Some slides for 8th Lecture, Algebra

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

7-10-2010

Let *H* be a subgroup of *G* and $g \in G$. Then the subset

 $gH = \{gh : h \in H\} \subset G$

is called a left coset of H. The subset

 $Hg = \{hg : h \in H\} \subset G$

is called a right coset of *H*. (coset=sideklasse)

G/*H*: The set of left cosets of *H H**G*: The set of right cosets of *H*

Theorem 2.2.8 Lagrange

If $H \subset G$ is a subgroup of a finite group G then

|G| = |G/H||H|

The order of a subgroup divides the order of the group

Can we make G/H into a group?

A subgroup *N* of group *G* is called **normal** if

$$gNg^{-1} = \{gng^{-1} : n \in N\} = N,$$

for every $g \in G$.

Exercise 13: A normal subgroup of *N* of *G* satisfies gN = Ng for every $g \in G$.

For *X*, $Y \in G$, Define the composition of subsets:

$$XY = \{xy; x \in X, y \in Y\}$$

Corollary 2.3.3

Let *N* be a normal subgroup of the group *G*. Then the composition of subsets makes G/N into a group and

 $(g_1 N)(g_2 N) = (g_1 g_2) N$,

for $g_1N, g_n \in G/N$.

Let *N* be a normal subgroup of *G*. The group G/N is called a **quotient group**.

Let *G* and *K* be groups. A map $f : G \to K$ is called a group homomorphism if

f(xy) = f(x)f(y)

for every $x, y \in G$.

The kernel of a group homomorphism $f: G \to K$ is

 $\operatorname{Ker}(f) = \{g \in G : f(g) = e\}$

The image of *f* is

 $f(G) = \{f(g) : g \in G\}$

A bijective group homomorphism is called a group isomorphism. We write $G \cong K$ and say G and K are isomorphic.

Proposition 2.4.9

Let $f : G \to K$ be a group homomorphism.

- The image $f(G) \subset K$ is a subgroup of K
- 2 The kernel $\text{Ker}(f) \subset G$ is a normal subgroup of G.
- *f* is injective if and only if $\text{Ker}(f) = \{e\}$

Proof: (1)

- $e \in f(G)$?: $f(e) = f(ee) = f(e)f(e) \Rightarrow f(e) = e$
- $f(x)^{-1} \in f(G)$?: Yes, $f(x)^{-1} = f(x^{-1})$. For $x \in G$,

$$e = f(e) = f(xx^{-1}) = f(x)f(x^{-1})$$

$$e = f(e) = f(x^{-1}x) = f(x^{-1})f(x)$$

• $f(x)f(y) \in f(G)$?: For $x, y \in G, f(x)f(y) = f(xy)$

Proof: (2), Ker(f) is a subgroup

- $e \in \operatorname{Ker}(f)$?: f(e) = e
- $x^{-1} \in \text{Ker}(f)$?: For $x \in \text{Ker}(f)$, $e = f(x) = f(x)^{-1} = f(x^{-1})$
- $xy \in \text{Ker}(f)$?: For $x, y \in \text{Ker}(f)$, f(xy) = f(x)f(y) = ee = e

Proof: (2), the subgroup N = Ker(f) is a normal subgroup. $N = gNg^{-1}, \forall g \in G.$

- $gNg^{-1} \subset N$: For $x \in N$, $f((gx)g^{-1}) = (f(g)f(x))f(g^{-1}) = f(g)f(g)^{-1} = e$.
- $gNg^{-1} \supset N$: Consider the previous statement for g^{-1} : $g^{-1}Ng \subset N$. Then $Ng \subset gN$ and $N \subset gNg^{-1}$.

Proof: (3) *f* is injective $\Leftrightarrow \text{Ker}(f) = \{e\}$

- \Rightarrow): For *f* injective, Ker(f) = e since f(e) = e.
- \leftarrow): For Ker(f) = {e} and f(x) = f(y),

$$e = f(y)^{-1}f(x) = f(y^{-1})f(x) = f(y^{-1}x)$$

Then, $y^{-1}x \in \text{Ker}(f)$, and therefore $y^{-1}x = e$ and x = y.

To think: The previous result tells us that the kernel of any homomorphism is a normal subgroup. Is the converse true?

Theorem 2.5.1-The isomorphism theorem

Let *G* and *K* be groups and $f : G \to K$ a group homomorphism and N = Ker(f). Then

$$egin{array}{rcl} f:G/N& o&f(G)\ gN&\mapsto&f(g) \end{array}$$

is a well defined map and a group isomorphism

How do we understand G/N? Finding a group K, a surjective morphism $f : G \to K$ such that N = Ker(f)

Theorem 2.5.1

Let *G* and *K* be groups and $f : G \to K$ a group homomorphism and N = Ker(f). Then

$$egin{array}{rcl} ilde{f}: G/N & o & f(G) \ gN & \mapsto & f(g) \end{array}$$

is a well defined map and a group isomorphism

Proof: well defined and injective. For $x, y \in G$:

•
$$f(x) = f(y) \Leftrightarrow$$

•
$$f(y)^{-1}f(x) = e \Leftrightarrow$$

- $f(y^{-1})f(x) = e \Leftrightarrow$
- $f(y^{-1}x) = e \Leftrightarrow$
- $y^{-1}x \in N \Leftrightarrow$
- xN = yN

Theorem 2.5.1

Let *G* and *K* be groups and $f : G \to K$ a group homomorphism and N = Ker(f). Then

$$ilde{f}: G/N o f(G) \ gN \mapsto f(g)$$

is a well defined map and a group isomorphism

Proof: \tilde{f} is a group homorphism

 $\tilde{f}((g_1N)(g_2N)) = \tilde{f}((g_1g_2)N) = f(g_1g_2) = f(g_1)f(g_2) = \tilde{f}(g_1N)\tilde{f}(g_2N)$

Proof: \tilde{f} is surjective f is surjective onto f(G)

For $g \in G$:

•
$$g^0 = \epsilon$$

•
$$g^n = g^{n-1}g$$
 for $n > 0$

• $g^n = (g^{-1})^{-n}$ for n < 0

Proposition 2.6.1

Let *G* be group and $g \in G$. The map

$$egin{array}{ccc} f_g:\mathbb{Z}& o&G\ n&\mapsto&g^n \end{array}$$

is a group homomorphism from $(\mathbb{Z}, +)$ to *G*.

- Notation: $\langle g \rangle = f_g(\mathbb{Z}) = \{g^n : n \in \mathbb{Z}\}$
- Exercise 2.26: $\langle g \rangle$ is an abelian group
- ord = $|\langle g \rangle|$ is called order of g

- Order of e?
- Order of a?
- Order of f?

0	е	а	b	С	d	f
е	е	а	b	С	d	f
а	а	е	f	d	С	b
b	b	d	е	f	а	С
С	С	f	d	е	b	а
d	d	b	С	а	f	е
f	f	С	а	b	е	d

$$egin{array}{cccc} f_g:\mathbb{Z}& o&G\ n&\mapsto&g^n \end{array}$$

Proof Proposition 2.6.1: (f_g is a group homomorphism) By definition of g^n , $n \in \mathbb{Z}$:

- $f_{g^{-1}}(-m) = f_g(m)$, for every $g \in G$, $m \in \mathbb{Z}$.
- $f_g(m+1) = f_g(m)f_g(1)$, for every $g \in G$, $m \ge 0$.
- $f_g(m-1) = f_g(m)f_g(-1)$, for every $g \in G$, $m \ge 0$

Hence,

- $f_g(m+1) = f_g(m)f_g(1)$ for every $g \in G$, $m \in \mathbb{Z}$
- $f_g(m+n) = f_g(m)f_g(n)$ for every $g \in G$, $m \in \mathbb{Z}$, $n \ge 0$
- If n < 0: $f_g(m+n) = f_{g^{-1}}(-m+(-n)) = f_{g^{-1}}(-m)f_{g^{-1}}(-n) = f_g(m)f_g(n)$

Proposition 2.6.3

Let *G* be a finite group and let $g \in G$.

- ord(g) divides |G|
- **2** $g^{|G|} = e$
- 3 If $g^n = e$ for some n > 0 then ord(g) divides n

If $H \subset G$ is a subgroup of a finite group G then |G| = [G : H]|H|

$$egin{array}{cccc} f_g:\mathbb{Z}& o&G\ n&\mapsto&g^n \end{array}$$

Proof: ord(g) divides |G|

• Let $H = \langle g \rangle$. Then $|H| = \operatorname{ord}(g)$.

• Apply Lagrange's theorem.

Proof: $g^{|G|} = e$

• $g^{|G|} = g^{\operatorname{ord}(g)[G:H]} = (g^{\operatorname{ord}(g)})^{[G:H]} = e^{[G:H]} = e^{[G:H]}$

proof: If $g^n = e$ for some n > 0 then ord(g) divides n

• If
$$g^n = e$$
, $n \in \operatorname{Ker}(f_g) = \operatorname{ord}(g)\mathbb{Z}$

• Thus $\operatorname{ord}(g)|n$