Some slides for 13th Lecture, Algebra 2

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

28-03-2014

Diego Ruano Some slides for 13th Lecture, Algebra 2

 $\xi \in \mathbb{C}$ is called an *n*th root of unity (enhedsrod) for a positive integer *n* if $\xi^n = 1$.

Remember polar coordinates: $\xi = re^{i\theta} = r(\cos(\theta) + i\sin(\theta))$

 $\xi \in \mathbb{C}$ is called a primitive *n*th root of unity (primitiv n'te enhedsrod) for a positive integer *n* if $\xi^n = 1$ and $\xi, \xi^2, \dots, \xi^{n-1} \neq 1$.

Lemma 4.4.1

 $\xi \in \mathbb{C}$ is a primitive *n*th root of unity if and only if

$$\xi = e^{(k2\pi i)/n}$$

where $1 \le k \le n$ and gcd(k, n) = 1. If ξ is a primitive *n*th root of unity and $\xi^m = 1$ then n|m.

Let $n \in \mathbb{N}$ with $n \ge 1$. The *n*th cyclotomic polynomial (cyklotomiske polynomium)is

$$\Phi_n(X) = \prod_{1 \le k \le n, \gcd(k, n) = 1} (X - e^{2\pi i k/n}) \in \mathbb{C}[X]$$

Degree of $\Phi_n(X)$?

Proposition 4.4.3

Let $n \ge 1$. Then

•
$$X^n - 1 = \prod_{d|n} \Phi_d(X)$$

• $\Phi_n(X) \in \mathbb{Z}[X]$

We may consider the unique ring homomorphism $\kappa : \mathbb{Z} \to R$, for a ring *R*. And therefore

$$\kappa':\mathbb{Z}[X]\to R$$

Hence, we can see $X^n - 1 = \prod_{d|n} \Phi_d(X)$ in R[X]

Let *R* be a ring and *n* a positive natural number. An element $\alpha \in R$ is called a primitive *n*th root of unity in *R* if $\alpha^n = 1$ and $\alpha, \alpha^2, \ldots, \alpha^{n-1} \neq 1$.

Lemma 4.5.2

Let α be an element in a domain R. If $\Phi_n(\alpha) = 0$ and α is not a multiple root of $X^n - 1 \in R[X]$ then α is a primitive *n*th root of unity in R

Theorem 4.5.3 (Gauss)

Let *F* be a field and $G \subset F^*$ a finite subgroup of the group of units in *F*. Then *G* is cyclic.

In particular, \mathbb{F}_p^* is a cyclic group, for *p* prime. How to find a primitive root? Probability of choosing (randomly) a primitive root in \mathbb{F}_p^*

$$\frac{\varphi(\varphi(p))}{\varphi(p)} = \frac{\varphi(p-1)}{p-1}$$

Diego Ruano

Some slides for 13th Lecture, Algebra 2

Theorem 4.5.4

There are infinitely many prime numbers $\equiv 1 \pmod{n}$ for a natural number $n \ge 2$.

Diego Ruano Some slides for 13th Lecture, Algebra 2

Gauss:

If R is a unique factorization domain then R[X] is a unique factorization domain.

But we prove:

Proposition 4.6.1

The polynomial ring F[X] is a Euclidean domain (and therefore a principal ideal domain and a unique factorization domain).

Proof:

- deg : $F[X] \setminus \{0\} \to \mathbb{N}$ is a Euclidean function on F[X]
- For $f \in F[X]$ and $d \in F[X] \setminus \{0\}$ then there exists $q, r \in F[X]$ s.t.

$$f = qd + r$$

where r = 0 or deg(r) < deg(d).

Hence, we can use the Euclidean algorithm to compute the GCD of two polynomials.

If $f \in F[X]$ is not an irreducible polynomial there is a factorization $f = f_1 f_2$ s.t.

 $0 < \deg(\mathit{f}_1), \deg(\mathit{f}_2) < \deg(\mathit{f})$

Proposition 4.6.3

Let $f \in F[X]$

- \$\langle f \rangle\$ is a maximal ideal if and only if *f* is irreducible. In this case the quotient ring *F*[X]/\langle f \rangle\$ is a field
- 3 If $f \neq 0$ then f is a unit if and only if deg(f) = 0
- If deg(f) = 1 then *f* is irreducible.
- If f is irreducible and deg(f) > 1 then f does not have any roots.
- If deg(f) is 2 or 3 then f is irreducible if and only if f has no roots.

$X^4 + X^2 + 1 \in \mathbb{F}_2$ does not have any roots but it is not irreducible.