Some slides for 16th Lecture, Algebra 2

Diego Ruano

Department of Mathematical Sciences
Aalborg University
Denmark

14-04-2014

Finite Fields

Lemma 4.8.1

Let F be a finite field. Then $|F| = p^n$, where p is a prime number, $n \ge 1$ and there exists and irreducible polynomial $f \in \mathbb{F}_p[X]$ of degree n such that

$$F \cong \mathbb{F}_p[X]/\langle f \rangle$$

Theorem 4.8.2

There exists a unique finite field with p^n elements, where p is a prime number and n > 1. More precisely, we have

- There exists an irreducible polynomial in $\mathbb{F}_p[X]$ of degree n.
- 2 Suppose that F and F' are finite fields with p^n elements. Then there exists a ring isomorphism $F \cong F'$.

Diego Ruano

Lemma 4.8.3

Let τ , d and n be natural numbers, where $\tau > 1$. Then $\tau^d - 1$ divides $\tau^n - 1$ if and only if d divides n.

Existence of finite fields

Theorem 4.8.5

There exists an irreducible polynomial in $\mathbb{F}_p[X]$ of degree $n \geq 1$. More precisely, if f is an irreducible polynomial dividing Φ_{p^n-1} in $\mathbb{F}_p[X]$ then $\deg(f) = n$.

Uniqueness of finite fields

