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Welcome to the world of rings!!!

Bye, bye groups!!!

Buf, maybe not...
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Aring is an abelian group (R, +) (the neutral element is 0) with
an additional composition - called multiplicaton with satifies (for
every x,y,z € R:

Q@ (x-y)-z=x-(y-2)

© There existsanelement1 € Rst. 1-x=x-1=x

QO x (y+z)=x-y+x-zand (y+2z)- x=y-x+2z-x.

A subset S C R of aring is called a subring if S is a subgroup
of (R,+),1€ Sand xy € Sforx,y € S.

An element x € R is called a zero divisor if there exists
y e R\ {0}st xy=0o0ryx=0.
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Aring is an abelian group (R, +) (the neutral element is 0) with
an additional composition - called multiplicaton with satifies (for
every x,y,z € R:

Q@ (xy)z=x-(y 2

© There existsanelement1 € Rst. 1-x=x-1=x

Qx (y+z)=x-y+x-zand(y+2)-x=y-x+2z-x.

R is called commutative if xy = yx for every x,y € R. )

An element x € Ris called a unit if there exists y € R s.t.
xy = yx = 1. In this case we say x~' = y is the inverse of x.
The set of units in R is denoted R*.

Exercise: (R*,-) is a group. R* is abelian if R is commuative

Exercise: If R # {0}, then 0 ¢ R*
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examples
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Two non-commutative ring

@ The 2 x 2-matrices
@ Quaternions:

H={a+bi+c¢+dk:ab,cdecC}

1Pk
111 1 ] k
ili -1 k —j
ili -k —1 i
klk | —i —1

ring will be always commutative for us without any further

However, we will work here only with commutative rings. So a
notice.
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Aring R with R* = R\ {0} is called a field. )

If K C L are fields and K is a subring of L then K is called a
subfield of L and L is called an extension field of K. J

A domain is aring R # {0} with no zero divisors. J

Proposition 3.1.3

Let Rbe adomainand a, x,y € R. If a+# 0 and ax = ay then
X=y

Proof:

@ax=ay=ax—ay=0=alx—y)=0
@ Multiplyby a',togetx —y =0=x = y.
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Proposition 3.1.4
let F be a field. Then F is a domain.

Proof:

® Suppose x,y € F,x #0and xy = 0. Is y = 0?77
@ Since x # 0, there exists x .
@ Hence,0 =x"10=x""(xy) =y

Diego Ruano Some slides for 12th Lecture, Algebra



Diego Ruano Some slides for 1 ecture, Algebra



Q(iy={a+bi:abecQ} cC

(a+bi)+ (c+di)=(a+c)+ (b+d)i

@ (a+ bi)(c+di) = (ac— bd) + (ad + bc)i

@ Forz=a+bi #0:

1 a—bi a b .
z (atbia_b) @12 212

@ N(z)=|z|? =2z = & + b°.
@ One has that N(z1z2) = N(z1)N(z2)
@ Q(/) is an extension field of Q and a subfield of C
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Gaussian integers: Z(i) ={a+bi:a,be Z}

z € Z|i]is aunitif and only if N(z) = 1. One has that

Z[i*={1,-1,i,—i}

Proof =):
@ If zisaunitthen1 = N(1) = N(zz=') = N(z)N(z™")
@ Since N(z) and N(z~') € N, then N(z) = 1

Proof «<):
@ z = a+ biwith N(z) = (a+ bi)(a— bi) = &+ b = 1
@ Then zy =1fory = a— bi € Z]i].
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An ideal in aring R is a subgroup / of (R, +) such that Ax € |
forevery A € Rand x € |

R is an ideal.
Exercise 3.4: letIC R, I=R < 1¢

An equivalent definition of ideal: An ideal / of R is a subset
I C R such that:

Q@o0c/
QIlfx,yelthenx+yel
©Q Ifxecland A € R, then xA € .

Letry,...rm € R, then

(r1,...,rn>:{A1r1+~~+Anrn:/\1,...,/\n€R}

is an ideal in R (exercise 3.5).

Diego Ruano Some slides for 12th Lecture, Algebra



Letry,...rm € R, then

is an ideal in R (exercise 3.5).

If /'is an ideal in R and there exist ry, ..., r, € R such that
I={(n,..., rn), we say that / is finitely generated by
r,...,mé€R.

An ideal generated by infinitely many elements?:
Let M C R, the ideal generated by Mis: (f : f € M) =

{aifi+---+apfh:neN,ay,...an€ R fi....f, € M}
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Remark 3.1.8

Let /, J be ideals in ring R

Q@ Then/ndand /I+J={i+j:ielje J} are also ideals
in R

© The product IJ is defined to be the ideal generated by
{ij:ieljed}. Wehave IJ C INJ.

Exercise: in a field F the only ideals are {0} and F.
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Anideal /in R that can be generated by one element is called a
principal ideal (that is, there exists d € R s.t. | = (d). J

A domain in which every ideal is a principal ideal is called a
principal ideal domain. J

Proposition 3.1.10
The ring Z is a principal ideal domain.
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Theorem 3.1.11

The ring of Gaussian integers Z|[i] is a principal ideal domain.

Proof: I C (d) (the converse is trivial)
@ Let / be anon-zero ideal in Z[i]. Choose d = a+ bi € |,
d # 0, such that N(d) = & + b? is minimal.
@ Suppose that z € /,then z/d = g +2 i € C, with
1. € Q.

@ Note: distance point is at most v/2/2 away from a point
with integer real and imaginary parts (think in the lattice)

@ So, consierq=c—+di € Zli]s.t. |z/d—q|] <1 (or
N(z/d—-q) <1

@ Multiply by N(d): N(z — gd) < N(d)

@ Since z — qd € /, then z = qd because N(d) is minimal.
Therefore | C (d)
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