## Some slides for 2nd Lecture, Algebra 2

## Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

7-02-2012

A ring is an abelian group (R, +) (the neutral element is 0) with an additional composition  $\cdot$  called multiplicaton with satifies (for every *x*, *y*, *z*  $\in$  *R*):

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

3 There exists an element  $1 \in R$  s.t.  $1 \cdot x = x \cdot 1 = x$ 

3 
$$x \cdot (y+z) = x \cdot y + x \cdot z$$
 and  $(y+z) \cdot x = y \cdot x + z \cdot x$ .

An ideal in a ring *R* is a subgroup *I* of (R, +) such that  $\lambda x \in I$  for every  $\lambda \in R$  and  $x \in I$ 

An equivalent definition of ideal: An ideal *I* of *R* is a subset  $I \subset R$  such that:

 $\bigcirc 0 \in I$ 

- **2** If  $x, y \in I$ , then  $x + y \in I$
- If  $x \in I$  and  $\lambda \in R$ , then  $x\lambda \in I$ .

An ideal *I* in *R* that can be generated by one element is called a principal ideal (that is, there exists  $d \in R$  s.t.  $I = \langle d \rangle$ .

A domain in which every ideal is a principal ideal is called a principal ideal domain.

Proposition 3.1.10

The ring  $\mathbb{Z}$  is a principal ideal domain.

# **Quotient Rings**

- Let  $I \subset R$  an ideal. In particular,  $I \subset R$  is a subgroup for +
- We can consider left cosets [x] = x + I and the set of left cosets

$$R/I = \{[x] : x \in R\}$$

• Recall: R/I is an abelian group (for "+"), [x] = [y] if and only if  $x - y \in I$  (see Lemma 2.2.6, page 63).

We can make R/I into a ring (for  $[x], [y] \in R/I$ ):

[x] + [y] = [x + y]

[x][y] = [xy]

R/I is the quotient ring of R by I and has [0] and [1] as neutral elements for + and  $\cdot$ .

We have that [x] = [0] if  $x \in ???$ 

- One should proof that quotient ring of R by I is well defined: the proof is exactly the same as proposition 1.3.4.
- Example in Z.

#### Proposition 3.2.2

Let  $d \in \mathbb{N}$ ,  $d \neq 0$ , the group of units of  $(\mathbb{Z}/d\mathbb{Z})^*$  is an abelian group with  $\varphi(d)$  elements.

Proof:  $[x] = x + d\mathbb{Z}$  is a unit if and only if gcd(x, d) = 1.

- If gcd(x, d) = 1 we use Euclidean algorithm:  $\lambda x + \mu d = 1$ .
- Then,  $[\lambda x + \mu d] = [\lambda][x] = [1]$ , hence x is a unit
- If [x] is a unit in  $\mathbb{Z}/d\mathbb{Z}$  then there exists  $[\lambda] \in \mathbb{Z}/d\mathbb{Z}$  s.t.  $[\lambda][x] = 1$ .
- Then,  $\lambda x 1 \in d\mathbb{Z}$  and there is  $\mu$  s.t.  $\lambda x 1 = \mu d$ . And therefore gcd(x, d) = 1 (exercise 1.14).

An element  $x \in R$  is called a **unit** if there exists  $y \in R$  s.t. xy = yx = 1. In this case we say  $x^{-1} = y$  is the inverse of x. The set of units in R is denoted  $R^*$ .

An element  $x \in R$  is called a zero divisor if there exists  $y \in R \setminus \{0\}$  s.t. xy = 0 or yx = 0.

A ring *R* with  $R^* = R \setminus \{0\}$  is called a field.

A domain is a ring  $R \neq \{0\}$  with no zero divisors.

#### Proposition 3.2.3

Let  $n \in \mathbb{N}$ , then  $\mathbb{Z}/n\mathbb{Z}$  is a field if and only if *n* is a prime number. If *n* is a composite number then  $\mathbb{Z}/n\mathbb{Z}$  is not a domain.

For a prime number p, the field  $\mathbb{Z}/p\mathbb{Z}$  is denoted  $\mathbb{F}_p$ .

Proof:

- For n = 0,  $\mathbb{Z}/n\mathbb{Z}$  is isomorphic to  $\mathbb{Z}$
- For n > 0, we have  $|(\mathbb{Z}/n\mathbb{Z})^*| = \varphi(n)$  (by previous th.)
- However,  $|\mathbb{Z}/n\mathbb{Z}| = n$ . Therefore,  $\mathbb{Z}/n\mathbb{Z}$  is a field if and only if  $\varphi(n) = n 1$ , that is, if *n* is prime.
- If *n* = *ab* composite (1 < *a*, *b*, < *n*), we have [*a*][*b*] = [0] but [*a*], [*b*] ≠ [0]. Therefore it is not a domain.

Let  $I \subset R$ , with  $I \neq R$ , an ideal. If  $xy \in I$  implies  $x \in I$  or  $y \in I$  (or both), for every  $x, y \in R$ , we say that I is a prime ideal.

#### Proposition 3.2.6

An ideal  $I \subset R$  is a prime ideal if and only if R/I is a domain.

### Proof:

- If *I* is prime, exercise 3.21 will show that *R*/*I* is a domain
- If R/I is a domain, then  $R/I \neq 0$  and [x][y] = 0 implies [x] = 0 or [y] = 0, that is,  $x \in I$  or  $y \in I$ .

Let  $I \subset R$ , with  $I \neq R$ , an ideal. If for  $J \subset R$  ideal with  $I \subsetneq J$  implies J = R, we say that *I* is a maximal ideal.

### Proposition 3.2.7

An ideal  $I \subset R$  is a maximal ideal if and only if R/I is a field. (Every maximal ideal is prime, because a field is a domain)

Proof (assume R/I is a field):

- Then  $R/I \neq 0$  and for  $[x] \neq 0$ , there exists [y] s.t. [x][y] = [1].
- That is: for every  $x \notin I$  there exists  $y \in R$  such that  $xy 1 \in I$ .
- Suppose *J* is another ideal s.t.  $I \subset J \subset R$ . If  $x \in J \setminus I$ , we may find  $y \notin I$  s.t.  $xy 1 \in I \subset J$ .
- But  $x \in J$  and therefore  $xy \in J$ , hence  $1 = -(xy 1) + xy \in J$ . So, J = R

Proof (assume  $I \subset R$  is a maximal ideal):

- If  $[x] \in R/I$  is non-zero, is it a unit?. We know that  $x \notin I$ .
- The subset  $I + Rx = \{i + rx : i \in I, r \in R\}$  is an ideal in R.
- Since  $I \subsetneq I + Rx$ , we have that I + Rx = R and therefore  $1 \in I + Rx$
- So, 1 = m + rx for some  $m \in I$  and  $r \in R$ .
- In R/I this means: [1] = [r][x], and hence [x] is a unit in R/I.





A map  $f : R \rightarrow S$  between two rings R and S is called a ring homomorphism if:

• It is a group homomorphism from (R, +) to (S, +).

3 
$$f(xy) = f(x)f(y)$$
, for every  $x, y \in R$ 

**3** f(1) = 1

A bijective ring homomorphism is called ring isomorphism. If  $f: R \rightarrow S$  is an isomorphism, we say that R and S are isomorphic,  $R \cong S$ 

Example: A surjective ring homomorphism

$$egin{array}{ccc} R & 
ightarrow & R/I \ r & 
ightarrow & [r] \end{array}$$

Exercise 3.11

 $\operatorname{Ker}(f) = \{r \in R : f(r) = 0\}$  is an ideal of RThe image f(R) is a subring of S

#### Proposition 3.3.2

Let *R*, *S* be rings and  $f : R \rightarrow S$  a ring homomorphism with kernel K = Ker(f). Then:

 $\begin{array}{rcl} \tilde{f}:R/K & \to & f(R) \\ r+K & \mapsto & f(r) \end{array}$ 

is a well defined map and a ring isomorphism

Proof:

- We know that *t̃* is well defined and it is an isomorphism of abelian groups (theorem 2.5.1).
- $\tilde{f}((x+K)(y+K)) = \tilde{f}(xy+K) = f(xy) = f(x)f(y) = \tilde{f}(x+K)\tilde{f}(y+K)$

• 
$$\tilde{f}(1+K) = f(1) = 1$$