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For g ∈ G:

g0 = e
gn = gn−1g for n > 0
gn = (g−1)−n for n < 0

Proposition 2.6.1
Let G be group and g ∈ G. The map

fg : Z → G
n 7→ gn

is a group homomorphism from (Z,+) to G.

Notation: 〈g〉 = fg(Z) = {gn : n ∈ Z}
Exercise 2.26: 〈g〉 is an abelian group
ord(g) = |〈g〉| is called order of g
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Proposition 2.6.3
Let G be a finite group and let g ∈ G.

1 ord(g) divides |G|
2 g|G| = e
3 If gn = e for some n > 0 then ord(g) divides n

If H ⊂ G is a subgroup of a finite group G then |G| = [G : H ]|H |
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For g ∈ G, 〈g〉 = fg(Z) = {gn : n ∈ Z}. Hence, 〈g〉 ⊂ G

A cyclic group is a group G containing an element g such that
G = 〈g〉.
Such a g is called a generator of G and we say that G is
generated by g.

fg : Z → G
n 7→ gn

What is Ker (fg)?
How are the subgroups of (Z,+)?

Group isomorphism Theorem (Theorem 2.5.1):

Z/ngZ→ 〈g〉 = G

for some unique natural number ng ≥ 0.
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Proposition 2.7.2

A group G of prime order |G| = p is isomorphic to the cyclic
group Z/pZ

Proof:

Let g ∈ G with g 6= e
H = fb(Z) ⊂ G and it has more than one element
By Lagrange’s Theorem, |H | divides p = |G|
Then |H | = |G| and therefore H = G (since H ⊂ G)
Thus, fg : Z→ G is a surjective morphism.
Ker(fg) = pZ (ord(p) divides |G|)
Apply Theorem 2.5.1-Isomorphism theorem
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Example

[a] = a + 12Z

Z/12Z = {[0], [1], [2], . . . , [10], [11]}

Table for ord([a]):

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]
1 12 6 4 3 12 2 12 3 4 6 12

For a divisor d of 12. There is a unique subgroup of order
d , the subgroup generated by [12/d ]
There are ϕ(d) elements of order d (d divisor of 12)

d 0 1 2 3 4 5 6 7 8 9 10 11 12
ϕ(d) 0 1 1 2 2 4 2 6 4 6 4 10 4
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Proposition 2.7.4
Let G be a cyclic group

Every subgroup of G is cyclic
Suppose that G is finite and that d is a divisor in |G|. Then
G contains a unique subgroup H or order d .
There are ϕ(d) elements of order d in G. These are the
generators of H.

Proof: Every subgroup of G is cyclic. If |G| is infinite:

Then G ∼= Z

The subgroups of G are dZ, with d ∈N. They are cyclic
and generated by d .
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Proof: Every subgroup of G is cyclic. If |G| = N > 0 is finite:

Let G = {[0], [1], . . . [N − 1]} and H ⊂ G a subgroup
If H 6= {0} consider smallest d > 0, s.t. [d ] ∈ H
Euclid’s trick: If [n] ∈ H then [n− qd ] = [r ] ∈ H for
n = qd + r , 0 ≤ r < d .
But, since d is minimal: r = 0 and H = 〈[d ]〉

Proof: Suppose that G is finite and that d is a divisor in |G|.
Then G contains a unique subgroup H or order d .

Let m = N/d , then [m] is an element of order d in G.
If [n] is another element of order d then [dn] = [0]
Then N |nd and m|n. That is, an element of order d is a
multiple of [m]

But by (1), subgroups are cyclic. Hence, H = 〈[m]〉 is the
only subgroup of order d
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Proof there are ϕ(d) elements of order d in G. These are the
generators of H:

H unique subgroup of order d , the elements of order d in
G must be in one-to-one correspondence with the
generators of H.
H = {[0], [1], . . . , [d − 1]} since H ∼= Z/dZ

The ϕ(d) elements of order d in Z/NZ are

{[k N
d
] : 0 ≤ k < d ,gcd(k ,d) = 1}
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Corollary 2.7.6
Let N be a positive integer. Then

∑
d |N

ϕ(d) = N,

(the sum is over the divisors of N)

Proof:

Let G be the cyclic group Z/NZ.

N = ∑
g∈G

1 = ∑
d |N

∑
g∈G,ord(g)=d

1
Prop. 2.7.4(3)︷︸︸︷

= ∑
d |N

ϕ(d)
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Revisiting Euler’s theorem proof

Theorem 1.7.2 (Euler)
Let n ∈N, a ∈ Z relative prime. Then

aϕ(n) ≡ 1(mod n)

Proof:

List the numbers (lower than n) relative prime to n:

0 < a1 < · · · < aϕ(n) < n

Claim: {[aa1]n, . . . , [aaϕ(n)]n} = {a1, . . . ,aϕ(n)}

[aai ]n = [aaj ]n ⇒ n | a(ai − aj)⇒ n | (ai − aj)⇒ i = j .
gcd(n,aai) = 1⇒ gcd(n, [aai ]n) = 1
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Revisiting Euler’s theorem proof

Hence [aa1]n · · · [aaϕ(n)]n = a1 · · · aϕ(n)

Then aa1 · · · aaϕ(n) ≡ a1 · · · aϕ(n)(mod n), but
aa1 · · · aaϕ(n) = aϕ(n)a1 · · · aϕ(n).

That is, n | a1 · · · aϕ(n)(aϕ(n) − 1).

By corollary 1.5.10, n | (aϕ(n) − 1).

That is, aϕ(n) ≡ 1(mod n)
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New proof for Euler’s theorem

Let n ∈N, a ∈ Z relative prime. Then

aϕ(n) ≡ 1(mod n)

Proof:

Consider G = (Z/nZ)∗ with order ϕ(n)
Since gcd(a,n) = 1, [a] ∈ G
Prop. 2.6.3 (2) is g|G| = e, hence:

[a]|G| = [a]ϕ(n) = [1]

Hence, aϕ(n) ≡ 1(mod n)
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Revisiting Chinese reamainder theorem

Theorem 1.6.4-The Chinese remainder theorem
Let N = n1 · · · nt , with n1, . . . ,nt ∈ Z \ {0} and gcd(ni ,nj) = 1,
for i 6= j . Consider the system

X ≡ a1(mod n1)
X ≡ a2(mod n2)

...
X ≡ at (mod nt )

With ai ∈ Z. Then

1 The system has a solution X ∈ Z.
2 If X ,Y ∈ Z are solutions of the system then

X ≡ Y (mod N). If X is a solution of the system and
X ≡ Y (mod N) then Y is a solution of the system.
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Revisiting the remainder map

Suppose that N = n1 · · · nt , where n1, . . . ,nt ∈N \ {0} and
gcd(ni ,nj) = 1 if i 6= j . Then the remainder map

r : Z/N :→ Z/n1 × · · · ×Z/nt

is bijective

We should define the product of groups to extend the Chinese
remainder theorem:
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If G1,G2, . . . ,Gn are groups then the product

G = G1 × · · · ×Gn = {(g1, . . . ,gn) : gi ∈ Gi∀i}

has the natural composition

(g1, . . . ,gn)(h1, . . . ,hn) = (g1h1, . . . ,gnhn)

G is a group called product group:

Associative: because each component is associative
Neutral element: (e1, . . . ,en)

Inverse g = (g1, . . . ,gn): g−1 = (g−1
1 , . . . ,g−1

n ).

If we have group homomorphisms ϕ : H → Gi , for i = 1, . . . ,n.
We have a group homomorphism:

ϕ : H → G = G1 × · · · ×Gn
g 7→ (ϕ1(g), . . . , ϕn(g))
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Lemma 2.8.1
Let M, N be normal subgroups of a group G with M ∩N = {e}.
Then MN is a subgroup of G and

π : M ×N → MN
(x , y) 7→ xy

is an isomorphism.

Proof: By lemma 2.3.6, MN is a subgroup.

Lemma 2.3.6
Let H and K , where H is normal, be subgroups of a group.
Then HK is a subgroup of G.
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Lemma 2.8.1
Let M, N be normal subgroups of a group G with M ∩N = {e}.
Then MN is a subgroup of G and

π : M ×N → MN
(x , y) 7→ xy

is an isomorphism.

Proof: π homomorphism. (xy)(x ′y ′) = (xx ′)(yy ′)?

(xy)(x ′y ′) = (xx ′)(x ′−1yx ′y−1)(yy ′)
But x ′−1yx ′y−1 ∈ M ∩N = {e}, since M,N are normal.

Proof: π isomorphism

π(M ×N) = MN, it is surjective
Ker(π) ∼= M ∩N = {e}
Apply ismorphism theorem
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