Some slides for 5th Lecture, Algebra 2

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

19-02-2013

Diego Ruano Some slides for 5th Lecture, Algebra 2

We assume from now on that *R* is a domain.

Suppose that $x, y \in R$. If x = ry for some $r \in R$, we say that y is a divisor of x and we denote it by y|x

- y|x if and only if $\langle x \rangle \subset \langle y \rangle$.
- If x = uy, where $u \in R^*$, then $\langle x \rangle = \langle y \rangle$.
- If $\langle x \rangle = \langle y \rangle$, then x = ry and y = sx for some s, r. Therefore x = (rs)x and rs = 1. This implies that $r, s \in R^*$ and there exists $u \in R^*$ s.t. x = uy and we say that x and y are associated elements of R.

An element $d \in R$ is a greatest common divisor of $a, b \in R$ if d is a common divisor of a and b and every common divisor of a and b divides d.

Let *R* be a principal ideal domain. We know that for every $a, b \in R$ there is $d \in R$ s.t.

 $\langle \textit{a},\textit{b}
angle = \langle \textit{d}
angle$

What is d?, d is the greatest common divisor of a and b.

Proof:

- *d* is a common divisor of *a* and *b* since ⟨*a*⟩ ⊂ ⟨*d*⟩ and ⟨*b*⟩ ⊂ ⟨*d*⟩
- If *e* is a common divisor of *a* and *b*, then $\langle e \rangle \supset \langle a, b \rangle = \langle d \rangle$. That is *e* divides *d*.

 $r \in R \setminus R^*$ is called irreducible if r = ab for $a, b \in R \Rightarrow a$ or b is a unit.

Remark: *r* irreducible, *u* unit \Rightarrow *ur* is irreducible.

 $x \in R \setminus R^*$ has factorization into irreducible elements if: there exists $p_1, \ldots, p_r \in R$ irreducible such that

 $x = p_1 \cdots p_r$

x has a unique factorization into irreducible elements if for any other factorization

$$x = q_1 \cdots q_s$$

for every i = 1, ..., s, $p_i | q_j$ for some j, that is, $p_i = uq_j$, with u unit (and one says that p_i and q_j are related).

According to the book, the fact that r = s is a consequence of the definition (by applying Prop. 3.1.3). However, the usual definition is:

x has a unique factorization into irreducible elements if for any other factorization

 $x = q_1 \cdots q_s$

r = s and for every i = 1, ..., s, $p_i | q_j$ for some j, that is, $p_i = uq_j$, with u unit (and one says that p_i and q_j are related).

A domain R such that every non-zero element in $R \setminus R^*$ has unique factorization into irreducible elements is called a unique factorization domain (or factorial ring).

The uniqueness part is usually hard to verify. One uses proposition 3.5.3 to check this.

A non-zero element $p \in R \setminus R^*$ is called prime element if p|xy for $x, y \in R$ implies that p|x or p|y

Proposition 3.5.2

A prime element is irreducible

Proposition 3.5.3

Let *R* be a ring for which every non-zero element $x \in R \setminus R^*$ has a factorization into irreducible elements. Every irreducible element is a prime element in *R* if and only if *R* is a unique factorization domain.

Proof:

 \implies The proof is the same as the unique factorization for integers (Theorem 1.8.5)

 \implies The proof is the same as the unique factorization for integers (Theorem 1.8.5). Assume every irreducible element is a prime.

Suppose that *x* ∈ *R* is a non-zero element with two factorizations

 $x = p_1 \cdots p_r = q_1 \cdots q_s$

into irreducible elements .

- If an irreducible factor associated with a p_j appears on the right hand side for some q_j, we divide both sides by p_j.
- We can therefore assume from the beginning that the left and right hand side of the above equation have no associated irreducible elements in common and *r* ≥ 1 and *s* ≥ 1.
- Now, since p_1 is a prime element, it follows that $p_1|q_j$ for some *j*. However, this can only happen if p_1 and q_j are associated, contradiction.

Proof: \leftarrow Assume *R* is a unique factorization domain.

- Let *p* ∈ *R* irreducible and suppose *p* | *ab*, with *a*, *b* ∈ *R*.
 We win if we show that *p* | *a* or *p* | *b*.
- Assume $ab \neq 0$, then $a = q_1 \cdots q_s$ and $b = q'_1 \cdots q'_{s'}$ have factorizations into irreducible elements.

$$p \mid q_1 \cdots q_s q'_1 \cdots q'_{s'}$$

 Because of unique factorization, one of these factorizations must contain an irreducible element divisible by p and the proof holds.

Example:

- $\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5}, a, b \in \mathbb{Z}\} \subset \mathbb{C}$
- $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$
- 2 is irreducible but not prime

Lemma 3.5.5

Let *R* be a principal ideal domain and *r* a non-zero element such that $r \notin R^*$. Then *r* has an irreducible factorization.

Diego Ruano Some slides for 5th Lecture, Algebra 2

Proposition 3.5.6

Suppose that *R* is a principal ideal domain that is not a field. An ideal $\langle x \rangle$ is a maximal ideal if and only if *x* is an irreducible element in *R*.

Proof: 💳

- *x* irreducible and $\langle x \rangle \subset \langle y \rangle$ then x = ys for some $s \in R$.
- Then *s* or *y* is a unit. That is, $\langle y \rangle = \langle x \rangle$ or $\langle y \rangle = R$ and $\langle x \rangle$ is maximal.

 $\mathsf{Proof:} \Longrightarrow$

- $\langle x \rangle$ is a maximal ideal and x = ys, y, $s \in R$
- Then one of y or s is a unit because in other case:
 - $\langle x \rangle \subsetneq \langle y \rangle$, since *s* is not a unit.
 - $\langle y \rangle \subsetneq R$, since y is not a unit.
- Contradiction: $\langle x \rangle$ is a maximal ideal

Theorem 3.5.7

A principal ideal domain *R* is a unique factorization domain.

Proof:

- Consider the factorization of the previous lemma. We should just prove that it is unique.
- But we are not going to prove it. We are going to prove that the irreducible elements are prime.
- $\pi \in \mathbf{R}$ irreducible s.t. $\pi | \mathbf{ab}$ but $\pi \nmid \mathbf{a}$. Does $\pi | \mathbf{b}$?
- $\langle \pi \rangle \subsetneq \langle \pi, a \rangle$, since $a \notin \langle \pi \rangle$
- Since $\langle \pi \rangle$ is maximal (previous prop) we have $\langle \pi, a \rangle = R$. Therefore, $x\pi + ya = 1$ for some x, y
- Then $xb\pi + yab = b$ and since $\pi | ab$ we have that $\pi | b$

Example:

- $\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5}, a, b \in \mathbb{Z}\} \subset \mathbb{C}$
- $\mathbb{Z}[\sqrt{-5}]$ is not a principal ideal domain since 2 is an irreducible element that is not prime.
- Actually we can give a non-principal ideal $I = \langle 2, 1 + \sqrt{-5} \rangle$

Computing the GCD from prime factorizations

Let *R* be a unique factorization domain and there are prime elements p_1, \ldots, p_n that are pair-wise non-associated such that

$$a = up_1^{r_1} \cdots p_n^{r_n}$$

$$b = v p_1^{s_1} \cdots p_n^{s_n}$$

where $r_i, s_i \ge 0, u, v$ are units and p_1, \ldots, p_n are pairwise non-associated.

Then

$$gcd(a, b) = p_1^{t_1} \cdots p_n^{t_n},$$

where $t_i = \min(r_i, s_i)$

What about the Euclidean algorithm?