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A ring (ring) is an abelian group (R,+) (the neutral element is
0) with an additional composition · called multiplicaton with
satifies (for every x , y , z ∈ R):

1 (x · y) · z = x · (y · z)
2 There exists an element 1 ∈ R s.t. 1 · x = x · 1 = x
3 x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x .

An ideal (ideal) in a ring R is a subgroup I of (R,+) such that
λx ∈ I for every λ ∈ R and x ∈ I

An equivalent definition of ideal: An ideal I of R is a subset
I ⊂ R such that:

1 0 ∈ I
2 If x , y ∈ I, then x + y ∈ I
3 If x ∈ I and λ ∈ R, then xλ ∈ I.
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A map f : R → S between two rings R and S is called a ring
homomorphism (ringhomomorfi) if:

1 It is a group homomorphism from (R,+) to (S,+).
2 f (xy) = f (x)f (y), for every x , y ∈ R
3 f (1) = 1

A bijective ring homomorphism is called ring isomorphism
(ringisomorfi) . If f : R → S is an isomorphism, we say that R
and S are isomorphic, R ∼= S

Example: A surjective ring homomorphism

R → R/I
r 7→ [r ]

Exercise 3.11
Ker(f ) = {r ∈ R : f (r ) = 0} is an ideal of R
The image f (R) is a subring of S
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Proposition 3.3.2
Let R,S be rings and f : R → S a ring homomorphism with
kernel K = Ker(f ). Then:

f̃ : R/K → f (R)
r + K 7→ f (r )

is a well defined map and a ring isomorphism

Proof:

We know that f̃ is well defined and it is an isomorphism of
abelian groups (theorem 2.5.1).
f̃ ((x + K )(y + K )) = f̃ (xy + K ) = f (xy) = f (x)f (y) =
f̃ (x + K )f̃ (y + K )

f̃ (1 + K ) = f (1) = 1
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The unique ring homomorphism from Z

Lemma 3.3.3
For every ring R, there is a unique ring homomorphism
f : Z→ R.

Proof: We use:

Proposition 2.6.1
Let G be group and g ∈ G. The map

fg : Z → G
n 7→ gn

is a group homomorphism from (Z,+) to G.

Notation: 〈g〉 = fg(Z) = {gn : n ∈ Z}
ord = |〈g〉| is called order of g
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Characteristic

Let R be a ring.

The characteristic (karakteristik af ring) of R is the order of
1 in R if ord(1) is finite.
If the order of 1 is infinite, we say that R has characteristic
zero.

In other words:

The characteristic of R is n1 ∈N, where n1Z = Ker(f1)
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Lemma 3.3.5
Let R be a ring. Then there is an injective ring homomorphism
Z/nZ→ R, where n = char(R).

Proof:

Proposition 3.3.7

Let R be a domain. Then char(R) is either zero or a prime
number.
If R is domain and is finite then R is a field and char(R) is a
prime number

Proof:

Z/nZ is a subring of R and it should be also a domain.
Then, n is zero or prime.
If R is finite, n > 0.
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Binomial formula

Lemma 3.3.8
Let R be a ring and a,b two elements in R. Then

(a + b)n =
n

∑
i=0

(
n
i

)
aibn−i

Proof: Induction + trick:(
n
i

)
+

(
n

i − 1

)
=

(
n + 1

i

)
We are also using f (Z) ⊂ R
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Theorem 3.3.9-Binomial formula with prime characteristic
Let R be a ring of prime characteristic p. Then

(x + y)pr
= xpr

+ ypr

for every x , y ∈ R and r ∈N.

Proof:
p|(p

i ), for i = 1, . . . ,p− 1
(x + y)p = xp + yp

Induction on r :

(x + y)pr
= ((x + y)p)pr−1

= (xp + yp)pr−1
= (xp)pr−1

+(yp)pr−1

Frobenius Map
Let R be a ring of prime characteristic, then F is a ring
homomorphism:

F : R → R
x 7→ xp
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A relation R on a set S is a subset R ⊂ S × S. We say xRy to
mean (x , y) ∈ R.

A relation R on S is
reflexive if xRx for every x ∈ S
symmetric if xRy =⇒ yRx for every x , y ∈ S
transitive if xRy and yRz =⇒ xRz for every x , y , z ∈ S

R is called equivalence relation if it is reflexive, symmetric and
transitive.

Example: I ⊂ R an ideal in a ring. We define the relation:

x ≡ y(mod I)⇐⇒ x − y ∈ I

Reflexive: 0 ∈ I
Symmetric: x ∈ I =⇒ −x ∈ I
Transitive: x , y ∈ I =⇒ x + y ∈ I.
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Let ∼ be an equivalence relation on a set S. Given x ∈ S, set

[x ] = {s ∈ S : s ∼ x} ⊂ S

This subset is called the equivalence class containing x and x
is called a representative for [x ].
The set of equivalence classes {[x ] : x ∈ S} is denoted S/ ∼ .

Example: In the previous example R/ ∼ is equal R/I, where ∼
is ≡.

Compare page 225 and page 63

Lemma A.2.3 and Lemma 2.2.6 (ii)
Corollary A.2.4 and Lemma 2.2.6 (iii)
Theorem A.2.6 and Corollary 2.2.7
Definition A.2.7 and Example 2.2.4 (page 68)
Theorem A.2.8 and Theorem 2.5.1 (page 71)
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Let ∼ be an equivalence relation on S and x , y ∈ S. Then
[x ] = [y ] if and only if x ∼ y .

[x ] ∩ [y ] = ∅ if [x ] 6= [y ].

A partition of a set S is a collection (Si)i∈I of subsets of S such
that ∪i∈ISi = S, Si ∩ Sj = ∅ if i 6= j and Si 6= ∅.

Let S be a set with an equivalence relation ∼. Then the set of
equivalence classes

S/ ∼= {[x ] : x ∈ S}

is a partition of S. However, if (Si)i∈I is a partition of S then we
get an equivalence relation ∼ on S such that S/ ∼= (Si)i∈I
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