Some slides for 5th Lecture, Algebra 2

Diego Ruano

Department of Mathematical Sciences
Aalborg University
Denmark

19-02-2014

Divisibility and greatest common divisor in a domain

We assume from now on that R is a domain.

Suppose that $x, y \in R$. If x = ry for some $r \in R$, we say that y is a divisor (divisor) of x and we denote it by y|x

- y|x if and only if $\langle x \rangle \subset \langle y \rangle$.
- If x = uy, where $u \in R^*$, then $\langle x \rangle = \langle y \rangle$.
- If $\langle x \rangle = \langle y \rangle$, then x = ry and y = sx for some s, r. Therefore x = (rs)x and rs = 1. This implies that $r, s \in R^*$ and there exists $u \in R^*$ s.t. x = uy and we say that x and y are associated elements (associerede elementer) of R.

An element $d \in R$ is a greatest common divisor (største fælles divisor) of $a, b \in R$ if d is a common divisor of a and b and every common divisor of a and b divides d.

Let R be a principal ideal domain. We know that for every $a, b \in R$ there is $d \in R$ s.t.

$$\langle a,b\rangle=\langle d\rangle$$

What is d?, d is the greatest common divisor of a and b.

Proof:

- d is a common divisor of a and b since $\langle a \rangle \subset \langle d \rangle$ and $\langle b \rangle \subset \langle d \rangle$
- If e is a common divisor of a and b, then $\langle e \rangle \supset \langle a, b \rangle = \langle d \rangle$. That is e divides d.

 $r \in R \setminus R^*$ is called irreducible (irreducibelt) if r = ab for $a, b \in R \Rightarrow a$ or b is a unit.

Remark: r irreducible, u unit $\Rightarrow ur$ is irreducible.

 $x \in R \setminus R^*$ has factorization into irreducible elements (faktorisering i irreducible elementer) if: there exists $p_1, \ldots, p_r \in R$ irreducible such that

$$x = p_1 \cdot \cdot \cdot p_r$$

x has a unique factorization into irreducible elements (entydig faktorisering i irreducible elementer) if for any other factorization

$$x = q_1 \cdots q_s$$

for every i = 1, ..., s, $p_i | q_j$ for some j, that is, $p_i = uq_j$, with u unit (and one says that p_i and q_i are related).

According to the book, the fact that r = s is a consequence of the definition (by applying Prop. 3.1.3). However, the usual definition is:

x has a unique factorization into irreducible elements (entydig faktorisering i irreducible elementer) if for any other factorization

$$x = q_1 \cdots q_s$$

r = s and for every i = 1, ..., s, $p_i | q_j$ for some j, that is, $p_i = uq_j$, with u unit (and one says that p_i and q_j are related).

A domain R such that every non-zero element in $R \setminus R^*$ has unique factorization into irreducible elements is called a unique factorization domain (entydig faktoriseringsområder) (or factorial ring).

The uniqueness part is usually hard to verify. One uses proposition 3.5.3 to check this.

A non-zero element $p \in R \setminus R^*$ is called prime element (primelement) if p|xy for $x, y \in R$ implies that p|x or p|y

Proposition 3.5.2

A prime element is irreducible

Proposition 3.5.3

Let R be a ring for which every non-zero element $x \in R \setminus R^*$ has a factorization into irreducible elements. Every irreducible element is a prime element in R if and only if R is a unique factorization domain.

Proof:

⇒ The proof is the same as the unique factorization for integers (Theorem 1.8.5)

⇒ The proof is the same as the unique factorization for integers (Theorem 1.8.5). Assume every irreducible element is a prime.

 Suppose that x ∈ R is a non-zero element with two factorizations

$$x = p_1 \cdots p_r = q_1 \cdots q_s$$

into irreducible elements.

- If an irreducible factor associated with a p_j appears on the right hand side for some q_i , we divide both sides by p_i .
- We can therefore assume from the beginning that the left and right hand side of the above equation have no associated irreducible elements in common and $r \ge 1$ and s > 1.
- Now, since p_1 is a prime element, it follows that $p_1|q_j$ for some j. However, this can only happen if p_1 and q_j are associated, contradiction.

Proof: \leftarrow Assume R is a unique factorization domain.

- Let p∈ R irreducible and suppose p | ab, with a, b∈ R.
 We win if we show that p | a or p | b.
- Assume $ab \neq 0$, then $a = q_1 \cdots q_s$ and $b = q'_1 \cdots q'_{s'}$ have factorizations into irreducible elements.

$$p \mid q_1 \cdots q_s q'_1 \cdots q'_{s'}$$

 Because of unique factorization, one of these factorizations must contain an irreducible element divisible by p and the proof holds.

Example:

•
$$\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5}, a, b \in \mathbb{Z}\} \subset \mathbb{C}$$

•
$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

• 2 is irreducible but not prime

Lemma 3.5.5

Let R be a principal ideal domain and r a non-zero element such that $r \notin R^*$. Then r has an irreducible factorization.

Proposition 3.5.6

Suppose that R is a principal ideal domain that is not a field. An ideal $\langle x \rangle$ is a maximal ideal if and only if x is an irreducible element in R.

Proof: ←

- x irreducible and $\langle x \rangle \subset \langle y \rangle$ then x = ys for some $s \in R$.
- Then s or y is a unit. That is, $\langle y \rangle = \langle x \rangle$ or $\langle y \rangle = R$ and $\langle x \rangle$ is maximal.

Proof: \Longrightarrow

- $\langle x \rangle$ is a maximal ideal and x = ys, $y, s \in R$
- Then one of *y* or *s* is a unit because in other case:
 - $\langle x \rangle \subsetneq \langle y \rangle$, since *s* is not a unit.
 - $\langle y \rangle \subsetneq R$, since y is not a unit.
- Contradiction: $\langle x \rangle$ is a maximal ideal

Theorem 3.5.7

A principal ideal domain *R* is a unique factorization domain.

Proof:

- Consider the factorization of the previous lemma. We should just prove that it is unique.
- But we are not going to prove it. We are going to prove that the irreducible elements are prime.
- $\pi \in R$ irreducible s.t. $\pi | ab$ but $\pi \nmid a$. Does $\pi | b$?
- $\langle \pi \rangle \subsetneq \langle \pi, a \rangle$, since $a \notin \langle \pi \rangle$
- Since $\langle \pi \rangle$ is maximal (previous prop) we have $\langle \pi, a \rangle = R$. Therefore, $x\pi + ya = 1$ for some x, y
- Then $xb\pi + yab = b$ and since $\pi | ab$ we have that $\pi | b$

Example:

- $\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5}, a, b \in \mathbb{Z}\} \subset \mathbb{C}$
- $\mathbb{Z}[\sqrt{-5}]$ is not a principal ideal domain since 2 is an irreducible element that is not prime.
- Actually we can give a non-principal ideal $I = \langle 2, 1 + \sqrt{-5} \rangle$

Computing the GCD from prime factorizations

Let R be a unique factorization domain and there are prime elements p_1, \ldots, p_n that are pair-wise non-associated such that

$$a = up_1^{r_1} \cdots p_n^{r_n}$$

$$b = vp_1^{s_1} \cdots p_n^{s_n}$$

where r_i , $s_i \ge 0$, u, v are units and p_1 , . . . , p_n are pairwise non-associated.

Then

$$\gcd(a,b)=p_1^{t_1}\cdots p_n^{t_n},$$

where $t_i = \min(r_i, s_i)$

What about the Euclidean algorithm?

