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Z[i ] = {a + bi : a,b ∈ Z} is a Euclidean domain.
N(π) = |π|2 = ππ = (a + bi)(a− bi) = a2 + b2

5 = (1 + 2i)(1− 2i), 5 is not prime.

Proposition 3.5.11

Let π = a + bi ∈ Z[i ] be a Gaussian integer with N(π) = p,
where p is a prime integer. Then π is a prime element in Z[i ].

Proof:

We have already seen that Z[i ] is a principal ideal domain
(Theorem 3.1.11).
In a unique factorization domain every irreducible element
is prime (Prop. 3.5.3).
We may check that π is irreducible.
If π = ab then p = N(π) = N(a)N(b).
Therefore, N(a) = p (wlog) and N(b) = 1. Hence b is a
unit and π irreducible.
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Lemma 3.5.12 (Lagrange)

Let p be a prime number. If p ≡ 1(mod 4) then the congruence

x2 ≡ −1(mod p)

can be solved by x = (2n)! where p = 4n + 1.

Exercise 1.29
Let p a prime number, prove that

(p− 1)! ≡ −1(mod p)

Corollary 3.5.14

A prime number p ≡ 1(mod 4) is not a prime element in Z[i ].
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Theorem 3.5.15 (Fermat)

A prime number p ≡ 1(mod 4) is a sum of two uniquely
determined squares.

5 = 12 + 22

13 = 32 + 22

How do we find the two squares?
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The Euclidean algorithm strikes again
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Quadratic residues

Let p be a prime number. If p - a then a is called a quadratic
residue modulo (kvadratisk rest modulo) p if it is congruent to a
square modulo p, i.e. there existsx ∈ Z such that

a ≡ x2(mod p).

Otherwise a is called a quadratic non-residue modulo
(kvadratisk ikke-rest modulo) p.

If p | a, then a is considered neither a quadratic residue nor a
quadratic non-residue.

Legendre Symbol

(
a
p

)
=


0 if p | a
1 if a is a quadratic residue modulo p
−1 if a is a quadratic non-residue modulo p
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(
a
p

)
=

(
a + kp

p

)
, with k ∈ Z

Proposition 1.11.3
Let p denote and odd prime. Half of the numbers 1,2, . . . ,p− 1
are quadratic residues; the other half are quadratic
non-residues modulo p.

Theorem 1.11.4 (Euler)
Let p be an odd prime and let a be an integer not divisible by p.
Then (

a
p

)
≡ a(p−1)/2(mod p).
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Prime numbers congruent to 1 modulo 4

Lemma 3.5.18
A prime number p ≡ 3(mod 4) is a prime element in Z[i ].

Corollary 3.5.19

If p is an odd prime number dividing x2 + 1 for some x ∈ Z

then p ≡ 1(mod 4).

Theorem 3.5.20
There are infinitely many primes congruent to 1 modulo 4.

Diego Ruano Some slides for 7th Lecture, Algebra



Fermat’s last theorem
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