
−1 = [m]p

and since m < p he can recover m.

To encrypt the message one uses the public key of the receiver
and the secret key of the sender.

6 Eve?: she had to compute b from [gb]p
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Example 8.19
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Shor’s algorithm

http://www.newscientist.com/article/mg22029445.100-my-
quantum-algorithm-wont-break-the-internet-yet.html

http://www.newscientist.com/blog/technology/2007/09/how-
quantum-computer-factorises-numbers.html

[Wikipedia]

[Quantum Computer]
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McEliece or Code-based cryptography

1 Fix integers k ,n, t . Consider the finite field with q elements.
2 Bob fixes G, a k × n generator matrix of a [n, k ]-linear

code that can correct t errors, and for a which an efficient
decoding algorithm Dec is known. One can fix
t = b(d − 1)/2c.

3 Bob fixes S, a random non-singular k × k matrix.
4 Bob fixes P, a random n× n permutation matrix (has

exactly one entry 1 in each row and each column and 0’s
elsewhere)

5 Bob computes the k × n matrix: Ĝ = SGP.

Bob’s public key is (Ĝ, t)
Bob’s private key is (S,G,P).
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McEliece or Code-based cryptography

Alice wants to send a message m ∈ Fk
q.

Alice obtains the public key of Bob and chooses a random
error vector e with wt(e) ≤ t .

Alice sends c = mĜ + e to Bob.

Bob recovers the message using his private key:

Bob computes ĉ = cP−1.
Bob decodes ĉ and obtains m̂ = Dec(ĉ)
Bob computes m = m̂S−1.

Why does it work?

ĉ = cP−1 = (mĜ+ z)P−1 = (mSGP + z)P−1 = (mS)G+ zP−1

Note that (mS)G is a codeword and that wt(zP−1) = t .
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McEliece or Code-based cryptography

Historical drawback:
The public key is very large.
(Less significant:) There is a message expansion by a
factor of n/k (ElGammal factor’s message expansion is 2).

However:

The algorithm has never gained much acceptance in the
cryptographic community, but is a candidate for “post-quantum
cryptography", as it is immune to attacks using Shor’s algorithm
and –more generally– measuring coset states using Fourier
sampling

From [Wikipedia]
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Generalized ElGamal

ElGamal encryption scheme is tipcally described using the
multplicative grup Z∗P , but it can be easily generalize to work in
any finite cyclic group G.

Some links:
[Wikipedia: Elliptic crytopgraphy]
[Wikipedia: Elliptic curve]
[Easy example]
[Safe curves]
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