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For g € G:
e g=¢
@ g'=g" 'gforn>0
@ g"= (g ") "forn<0

Proposition 2.6.1
Let G be group and g € G. The map

fg: 2 — G
n — g"

is a group homomorphism from (Z, +) to G.

@ Notation: (g) =f4(Z) ={g":ne Z}
@ Exercise 2.26: (g) is an abelian group
@ ord(g) = [(9)] is called order of g
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Proposition 2.6.3

Let G be a finite group and let g € G.
@ ord(g) divides |G|
© If g" = e for some n > 0 then ord(g) divides n

If H C G is a subgroup of a finite group G then |G| = [G: H]|HU
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Forge G, (9) =fy(Z) ={g" : n€ Z}. Hence, (g) C G

A cyclic group is a group G containing an element g such that
G=(g).

Such a g is called a generator of G and we say that G is
generated by g.

G

fo: 72 —
n — g"

What is Ker(fy)?

How are the subgroups of (Z, +)?

Group isomorphism Theorem (Theorem 2.5.1):
Z/ngZ — (g) =G

for some unique natural number ng > 0.
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Proposition 2.7.2

A group G of prime order |G| = p is isomorphic to the cyclic
group Z./ pZ.

Proof:

@ letge Gwithg # e

® H=f,(Z) C Gand it has more than one element
@ By Lagrange’s Theorem, |H| divides p = |G|

@ Then |H| = |G| and therefore H = G (since H C G)
@ Thus, fy : Z — G is a surjective morphism.

@ Ker(fy) = pZ (ord(p) divides |G|)

@ Apply Theorem 2.5.1-Isomorphism theorem
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@ [al=a+12Z
e Z/127Z = {[0],[1].[2],..., [10], [11]}
Table for ord([a]):

(0] | (1] | [2] | [3] | [4] | (5] |[6]|[7]|(8]]|[9]|([10]] [11]
111216 | 4 | 3 |12, 2 |12 3 | 4 6 12

@ For a divisor d of 12. There is a unique subgroup of order
d, the subgroup generated by [12/d]

@ There are ¢(d) elements of order d (d divisor of 12)

d |[0[1(2|3|4|5|6|7|8]9]10 11 ] 12
p(d) |01 ]1]2]|2]|4]|2|6|4|6| 4 |10| 4
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Proposition 2.7.4

Let G be a cyclic group

@ Every subgroup of G is cyclic

@ Suppose that G is finite and that d is a divisor in |G|. Then
G contains a unique subgroup H or order d.

@ There are ¢(d) elements of order d in G. These are the
generators of H.

Proof: Every subgroup of G is cyclic. If |G| is infinite:

@ ThenG=2Z

@ The subgroups of G are dZ, with d € IN. They are cyclic
and generated by d.
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Proof: Every subgroup of G is cyclic. If |G| = N > 0 is finite:

@ Let G={[0],[1],...[N—1]} and H C G a subgroup
e If H - {0} consider smallest d > 0, s.t. [d] € H
@ Euclid’s trick: If [n] € Hthen [n— qd] = [r] € H for
n=qd+r,0<r<d.
@ But, since d is minimal: r =0 and H = ([d])
Proof: Suppose that G is finite and that d is a divisor in |G].
Then G contains a unique subgroup H or order d.
@ Let m= N/d, then [m] is an element of order d in G.
@ If [n] is another element of order d then [dn] = [0]

@ Then N|nd and m|n. That is, an element of order d is a
multiple of [m]

@ But by (1), subgroups are cyclic. Hence, H = ([m]) is the
only subgroup of order d
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Proof there are ¢(d) elements of order d in G. These are the
generators of H:

@ H unique subgroup of order d, the elements of order d in
G must be in one-to-one correspondence with the
generators of H.

e H={[0],[1],..., [d—1]} since H= Z/dZ

The ¢(d) elements of order d in Z/NZ are

{[k’;’] .0 < k < d, ged(k, d) = 1}
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Corollary 2.7.6
Let N be a positive integer. Then

Y ¢(d) =N,

dIN

(the sum is over the divisors of N)

Proof:

@ Let G be the cyclic group Z/NZ.

o
Prop. 2.7.4(3)

N=Y1=Y Y 1 = Y e

geG d|N geG,ord(g)=d d|N
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Revisiting Euler’s theorem proof

Theorem 1.7.2 (Euler)

Let n € IN, a € Z relative prime. Then

a?" = 1(mod n)

Proof:

@ List the numbers (lower than n) relative prime to n:

O0<ar <---<aypm<n

Claim: {[aai]p, ..., [@aay(nmln} ={a1...., 8(n) } J

@ [aai|p = lagn=n|ala—a)=n|(a—a)=i=]
@ gad(n, ag) = 1 = ged(n, [aain) = 1
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Revisiting Euler’s theorem proof

@ Hence [aai],- - [aa(p(n)}n = a1 8y(n)

o Thenaa1---aa¢(,,)za1---a
aaj---aa

p(n) (mod n), but

@
@ Thatis, n| a ---a(P(n)(a‘P(”) —1).

@ By corollary 1.5.10, n | (a?™ —1).

@ Thatis, a?(” = 1(mod n)
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New proof for Euler’'s theorem

Let n € IN, a € Z relative prime. Then }

a?" = 1(mod n)

Proof:

@ Consider G = (Z/nZ)* with order ¢(n)
@ Since gcd(a,n)=1,[al € G
@ Prop. 2.6.3 (2) is /¢ = e, hence:

(] = [a]?" = [1]

@ Hence, a?'” = 1(mod n)
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Revisiting Chinese reamainder theorem

Theorem 1.6.4-The Chinese remainder theorem

Let N=ny---m, withny,...,m € Z\ {0} and ged(n;, ;) =1,
for i # j. Consider the system

X = a4 (mod n1)
X = ax(mod no)

X = a;(mod ny)
With a; € Z. Then

@ The system has a solution X € Z.

©Q If X, Y € Z are solutions of the system then
X = Y(mod N). If X is a solution of the system and
X = Y(mod N) then Y is a solution of the system.
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Revisiting the remainder map

Suppose that N = ny - -- n;, where ny, ..., n; € N\ {0} and
ged(nj, nj) = 1if i # j. Then the remainder map

r:Z/N:—Z/ny x---xXZ/n;

is bijective

We should define the product of groups to extend the Chinese
remainder theorem:
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(91, 9n)(h1,..., hn) = (g1hy, ..., gnhn)

G is a group called product group:

@ Associative: because each component is associative

@ Neutral element: (eq, ..., €en)
@ Inverse g = (g1,..., gn):g ' =(g" ..., g ).
If we have group homomorphisms ¢ : H — G, fori =1,..., n.

We have a group homomorphism:

p:H — G=Gix---xGy
g — (¢1(9).---. ¢n(g
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Lemma 2.8.1

Let M, N be normal subgroups of a group G with MN' N = {e}.
Then MN is a subgroup of G and

T:MxN — MN
(xy) = xy

is an isomorphism.

Proof: By lemma 2.3.6, MN is a subgroup.

Let H and K, where H is normal, be subgroups of a group.
Then HK is a subgroup of G.
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Lemma 2.8.1

Let M, N be normal subgroups of a group G with MN N = {e}.
Then MN is a subgroup of G and

7 MxN — MN
(xy) = xy

is an isomorphism.

Proof: £ homomorphism. (xy)(x'y’) = (xx)(yy’)?

o (xy)(x'y") = (xx') (X Tyx'y 1) (yy')

@ But X 'yx'y=' € MN N = {e}, since M, N are normal.
Proof: 7t isomorphism

@ (M x N) = MN, it is surjective

® Ker(m) ZMnNN = {e}

@ Apply ismorphism theorem
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