Some slides for 5th Lecture, Algebra

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

21-09-2010

A composition on a set G is a map

$$\circ: G imes G o G$$

 $(g, h) \mapsto \circ(g, h) = g \circ h = gh$

A pair (G, \circ) consisting of a set *G* and a composition $\circ : G \times G \rightarrow G$ is a group if it satisfies:

① The composition is associative: for every $s_1, s_2, s_3 \in G$

$$s_1 \circ (s_2 \circ s_3) = (s_1 \circ s_2) \circ s_3$$

2 There is a neutral element $e \in G$: for every $s \in G$

 $e \circ s = s \circ e = s$

③ For every $s \in G$ there is an inverse element $t \in G$ such that

$$s \circ t = t \circ s = e$$

A pair (G, \circ) consisting of a set *G* and a composition $\circ : G \times G \rightarrow G$ is a group if it satisfies:

• The composition is associative: for every $s_1, s_2, s_3 \in G$, $s_1 \circ (s_2 \circ s_3) = (s_1 \circ s_2) \circ s_3$.

2 There is a neutral element $e \in G$: for every $s \in G$, $e \circ s = s \circ e = s$.

Solution For every $s \in G$ there is an inverse element $t \in G$ such that $s \circ t = t \circ s = e$.

A group is called abelian or commutative if for every $g, h \in G$:

 $g \circ h = h \circ g$

The number of elements |G| = #G in G is called the order of G.

• For $a, n \in \mathbb{Z}$ consider:

$$a+n\mathbb{Z}=\{a+nx:n\in\mathbb{Z}\}$$

• When is $a + n\mathbb{Z} = b + m\mathbb{Z}$?

Proposition 2.1.2

Let $a, b, c \in \mathbb{Z}$. Then $a + c\mathbb{Z} = b + c\mathbb{Z}$ if and only if $a \equiv b \pmod{c}$. Also, $(a + c\mathbb{Z}) \cap (b + c\mathbb{Z}) = \emptyset$ if and if $a \not\equiv b \pmod{c}$. $a + c\mathbb{Z} = b + c\mathbb{Z} \Rightarrow a \equiv b \pmod{c}$.

- Let $m \in a + c\mathbb{Z} = b + c\mathbb{Z}$.
- Then exists $x, y \in \mathbb{Z}$ s.t. m = a + cx = b + cy
- Hence $a b = c(y x) \Rightarrow a \equiv b \pmod{c}$
- $a \equiv b \pmod{c} \Rightarrow a + c\mathbb{Z} = b + c\mathbb{Z}.$
 - a = b + cx, for $x \in \mathbb{Z}$
 - Then $a + c\mathbb{Z} = b + cx + c\mathbb{Z} = b + c\mathbb{Z}$, since $cx + c\mathbb{Z} = c\mathbb{Z}$
- $(a+c\mathbb{Z})\cap(b+c\mathbb{Z})\neq\emptyset\Rightarrow a\equiv b(\mathrm{mod}\ c)$
 - There is $m, x, y \in \mathbb{Z}$ such that m = a + cx = b + cy
 - a b = c(y x), then $a \equiv b \pmod{c}$

 By previous proposition a + cZ = b + cZ if and only if a ≡ b(mod c).

• But $a + c\mathbb{Z} = b + c\mathbb{Z}$ if and only if $[a]_c = [b]_c$.

So we can have more notation:

• Denote by $[x] = x + c\mathbb{Z}$.

• Denote by $\mathbb{Z}/c\mathbb{Z} = \{[0], [1], \dots, [c-1]\}$

We have a set $\mathbb{Z}/c\mathbb{Z}$, can we define a composition on it to get a group?

For $[x], [y] \in \mathbb{Z}/c\mathbb{Z}$

$$[x] + [y] = [x + y]$$

Is this composition well defined?

$(\mathbb{Z}/c\mathbb{Z},+)$ is an abelian group:

- Associativity: holds using the associativity of $(\mathbb{Z}, +)$
- Neutral element: subset $[0] = 0\mathbb{Z} = c\mathbb{Z}$
- The inverse element of [x] is [-x]
- Abelian: [x] + [y] = [x + y] = [y + x] = [y] + [x]

What is $(\mathbb{Z}/0\mathbb{Z}, +)$? What is $x + 0\mathbb{Z}$?

Composition table for a finite group

What is $g_1 \circ g_2 \circ g_3$?, for $g_1, g_2, g_3 \in G$

Easy case: (set of maps from a set *X* to itself, composition of maps)

A non-abelian group

- *X* = {1, 2, 3}
- *G* bijective maps $X \to X$.
- Composition: composition of maps

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \quad b = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$
$$c = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \quad d = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \quad f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

• The neutral element is unique:

$$e = ee' = e'$$

• For $g \in G$ there is only one inverse: gh = hg = h'g = gh' = e, we have

$$h' = eh' = (hg)h' = h(gh') = he = h$$

Let g be an element of a group. We denote by g^{-1} the unique inverse of g.

Inverse in a non-commutative group: $(ab)^{-1} = b^{-1}a^{-1}$:

$$(ab)(b^{-1}a^{-1}) = a(b(b^{-1}a^{-1})) = a(ea^{-1}) = aa^{-1} = ea^{-1}$$

Multiplication by $\overline{g \in G}$ is bijective

$GL(\mathbb{R})$ and $O(\mathbb{R})$

