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A relation R on a set S is a subset R ⊂ S × S. We say xRy to
mean (x , y) ∈ R.

A relation R on S is
reflexive if xRx for every x ∈ S
symmetric if xRy =⇒ yRx for every x , y ∈ S
transitive if xRy and yRz =⇒ xRz for every x , y , z ∈ S

R is called equivalence relation if it is reflexive, symmetric and
transitive.

Example: I ⊂ R an ideal in a ring. We define the relation:

x ≡ y(mod I)⇐⇒ x − y ∈ I

Reflexive: 0 ∈ I
Symmetric: x ∈ I =⇒ −x ∈ I
Transitive: x , y ∈ I =⇒ x + y ∈ I.
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Let ∼ be an equivalence relation on a set S. Given x ∈ S, set

[x ] = {s ∈ S : s ∼ x} ⊂ S

This subset is called the equivalence class containing x and x
is called a representative for [x ].
The set of equivalence classes {[x ] : x ∈ S} is denoted S/ ∼ .

Example: In the previous example R/ ∼ is equal R/I, where ∼
is ≡.

Compare page 225 and page 63

Lemma A.2.3 and Lemma 2.2.6 (ii)
Corollary A.2.4 and Lemma 2.2.6 (iii)
Theorem A.2.6 and Corollary 2.2.7
Definition A.2.7 and Example 2.2.4 (page 68)
Theorem A.2.8 and Theorem 2.5.1 (page 71)
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Let ∼ be an equivalence relation on S and x , y ∈ S. Then
[x ] = [y ] if and only if x ∼ y .

[x ] ∩ [y ] = ∅ if [x ] 6= [y ].

A partition of a set S is a collection (Si)i∈I of subsets of S such
that ∪i∈ISi = S, Si ∩ Sj = ∅ if i 6= j and Si 6= ∅.

Let S be a set with an equivalence relation ∼. Then the set of
equivalence classes

S/ ∼= {[x ] : x ∈ S}

is a partition of S. However, if (Si)i∈I is a partition of S then we
get an equivalence relation ∼ on S such that S/ ∼= (Si)i∈I
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Construction of the rational numbers

Diego Ruano Some slides for 15th Lecture, Algebra



Field of fractions
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Divisibility and greatest common divisor in a domain

We assume from now on that R is a domain.

Suppose that x , y ∈ R. If x = ry for some r ∈ R, we say that y
is a divisor of x and we denote it by y |x

y |x if and only if 〈x〉 ⊂ 〈y〉.
If x = uy , where u ∈ R∗, then 〈x〉 = 〈y〉.
If 〈x〉 = 〈y〉, then x = ry and y = sx for some s, r .
Therefore x = (rs)x and rs = 1. This implies that r , s ∈ R∗

and there exists u ∈ R∗ s.t. x = uy and we say that x and
y are associated elements of R.
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An element d ∈ R is a greatest common divisor of a,b ∈ R if d
is a common divisor of a and b and every common divisor of a
and b divides d .

Let R be a principal ideal domain. We know that for every
a,b ∈ R there is d ∈ R s.t.

〈a,b〉 = 〈d〉

What is d?, d is the greatest common divisor of a and b.

Proof:

d is a common divisor of a and b since 〈a〉 ⊂ 〈d〉 and
〈b〉 ⊂ 〈d〉
If e is a common divisor of a and b, then
〈e〉 ⊃ 〈a,b〉 = 〈d〉. That is e divides d .
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