Some slides for 1st Lecture, Algebra 2

Diego Ruano

Department of Mathematical Sciences
Aalborg University
Denmark

5-02-2013

A ring is an abelian group (R, +) (the neutral element is 0) with an additional composition · called multiplicaton with satisfies (for every $x, y, z \in R$:

- 2 There exists an element $1 \in R$ s.t. $1 \cdot x = x \cdot 1 = x$
- 3 $x \cdot (y+z) = x \cdot y + x \cdot z$ and $(y+z) \cdot x = y \cdot x + z \cdot x$.

A subset $S \subset R$ of a ring is called a subring if S is a subgroup of (R, +), $1 \in S$ and $xy \in S$ for $x, y \in S$.

An element $x \in R \setminus \{0\}$ is called a zero divisor if there exists $y \in R \setminus \{0\} \text{ s.t. } xy = 0 \text{ or } yx = 0.$

Diego Ruano

A ring is an abelian group (R, +) (the neutral element is 0) with an additional composition \cdot called multiplication with satisfies (for every $x, y, z \in R$:

- 2 There exists an element $1 \in R$ s.t. $1 \cdot x = x \cdot 1 = x$
- $3 x \cdot (y+z) = x \cdot y + x \cdot z \text{ and } (y+z) \cdot x = y \cdot x + z \cdot x.$

R is called commutative if xy = yx for every $x, y \in R$.

An element $x \in R$ is called a unit if there exists $y \in R$ s.t. xy = yx = 1. In this case we say $x^{-1} = y$ is the inverse of x. The set of units in R is denoted R^* .

Exercise: (R^*, \cdot) is a group. R^* is abelian if R is commutative

Exercise: If $R \neq \{0\}$, then $0 \notin R^*$

Two non-commutative ring

- The 2 × 2-matrices
- Quaternions:

$$\mathbb{H} = \{a + bi + cj + dk : a, b, c, d \in \mathbb{C}\}$$

However, we will work here only with commutative rings. So a ring will be always commutative for us without any further notice.

A ring R with $R^* = R \setminus \{0\}$ is called a field.

If $K \subset L$ are fields and K is a subring of L then K is called a subfield of L and L is called an extension field of K.

A domain is a ring $R \neq \{0\}$ with no zero divisors.

Proposition 3.1.3

Let *R* be a domain and $a, x, y \in R$. If $a \neq 0$ and ax = ay then x = y

Proof:

- $\bullet \ ax = ay \Rightarrow ax ay = 0 \Rightarrow a(x y) = 0$
- Wrong!!!: Multiply by a^{-1} , to get $x y = 0 \Rightarrow x = y$.
- Since a(x y) = 0, $a \ne 0$ and R is domain, we have that x y = 0, to get x = y.

Proposition 3.1.4

let F be a field. Then F is a domain.

Proof:

- Suppose $x, y \in F$, $x \neq 0$ and xy = 0. Is y = 0???
- Since $x \neq 0$, there exists x^{-1} .
- Hence, $0 = x^{-1}0 = x^{-1}(xy) = y$

Examples

- (a+bi) + (c+di) = (a+c) + (b+d)i
- $\bullet (a+bi)(c+di) = (ac-bd) + (ad+bc)i$
- For $z = a + bi \neq 0$:

$$\frac{1}{z} = \frac{a - bi}{(a + bi)(a - bi)} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i$$

- $N(z) = |z|^2 = z\overline{z} = a^2 + b^2$.
- One has that $N(z_1z_2) = N(z_1)N(z_2)$
- ullet $\mathbb{Q}(i)$ is an extension field of \mathbb{Q} and a subfield of \mathbb{C}

Gaussian integers: $\mathbb{Z}(i) = \{a + bi : a, b \in \mathbb{Z}\}$

Lemma

 $z \in \mathbb{Z}[i]$ is a unit if and only if N(z) = 1. One has that

$$\mathbb{Z}[i]^* = \{1, -1, i, -i\}$$

$\mathsf{Proof} \Rightarrow$):

- If z is a unit then $1 = N(1) = N(zz^{-1}) = N(z)N(z^{-1})$
- Since N(z) and $N(z^{-1}) \in \mathbb{N}$, then N(z) = 1

$\mathsf{Proof} \Leftarrow$):

- z = a + bi with $N(z) = (a + bi)(a bi) = a^2 + b^2 = 1$
- Then zy = 1 for $y = a bi \in \mathbb{Z}[i]$.

An ideal in a ring R is a subgroup I of (R, +) such that $\lambda x \in I$ for every $\lambda \in R$ and $x \in I$

R is an ideal.

Exercise 3.4: Let $I \subset R$, $I = R \Leftrightarrow 1 \in I$

An equivalent definition of ideal: An ideal I of R is a subset $I \subset R$ such that:

- **①** 0 ∈ *I*
- 2 If $x, y \in I$, then $x + y \in I$

Let $r_1, \ldots r_n \in R$, then

$$\langle r_1, \ldots, r_n \rangle = \{\lambda_1 r_1 + \cdots + \lambda_n r_n : \lambda_1, \ldots, \lambda_n \in R\}$$

is an ideal in R (exercise 3.5).

Let $r_1, \ldots r_n \in R$, then

$$\langle r_1,\ldots,r_n\rangle=\{\lambda_1r_1+\cdots+\lambda_nr_n:\lambda_1,\ldots,\lambda_n\in R\}$$

is an ideal in R (exercise 3.5).

If I is an ideal in R and there exist $r_1, \ldots, r_n \in R$ such that $I = \langle r_1, \ldots, r_n \rangle$, we say that I is finitely generated by $r_1, \ldots, r_n \in R$.

An ideal generated by infinitely many elements?:

Let
$$M \subset R$$
, the ideal generated by M is: $\langle f : f \in M \rangle =$

$$\{a_1f_1 + \cdots + a_nf_n : n \in \mathbb{N}, a_1, \dots a_n \in R, f_1 \dots, f_n \in M\}$$

Remark 3.1.8

Let I, J be ideals in ring R

- **1** Then $I \cap J$ and $I + J = \{i + j : i \in I, j \in J\}$ are also ideals in R
- The product IJ is defined to be the ideal generated by $\{ij: i \in I, j \in J\}$. We have $IJ \subset I \cap J$.

Exercise: in a field F the only ideals are $\{0\}$ and F.

An ideal I in R that can be generated by one element is called a principal ideal (that is, there exists $d \in R$ s.t. $I = \langle d \rangle$.

A domain in which every ideal is a principal ideal is called a principal ideal domain.

Proposition 3.1.10

The ring \mathbb{Z} is a principal ideal domain.

Theorem 3.1.11

The ring of Gaussian integers $\mathbb{Z}[i]$ is a principal ideal domain.

Proof: $I \subset \langle d \rangle$ (the converse is trivial)

- Let *I* be anon-zero ideal in $\mathbb{Z}[i]$. Choose $d = a + bi \in I$, $d \neq 0$, such that $N(d) = a^2 + b^2$ is minimal.
- Suppose that $z \in I$, then $z/d = q_1 +_2 i \in \mathbb{C}$, with $q_1, q_2 \in \mathbb{Q}$.
- Note: Any element of C is at distance at most √2/2 to a point with integer real and imaginary parts (think in the lattice).
- So, consider $q = c + di \in \mathbb{Z}[i]$ s.t. |z/d q| < 1 (or N(z/d q) < 1
- Multiply by N(d): N(z qd) < N(d)
- Since $z qd \in I$, then z = qd because N(d) is minimal. Therefore $I \subset \langle d \rangle$

