Some slides for 7th Lecture, Algebra

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

26-02-2014

Diego Ruano Some slides for 7th Lecture, Algebra

• $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$ is a Euclidean domain.

•
$$N(\pi) = |\pi|^2 = \pi \overline{\pi} = (a + bi)(a - bi) = a^2 + b^2$$

• 5 = (1 + 2i)(1 - 2i), 5 is not prime.

Proposition 3.5.11

Let $\pi = a + bi \in \mathbb{Z}[i]$ be a Gaussian integer with $N(\pi) = p$, where *p* is a prime integer. Then π is a prime element in $\mathbb{Z}[i]$.

Proof:

- We have already seen that Z[i] is a principal ideal domain (Theorem 3.1.11).
- In a unique factorization domain every irreducible element is prime (Prop. 3.5.3).
- We may check that π is irreducible.
- If $\pi = ab$ then $p = N(\pi) = N(a)N(b)$.
- Therefore, N(a) = p (wlog) and N(b) = 1. Hence b is a unit and π irreducible.

Lemma 3.5.12 (Lagrange)

Let *p* be a prime number. If $p \equiv 1 \pmod{4}$ then the congruence

 $x^2 \equiv -1 \pmod{p}$

can be solved by x = (2n)! where p = 4n + 1.

Exercise 1.29

Let *p* a prime number, prove that

$$(p-1)! \equiv -1 \pmod{p}$$

Corollary 3.5.14

A prime number $p \equiv 1 \pmod{4}$ is not a prime element in $\mathbb{Z}[i]$.

Theorem 3.5.15 (Fermat)

A prime number $p \equiv 1 \pmod{4}$ is a sum of two uniquely determined squares.

$$5 = 1^2 + 2^2$$

$$13 = 3^2 + 2^2$$

How do we find the two squares?

Diego Ruano Some slides for 7th Lecture, Algebra

The Euclidean algorithm strikes again

Let *p* be a prime number. If $p \nmid a$ then *a* is called a **quadratic** residue modulo (kvadratisk rest modulo) *p* if it is congruent to a square modulo *p*, i.e. there exists $x \in \mathbb{Z}$ such that

 $a \equiv x^2 \pmod{p}$.

Otherwise *a* is called a **quadratic non-residue modulo** (kvadratisk ikke-rest modulo) *p*.

If $p \mid a$, then *a* is considered neither a quadratic residue nor a quadratic non-residue.

Legendre Symbol

 $\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } p \mid a \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p \\ -1 & \text{if } a \text{ is a quadratic non-residue modulo } p \end{cases}$

$$\left(rac{a}{p}
ight)=\left(rac{a+kp}{p}
ight)$$
 , with $k\in\mathbb{Z}$

Proposition 1.11.3

Let *p* denote and odd prime. Half of the numbers 1, 2, ..., p-1 are quadratic residues; the other half are quadratic non-residues modulo *p*.

Theorem 1.11.4 (Euler)

Let p be an odd prime and let a be an integer not divisible by p. Then

$$\left(rac{a}{p}
ight)\equiv a^{(p-1)/2}(\mathrm{mod}\ p).$$

Lemma 3.5.18

A prime number $p \equiv 3 \pmod{4}$ is a prime element in $\mathbb{Z}[i]$.

Corollary 3.5.19

If *p* is an odd prime number dividing $x^2 + 1$ for some $x \in \mathbb{Z}$ then $p \equiv 1 \pmod{4}$.

Theorem 3.5.20

There are infinitely many primes congruent to 1 modulo 4.

Fermat's last theorem

