Some slides for 9th Lecture, Algebra

Diego Ruano

Department of Mathematical Sciences
Aalborg University
Denmark

12-10-2010

For $g \in G$:

- $g^0 = e$
- $g^n = g^{n-1}g$ for n > 0
- $g^n = (g^{-1})^{-n}$ for n < 0

Proposition 2.6.1

Let G be group and $g \in G$. The map

$$f_g: \mathbb{Z} \rightarrow G$$

 $n \mapsto g^n$

is a group homomorphism from $(\mathbb{Z}, +)$ to G.

- Notation: $\langle g \rangle = f_g(\mathbb{Z}) = \{g^n : n \in \mathbb{Z}\}$
- Exercise 2.26: $\langle g \rangle$ is an abelian group
- $\operatorname{ord}(g) = |\langle g \rangle|$ is called order of g

Proposition 2.6.3

Let G be a finite group and let $g \in G$.

- \bullet ord(g) divides |G|
- **2** $g^{|G|} = e$
- 3 If $g^n = e$ for some n > 0 then ord(g) divides n

If $H \subset G$ is a subgroup of a finite group G then |G| = [G : H]|H|

For
$$g \in G$$
, $\langle g \rangle = f_g(\mathbb{Z}) = \{g^n : n \in \mathbb{Z}\}$. Hence, $\langle g \rangle \subset G$

A cyclic group is a group G containing an element g such that $G = \langle g \rangle$.

Such a g is called a generator of G and we say that G is generated by g.

$$f_g: \mathbb{Z} \to G$$

 $n \mapsto g^n$

What is $Ker(f_g)$? How are the subgroups of $(\mathbb{Z}, +)$?

Group isomorphism Theorem (Theorem 2.5.1):

$$\mathbb{Z}/n_g\mathbb{Z} \to \langle g \rangle = G$$

for some unique natural number $n_g \ge 0$.

Proposition 2.7.2

A group G of prime order |G|=p is isomorphic to the cyclic group $\mathbb{Z}/p\mathbb{Z}$

Proof:

- Let $g \in G$ with $g \neq e$
- $H = f_b(\mathbb{Z}) \subset G$ and it has more than one element
- By Lagrange's Theorem, |H| divides p = |G|
- Then |H| = |G| and therefore H = G (since $H \subset G$)
- Thus, $f_g: \mathbb{Z} \to G$ is a surjective morphism.
- $\operatorname{Ker}(f_g) = p\mathbb{Z} (\operatorname{ord}(p) \operatorname{divides} |G|)$
- Apply Theorem 2.5.1-Isomorphism theorem

Example

- $[a] = a + 12\mathbb{Z}$
- $\mathbb{Z}/12\mathbb{Z} = \{[0], [1], [2], \dots, [10], [11]\}$

Table for ord([a]):

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
1	12	6	4	3	12	2	12	3	4	6	12

- For a divisor d of 12. There is a unique subgroup of order d, the subgroup generated by [12/d]
- There are $\varphi(d)$ elements of order d (d divisor of 12)

	d	0	1	2	3	4	5	6	7	8	9	10	11	12
Ì	$\varphi(d)$	0	1	1	2	2	4	2	6	4	6	4	10	4

Proposition 2.7.4

Let G be a cyclic group

- Every subgroup of G is cyclic
- Suppose that G is finite and that d is a divisor in |G|. Then G contains a unique subgroup H or order d.
- There are $\varphi(d)$ elements of order d in G. These are the generators of H.

Proof: Every subgroup of G is cyclic. If |G| is infinite:

- Then $G \cong \mathbb{Z}$
- The subgroups of G are $d\mathbb{Z}$, with $d \in \mathbb{N}$. They are cyclic and generated by d.

Proof: Every subgroup of *G* is cyclic. If |G| = N > 0 is finite:

- Let $G = \{[0], [1], \dots [N-1]\}$ and $H \subset G$ a subgroup
- If $H \neq \{0\}$ consider smallest d > 0, s.t. $[d] \in H$
- Euclid's trick: If $[n] \in H$ then $[n qd] = [r] \in H$ for n = qd + r, $0 \le r < d$.
- But, since *d* is minimal: r = 0 and $H = \langle [d] \rangle$

Proof: Suppose that G is finite and that d is a divisor in |G|. Then G contains a unique subgroup H or order d.

- Let m = N/d, then [m] is an element of order d in G.
- If [n] is another element of order d then [dn] = [0]
- Then N|nd and m|n. That is, an element of order d is a multiple of [m]
- But by (1), subgroups are cyclic. Hence, $H = \langle [m] \rangle$ is the only subgroup of order d

Proof there are $\varphi(d)$ elements of order d in G. These are the generators of H:

- H unique subgroup of order d, the elements of order d in G must be in one-to-one correspondence with the generators of H.
- $H = \{[0], [1], \dots, [d-1]\}$ since $H \cong \mathbb{Z}/d\mathbb{Z}$

The $\varphi(d)$ elements of order d in $\mathbb{Z}/N\mathbb{Z}$ are

$$\{[k\frac{N}{d}]: 0 \le k < d, \gcd(k, d) = 1\}$$

Corollary 2.7.6

Let *N* be a positive integer. Then

$$\sum_{d|N} \varphi(d) = N,$$

(the sum is over the divisors of N)

Proof:

• Let G be the cyclic group $\mathbb{Z}/N\mathbb{Z}$.

0

$$N = \sum_{g \in G} 1 = \sum_{d \mid N} \sum_{g \in G, \operatorname{ord}(g) = d} 1 \xrightarrow{Prop. 2.7.4(3)} \sum_{d \mid N} \varphi(d)$$

Revisiting Euler's theorem proof

Theorem 1.7.2 (Euler)

Let $n \in \mathbb{N}$, $a \in \mathbb{Z}$ relative prime. Then

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

Proof:

• List the numbers (lower than *n*) relative prime to *n*:

$$0 < a_1 < \cdots < a_{\varphi(n)} < n$$

Claim:
$$\{[aa_1]_n, \ldots, [aa_{\varphi(n)}]_n\} = \{a_1, \ldots, a_{\varphi(n)}\}$$

- $\bullet \ [aa_i]_n = [aa_i]_n \Rightarrow n \mid a(a_i a_i) \Rightarrow n \mid (a_i a_i) \Rightarrow i = j.$
- $gcd(n, aa_i) = 1 \Rightarrow gcd(n, [aa_i]_n) = 1$

Revisiting Euler's theorem proof

- Hence $[aa_1]_n \cdots [aa_{\varphi(n)}]_n = a_1 \cdots a_{\varphi(n)}$
- Then $aa_1\cdots aa_{\varphi(n)}\equiv a_1\cdots a_{\varphi(n)} (\text{mod } n)$, but $aa_1\cdots aa_{\varphi(n)}=a^{\varphi(n)}a_1\cdots a_{\varphi(n)}.$
- That is, $n \mid a_1 \cdots a_{\varphi(n)} (a^{\varphi(n)} 1)$.
- By corollary 1.5.10, $n \mid (a^{\varphi(n)} 1)$.
- That is, $a^{\varphi(n)} \equiv 1 \pmod{n}$

New proof for Euler's theorem

Let $n \in \mathbb{N}$, $a \in \mathbb{Z}$ relative prime. Then

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

Proof:

- Consider $G = (\mathbb{Z}/n\mathbb{Z})^*$ with order $\varphi(n)$
- Since gcd(a, n) = 1, $[a] \in G$
- Prop. 2.6.3 (2) is $g^{|G|} = e$, hence:

$$[a]^{|G|} = [a]^{\varphi(n)} = [1]$$

• Hence, $a^{\varphi(n)} \equiv 1 \pmod{n}$

Revisiting Chinese reamainder theorem

Theorem 1.6.4-The Chinese remainder theorem

Let $N = n_1 \cdots n_t$, with $n_1, \dots, n_t \in \mathbb{Z} \setminus \{0\}$ and $\gcd(n_i, n_j) = 1$, for $i \neq j$. Consider the system

$$\begin{cases} X \equiv a_1 \pmod{n_1} \\ X \equiv a_2 \pmod{n_2} \\ \vdots \\ X \equiv a_t \pmod{n_t} \end{cases}$$

With $a_i \in \mathbb{Z}$. Then

- **①** The system has a solution $X \in \mathbb{Z}$.
- ② If $X, Y \in \mathbb{Z}$ are solutions of the system then $X \equiv Y \pmod{N}$. If X is a solution of the system and $X \equiv Y \pmod{N}$ then Y is a solution of the system.

Revisiting the remainder map

Suppose that $N = n_1 \cdots n_t$, where $n_1, \dots, n_t \in \mathbb{N} \setminus \{0\}$ and $\gcd(n_i, n_j) = 1$ if $i \neq j$. Then the remainder map

$$r: \mathbb{Z}/N : \to \mathbb{Z}/n_1 \times \cdots \times \mathbb{Z}/n_t$$

is bijective

We should define the product of groups to extend the Chinese remainder theorem:

If G_1 , G_2 , ..., G_n are groups then the product

$$G = G_1 \times \cdots \times G_n = \{(g_1, \ldots, g_n) : g_i \in G_i \forall i\}$$

has the natural composition

$$(g_1,\ldots,g_n)(h_1,\ldots,h_n)=(g_1h_1,\ldots,g_nh_n)$$

G is a group called product group:

- Associative: because each component is associative
- Neutral element: (e_1, \ldots, e_n)
- Inverse $g = (g_1, \ldots, g_n)$: $g^{-1} = (g_1^{-1}, \ldots, g_n^{-1})$.

If we have group homomorphisms $\varphi: H \to G_i$, for i = 1, ..., n. We have a group homomorphism:

$$\varphi: H \rightarrow G = G_1 \times \cdots \times G_n$$

 $g \mapsto (\varphi_1(g), \dots, \varphi_n(g))$

Lemma 2.8.1

Let M, N be normal subgroups of a group G with $M \cap N = \{e\}$. Then MN is a subgroup of G and

$$\begin{array}{ccc} \pi: M \times N & \to & MN \\ (x, y) & \mapsto & xy \end{array}$$

is an isomorphism.

Proof: By lemma 2.3.6, MN is a subgroup.

Lemma 2.3.6

Let H and K, where H is normal, be subgroups of a group. Then HK is a subgroup of G.

Lemma 2.8.1

Let M, N be normal subgroups of a group G with $M \cap N = \{e\}$. Then MN is a subgroup of G and

$$\begin{array}{cccc} \pi: M \times N & \to & MN \\ (x, y) & \mapsto & xy \end{array}$$

is an isomorphism.

Proof: π homomorphism. (xy)(x'y') = (xx')(yy')?

- $(xy)(x'y') = (xx')(x'^{-1}yx'y^{-1})(yy')$
- But $x'^{-1}yx'y^{-1} \in M \cap N = \{e\}$, since M, N are normal.

Proof: π isomorphism

- $\pi(M \times N) = MN$, it is surjective
- $\operatorname{Ker}(\pi) \cong M \cap N = \{e\}$
- Apply ismorphism theorem