Some slides for 14th Lecture, Algebra

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

4-11-2010

A ring is an abelian group (R, +) (the neutral element is 0) with an additional composition \cdot called multiplicaton with satifies (for every *x*, *y*, *z* \in *R*):

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

3 There exists an element $1 \in R$ s.t. $1 \cdot x = x \cdot 1 = x$

3
$$x \cdot (y+z) = x \cdot y + x \cdot z$$
 and $(y+z) \cdot x = y \cdot x + z \cdot x$.

An ideal in a ring *R* is a subgroup *I* of (R, +) such that $\lambda x \in I$ for every $\lambda \in R$ and $x \in I$

An equivalent definition of ideal: An ideal *I* of *R* is a subset $I \subset R$ such that:

 $\bigcirc 0 \in I$

- **2** If $x, y \in I$, then $x + y \in I$
- If $x \in I$ and $\lambda \in R$, then $x\lambda \in I$.

A map $f : R \rightarrow S$ between two rings R and S is called a ring homomorphism if:

• It is a group homomorphism from (R, +) to (S, +).

3
$$f(xy) = f(x)f(y)$$
, for every $x, y \in R$

3 f(1) = 1

A bijective ring homomorphism is called ring isomorphism. If $f: R \rightarrow S$ is an isomorphism, we say that R and S are isomorphic, $R \cong S$

Example: A surjective ring homomorphism

$$egin{array}{ccc} R &
ightarrow & R/I \ r &
ightarrow & [r] \end{array}$$

Exercise 3.11

 $\operatorname{Ker}(f) = \{r \in R : f(r) = 0\}$ is an ideal of RThe image f(R) is a subring of S

Diego Ruano Some slides for 14th Lecture, Algebra

Proposition 3.3.2

Let *R*, *S* be rings and $f : R \rightarrow S$ a ring homomorphism with kernel K = Ker(f). Then:

 $\begin{array}{rcl} \tilde{f}:R/K & \to & f(R) \\ r+K & \mapsto & f(r) \end{array}$

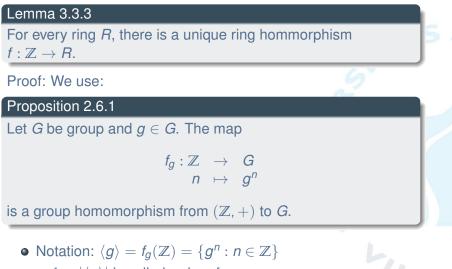
is a well defined map and a ring isomorphism

Proof:

- We know that *t̃* is well defined and it is an isomorphism of abelian groups (theorem 2.5.1).
- $\tilde{f}((x+K)(y+K)) = \tilde{f}(xy+K) = f(xy) = f(x)f(y) = \tilde{f}(x+K)\tilde{f}(y+K)$

•
$$\tilde{f}(1+K) = f(1) = 1$$

The unique ring homomorphism from $\ensuremath{\mathbb{Z}}$



• ord = $|\langle g \rangle|$ is called order of g

Let *R* be a ring.

- The characteristic of *R* is the order of 1 in *R* if ord(1) is finite.
- If the order of 1 is infinite, we say that *R* has characteristic zero.

In other words:

The characteristic of *R* is $n_1 \in \mathbb{N}$, where $n_1\mathbb{Z} = \text{Ker}(f_1)$

Lemma 3.3.5

Let *R* be a ring. Then there is an injective ring homomorphism $\mathbb{Z}/n\mathbb{Z} \to R$, where $n = \operatorname{char}(R)$.

Proof:

Proposition 3.3.7

Let R be a domain. Then $\operatorname{char}(R)$ is either zero or a prime number.

If *R* is domain and is finite then *R* is a field and char(R) is a prime number

Proof:

- $\mathbb{Z}/n\mathbb{Z}$ is a subring of *R* and it should be also a domain. Then, *n* is zero or prime.
- If R is finite, n > 0.

Lemma 3.3.8

Let *R* be a ring and *a*, *b* two elements in *R*. Then

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i}$$

Proof: Induction + trick:

$$\binom{n}{i} + \binom{n}{n-1} = \binom{n+1}{i}$$

We are also using $f(\mathbb{Z}) \subset R$

Theorem 3.3.9-Binomial formula with prime characteristic

Let R be a ring of prime characteristic p. Then

$$(x+y)^{p^r} = x^{p^r} + y^{p^r}$$

for every $x, y \in R$ and $r \in \mathbb{N}$.

Proof:

- $p|\binom{p}{i}$, for i = 1, ..., p-1
- $(x+y)^p = x^p + y^p$
- Induction on r:

$$(x+y)^{p^{r}} = ((x+y)^{p})^{p^{r-1}} = (x^{p}+y^{p})^{p^{r-1}} = (x^{p})^{p^{r-1}} + (y^{p})^{p^{r-1}}$$

Frobenius Map

Let R be a ring of prime characteristic, then F is a ring homomorphism:

$$F: R \rightarrow R$$

 $x \mapsto x^p$

A relation *R* on a set *S* is a subset $R \subset S \times S$. We say *xRy* to mean $(x, y) \in R$.

A relation R on S is

- reflexive if xRx for every $x \in S$
- symmetric if $xRy \implies yRx$ for every $x, y \in S$
- transitive if xRy and $yRz \Longrightarrow xRz$ for every $x, y, z \in S$

R is called equivalence relation if it is reflexive, symmetric and transitive.

Example: $I \subset R$ an ideal in a ring. We define the relation:

$$x \equiv y \pmod{l} \Longleftrightarrow x - y \in I$$

- Reflexive: $0 \in I$
- Symmetric: $x \in I \Longrightarrow -x \in I$
- Transitive: $x, y \in I \Longrightarrow x + y \in I$.

Let \sim be an equivalence relation on a set *S*. Given $x \in S$, set

$$[x] = \{s \in S : s \sim x\} \subset S$$

This subset is called the equivalence class containing *x* and *x* is called a representative for [x]. The set of equivalence classes $\{[x] : x \in S\}$ is denoted S / \sim .

Example: In the previous example R/\sim is equal R/I, where \sim is \equiv .

Compare page 225 and page 63

- Lemma A.2.3 and Lemma 2.2.6 (ii)
- Corollary A.2.4 and Lemma 2.2.6 (iii)
- Theorem A.2.6 and Corollary 2.2.7
- Definition A.2.7 and Example 2.2.4 (page 68)
- Theorem A.2.8 and Theorem 2.5.1 (page 71)