Some slides for 20th Lecture, Algebra 2

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

18-04-2013

Lemma 4.8.1

Let *F* be a finite field. Then $|F| = p^n$, where *p* is a prime number, $n \ge 1$ and there exists and irreducible polynomial $f \in \mathbb{F}_p[X]$ of degree *n* such that

 $F \cong \mathbb{F}_{p}[X]/\langle f \rangle$

Theorem 4.8.2

There exists a unique finite field with p^n elements, where p is a prime number and $n \ge 1$. More precisely, we have

- There exists an irreducible polynomial in $\mathbb{F}_p[X]$ of degree *n*.
- 2 Suppose that *F* and *F'* are finite fields with p^n elements. Then there exists a ring isomorphism $F \cong F'$.

Lemma 4.8.3

Let τ , d and n be natural numbers, where $\tau > 1$. Then $\tau^d - 1$ divides $\tau^n - 1$ if and only if d divides n.

Theorem 4.8.5

There exists an irreducible polynomial in $\mathbb{F}_p[X]$ of degree $n \ge 1$. More precisely, if *f* is an irreducible polynomial dividing Φ_{p^n-1} in $\mathbb{F}_p[X]$ then deg(f) = n.

Uniqueness of finite fields

