Some slides for 10th Lecture, Algebra

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

7-03-2014

Diego Ruano Some slides for 10th Lecture, Algebra

Let *R* be a ring and $R[\mathbb{N}]$ the set of functions $f : \mathbb{N} \to R$ such that f(n) = 0 for *n* large enough. Think in f(i) as the coefficient of X^i

Given $f, g \in R[\mathbb{N}]$ we define + and \cdot

$$(f+g)(n) = f(n) + g(n)$$
$$(fg)(n) = \sum_{i+j=n} f(i)g(j)$$

where $i, j \in \mathbb{N}$

We denote by $X^i \in R[\mathbb{N}]$ the function with $X^i(i) = 1$ and $X^i(n) = 0$ if $n \neq i$

Notice that: $X^i X^j = X^{i+j}$

We view an element of $a \in R$ as the function with a(0) = a and a(n) = 0 if n > 0.

So an element $f \in R[\mathbb{N}]$ can be written as

$$f = a_0 + a_1 X + \cdots + a_n X^n$$

were $a_i = f(i)$ and f(i) = 0 if i > n.

- 0 is the neutral element for the sum
- $1 = X^0$ is the neutral element for multiplication
- *fg* = *gf*
- f(g+h) = fg + fh
- f(gh) = (fg)h

Definition 4.1

We define R[X] the polynomial ring in one variable over the ring R as $R[\mathbb{N}]$. Here X denotes the function X^1 .

Concepts: Term, coefficient, degree, leading term, leading coefficient, monic polynomial.

Proposition 4.2.2

Let $f, g \in R[X] \setminus \{0\}$. If the leading coefficient of f or g is not a zero divisor then

 $\deg(\mathit{fg}) = \deg(\mathit{f}) + \deg(\mathit{g})$

2X + 1 is a unit in $\mathbb{Z}/4\mathbb{Z}[X]$, but in a domain the units have degree 0:

Proposition 4.2.3

Let *R* be a domain. Then $R[X]^* = (R[X])^* = R^*$

Proposition 4.2.4

Let *d* be a non-zero polynomial in R[X]. Assume that the leading coefficient of *d* is not a zero divisor in *R*. Given $f \in R[X]$, there exists polynomials $q, r \in R[X]$ such that

$$f = qd + r$$

and either r = 0 or none of the terms in r is divisible by the leading term of d.

$$f = qd + r$$

and either r = 0 or none of the terms in r is divisible by the leading term of d.

- $LT(d) = aX^m$
- f = qd + (r + s), where q = 0, r = 0 and s = f.
- If s = 0 we are done, if not: $LT(s) = bX^n$
- If aX^m divides bXⁿ
 - Then $n \ge m$ and we have b = ca and $bX^n = cX^{n-m}aX^m$.
 - Set $q := q + cX^{n-m}$ and $s := s cX^{n-m}d$
- If *aX^m* does not divide *bXⁿ*
 - Set $r := r + bX^n$ and $s := s bX^n$
- f = qd + (r + s), still holds
- Repeat this process for the new s until you get s = 0.

Let *d* be a non-zero polynomial in R[X]. Assume that the leading coefficient of *d* is invertible in *R*. Given $f \in R[X]$, there exist unique polynomials $q, r \in R[X]$ such that

$$f = qd + r$$

and either r = 0 or deg(r) < deg(d). *r* is called the **remainder** of *f* divided by *d*.

- The leading term of *d* divides a term of degree *n* if and only if deg(*d*) ≤ *n*.
- Unique q, r

The map

$$j: R \rightarrow R[X]$$

 $r \mapsto r + 0X + 0X^2 + \cdots$

is an injective ring homomorphism. We identify j(R) and R and we view R as a subring of R[X].

Proposition 4.3.1

Let $f = a_n X^n + \cdots + a_1 X + a_0 \in R[X]$ and $\alpha \in R$. The map

$$\varphi_{\alpha}: R[X] \rightarrow R$$

 $f \mapsto f(\alpha) = a_n \alpha^n + \dots + a_1 \alpha + a_0$

is a ring homomorphism.

The element $\alpha \in R$ is called **root** of *f* if $f(\alpha) = \varphi_{\alpha}(f) = 0$. We denote the set of roots of $f \in R[X]$ by $V(f) = \{\alpha \in R : f(\alpha) = 0\}$

Corollary 4.3.2

Let $f \in R[X]$. Then $\alpha \in R$ is a root of f if and only if $X - \alpha$ divides f.

- The multiplicity of *α* as a root in a non-zero polynomial *f* is the largest power *n* ∈ ℕ such that (*X* − *α*)^{*n*}|*f*.
- The multiplicity of α is denoted $\nu_{\alpha}(f)$.
- A multiple root is a root with $\nu_{\alpha}(f) > 1$.
- Notice that $\nu_{\alpha}(f) \leq \deg(f)$ and $f = (X \alpha)^{\nu_{\alpha}(f)}h$, where $h(\alpha) \neq 0$.

$X^2 + 3X + 2 \in \mathbb{Z}/6\mathbb{Z}[X]$ has 4 roots but:

Lemma 4.3.4

Let *R* be a domain and $f, g \in R[X]$. Then $V(fg) = V(f) \cup V(g)$.

Theorem 4.3.5

Let *R* be a domain and $f \in R[X] \setminus \{0\}$. If $V(f) = \{\alpha_1, \ldots, \alpha_r\}$ then

$$f = q(X - \alpha_1)^{\nu_{\alpha_1}(f)} \cdots (X - \alpha_r)^{\nu_{\alpha_r}(f)}$$

where $q \in R[X]$ and $V(q) = \emptyset$. The number of roots of *f* counted with multiplicity is bounded by the degree of *f*.