Some slides for 4th Lecture, Algebra

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

17-09-2010

Diego Ruano Some slides for 4th Lecture, Algebra

Lemma 1.8.1

Every non-zero natural number $n \in \mathbb{N} \setminus \{0\}$ is a product of prime numbers.

Theorem 1.8.2 (Euclid)

There are infinitely many prime numbers

Lemma 1.8.3

Let *p* be a prime number and suppose that $p \mid ab$, where, $a, b \in \mathbb{Z}$. Then, $p \mid a$ or $p \mid b$.

Theorem 1.8.5

Every natural number can be factored uniquely into a product of prime numbers (up to changing the order)

Proof:

- For n = 1 is trivial (1 = empty product of prime numbers).
- For n > 1, $n = p_1 \cdots p_r = q_1 \cdots q_s$.
- If there exists *i* such that p_i ∈ {q₁,..., q_s}, divide both sides by p_i. So we assume p_i ≠ p_j for all *i*, *j*.
- Since $p_1 | q_1 \cdots q_s$, we have $p_1 | q_1$, or $p_1 | q_2$, ..., or $p_1 | q_s$.
- If $p_i \mid q_j \Rightarrow p_i = q_j$, contradiction.

With factorization into a product of prime numbers:

- Divisors
- Greatest common divisor
- Least common multiple

Can this be used to compute $\varphi(n)$?

knowing the prime factorization of a number:

 $\varphi(\mathbf{n}) = \varphi(\mathbf{p}_1^{\mathbf{r}_1}) \cdots \varphi(\mathbf{p}_s^{\mathbf{r}_s}),$

where $n = p_1^{r_1} \cdots p_s^{r_s}$, $p_i \neq p_j$ for all $i \neq j$.

How do we compute $\varphi(p^m)$?

Computing $\varphi(n)$

knowing the prime factorization of a number:

 $\varphi(\boldsymbol{n}) = \varphi(\boldsymbol{p}_1^{r_1}) \cdots \varphi(\boldsymbol{p}_s^{r_s}),$

where $n = p_1^{r_1} \cdots p_s^{r_s}$, $p_i \neq p_j$ for all $i \neq j$.

How do we compute $\varphi(p^m)$?

•
$$gcd(x, p) = 1 \Leftrightarrow p \nmid x$$

• $x \le p^m$ is NOT relative prime to $p^m \Leftrightarrow p \mid x$

Hence, $\varphi(p^{m}) = p^{m} - p^{m-1}$.

$$\varphi(n) = (p_1^{r_1} - p_1^{r_1 - 1}) \cdots (p_s^{r_s} - p_s^{r_s - 1}) = n \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_s}\right)$$

RSA

- $N = p \cdot q$, p and q primes.
- *e* a number for encription, *d* a number for decription.
- Public: *N*, *e*. Private: *d*.
- Message: *X*, 0 ≤ *X* < *N*.
- Encription: $f(X) = [X^e]_N$ Decription: $g(X) = [X^d]_N$. g(f(X)) = X.

How do we choose e and d?

We know: $g(f(X)) = [[X^e]^d] = [X^{ed}] = X$ if and only if $X \equiv X^{ed} \pmod{N}$ $\varphi(N) = \varphi(p)\varphi(q) = (p-1)(q-1)$

Let *X* be any integer and k a natural number. Then

 $X^{k(p-1)(q-1)+1} \equiv X \pmod{N}$

Proof:

- It is enough to prove that $X^{k(p-1)(q-1)+1} \equiv X \pmod{p}$.
- If $p \mid x$. Thus, $[X]_p = 0 = [X^{k(p-1)(q-1)+1}]_p$, we have $X^{k(p-1)(q-1)+1} \equiv X \pmod{N}$.
- If $p \nmid x$. Thus, gcd(p, x) = 1, by Euler Theorem $X^{\varphi(p)} = X^{p-1} \equiv 1 \pmod{p}$ and

$$X^{k(p-1)(q-1)} \equiv (X^{p-1})^{k(q-1)} \equiv 1 \pmod{p}$$

• Multiply the previous congruence with X

Encryption and decryption exponents

Fermat's little theorem

Let p be a prime number and a an integer with gcd(a, p) = 1. Then

$$a^{p-1} \equiv 1 \pmod{p}$$

Definition 1.9.3

Let N be a composite natural number and a an integer. Then N is called a pseudoprime relative to the base a if

 $a^{N-1} \equiv 1 \pmod{N}$

- gcd(a, N) ≠ 1 ⇒ N cannot be a pseudoprime relative to a (EX 1.41).
- Carmichael numbers (or pseudoprimes).

Lemma 1.9.4

Let *p* be a prime number and $x \in \mathbb{Z}$. If $x^2 \equiv 1 \pmod{p}$ then $x \equiv 1 \pmod{p}$ or $x \equiv -1 \pmod{p}$

Proof:

•
$$p \mid (x^2 - 1) = (x + 1)(x - 1).$$

• Then
$$p \mid (x+1)$$
 or $p \mid (x-1)$

An odd composite *N* is called a strong pseudoprime relative to the base *a* if either

 $a^q \equiv 1 \pmod{N}$

or there exists i = 0, ..., k - 1 such that

 $a^{2^{i}q} \equiv -1 \pmod{N},$

where $N - 1 = 2^k q$ and $2 \nmid q$.

Proposition 1.9.6

Let p be an odd prime number and suppose that

$$p-1=2^kq,$$

where $2 \nmid q$. If $a \in \mathbb{Z}$ and gcd(a, p) = 1 then either

 $a^q \equiv 1 \pmod{p}$

or there exists i = 0, ..., k - 1 such that

 $a^{2^i q} \equiv (\text{mod } p).$

Proof:

- Let $a_i = a^{2^i q}$, i = 0, ..., k.
- By Fermat's th: $a_k \equiv 1 \pmod{p}$ and $a_{i+1} = a_i^2$, for $i = 0, \dots, k-1$.
- Therefore, $a_0 \equiv 1 \pmod{p} \Leftrightarrow a_k \equiv 1 \pmod{p}$ for every i.

- Let $a_i = a^{2^i q}, i = 0, ..., k$.
- By Fermat's th: $a_k \equiv 1 \pmod{p}$ and $a_{i+1} = a_i^2$, for i = 0, ..., k 1.
- Therefore, $a_0 \equiv 1 \pmod{p} \Leftrightarrow a_i \equiv 1 \pmod{p}$ for every i.
- If $a_0 \not\equiv 1 \pmod{p}$, then $\exists a_i, i \ge 0$, such that $a_i \not\equiv 1 \pmod{p}$.
- Let *j* be the largest index with this property.
- Since j < k and $a_j^2 \equiv a_{j+1} \equiv 1 \pmod{p}$, we get $a_j \equiv -1 \pmod{p}$ (by previous lemma).

Theorem 1.9.7 (Rabin)

Suppose that N > 4 is an odd composite integer and let *B* be the number of bases *a* (1 < a < N) such that *N* is a strong pseudoprime relative to *a*. Then

 $B < \varphi(N)/4 \le (N-1)/4$