Some slides for 7th Lecture, Algebra

Diego Ruano

Department of Mathematical Sciences
Aalborg University
Denmark

5-10-2010

A pair (G, \circ) consisting of a set G and a composition $\circ : G \times G \to G$ is a group if it satisfies:

- The composition is associative: for every s_1 , s_2 , $s_3 \in G$, $s_1 \circ (s_2 \circ s_3) = (s_1 \circ s_2) \circ s_3$.
- 2 There is a neutral element $e \in G$: for every $s \in G$, $e \circ s = s \circ e = e$.
- **3** For every $s \in G$ there is an inverse element $t \in G$ such that $s \circ t = t \circ s = e$.

A subgroup of a group G is a non-empty subset $H \subset G$ such that the composition of G makes it into a group. That is H is a subgroup of G if and only if

- **1** e ∈ H
- 2 $x^{-1} \in H$ for every $x \in H$
- **3** $xy \in H$, for every $x, y \in H$

Let H be a subgroup of G and $g \in G$. Then the subset

$$gH = \{gh : h \in H\} \subset G$$

is called a left coset of H. The subset

$$Hg = \{hg : h \in H\} \subset G$$

is called a right coset of *H*. (coset=sideklasse)

- G/H: The set of left cosets of H
- $H \setminus G$: The set of right cosets of H

Theorem 2.2.8 Lagrange

If $H \subset G$ is a subgroup of a finite group G then

$$|G| = |G/H||H|$$

The order of a subgroup divides the order of the group

- Can we make *G/H* into a group?
- For $X, Y \in G$, Define the composition of subsets: $XY = \{xy; x \in X, y \in Y\}$
- Let G be the symmetric group and $H = \{e, a\}$. Compute (bH)(cH). What does it mean?

0	е	а	b	С	d	f
е	е	а	b	С	d	f
а	e a	e	f	d	C	b
b	b	d	e	f	a	C
С	b c	f	d	e	b	a
d	d	b	C	a	t	e
f	f	C	a	b	e	d

Diego Ruano

Proposition 2.3.1

Let H be a subgroup of a group G. If gH = Hg for every $g \in G$ then

$$(xH)(yH) = (xy)H,$$

for every $x, y \in G$.

Proof $(xH)(yH) \supset (xy)H$: (we do not need proposition hypothesis)

- Let $(xy)h \in (xy)H$.
- Then $(xy)h = (xe)(yh) \in (xH)(yH)$

Proof $(xH)(yH) \subset (xy)H$:

- Let $(xh_1)(yh_2) \in (xH)(yH)$
- Then, $(xh_1)(yh_2) = x((h_1y)h_2) = ??$

Proposition 2.3.1

Let H be a subgroup of a group G. If gH = Hg for every $g \in G$ then

$$(xH)(yH) = (xy)H,$$

for every $x, y \in G$.

Proof: $(xH)(yH) \supset (xy)H$ (we do not need proposition hypothesis)

- Let $(xy)h \in (xy)H$.
- Then $(xy)h = (xe)(yh) \in (xH)(yH)$

Proof: $(xH)(yH) \subset (xy)H$

- Let $(xh_1)(yh_2) \in (xH)(yH)$
- Then, $(xh_1)(yh_2) = x((h_1y)h_2) = x((yh_3)h_2) = (xy)(h_3h_2)$ for some $h_3 \in H$ since Hy = yH.

A subgroup N of group G is called normal if

$$gNg^{-1} = \{gng^{-1} : n \in N\} = N,$$

for every $g \in G$.

Exercise 13: A normal subgroup N of G satisfies gN = Ng for every $g \in G$. So we have two equivalent conditions for normality

Corollary 2.3.3

Let N be a normal subgroup of the group G. Then the composition of subsets makes G/N into a group and

$$(g_1N)(g_2N)=(g_1g_2)N,$$

for g_1N , $g_2N \in G/N$.

Corollary 2.3.3

Let N be a normal subgroup of the group G. Then the composition of subsets makes G/N into agroup and

$$(g_1N)(g_2N)=(g_1g_2)N,$$

for g_1N , $g_n \in G/N$.

Proof:

- Proposition 2.3.1 \Rightarrow $(g_1N)(g_2N) = (g_1g_2)N$
- Composition of subsets is associative
- Neutral element: eN = N
- Inverse element: $(gN)^{-1} = g^{-1}N$

Let N be a normal subgroup of G. The group G/N is called a quotient group.

Exercise 2.14: A subgroup of an abelian group is normal.

Exercise 2.17: Consider a group *G* such that every subgroup in it is normal. Is *G* abelian?

Lemma 2.3.6

Let H and K, where H is normal, be subgroups of a group. Then HK is a subgroup of G.

Proof:

- e ∈ HK
- $x \in H, y \in K$: $(xy)^{-1} = (y^{-1}x^{-1}y)y^{-1} \in HK$
- $x, x' \in H, y, y' \in K$: $(xy)(x'y') = (x(yx'y^{-1}))yy' \in HK$

Quotient group of the integers

Prime residue classes: $[a] = a + n\mathbb{Z}$ with gcd(a, n) = 1.

Let n > 0.

$$(\mathbb{Z}/n\mathbb{Z})^* = \{[a] \in \mathbb{Z}/n\mathbb{Z} : \gcd(a, n) = 1\}$$

with [a][b] = [ab] is a group of order $\varphi(n)$.

- [a] = [b] and $gcd(a, n) = 1 \Rightarrow gcd(b, n) = 1$.
- $\bullet \gcd(a, n) = 1, \gcd(b, n) = 1 \Rightarrow \gcd(ab, n) = 1.$
- Neutral: [1]
- Inverse?: using extended Euclidean algorithm. $\lambda a + \mu n = 1 \Rightarrow [1] = [\lambda a + \mu n] = [\lambda a]$

Let G and K be groups. A map $f:G\to K$ is called a group homomorphism if

$$f(xy) = f(x)f(y)$$

for every $x, y \in G$.

- Example: exponential function
- Example: determinant
- Example: $\pi: G \to G/N$ for a normal subgroup N of G.

The **kernel** of a group homomorphism $f: G \rightarrow K$ is

$$\operatorname{Ker}(f) = \{g \in G : f(g) = e\}$$

The image of f is

$$f(G) = \{f(g) : g \in G\}$$

A bijective group homomorphism is called a group isomorphism.

We write $G \cong K$ and say G and K are isomorphic.