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Sn

The same construction makes of S3 sense for a set with n
elements. For instance Mn = {1, . . . , n}.
We have Sn: bijective maps Mn → Mn.
Sn is a group with the composition of maps and order n!
σ ∈ Sn is a bijection and denoted by

σ =
(

1 2 · · · n
σ(1) σ(2) · · · σ(n)

)

Let σ ∈ Sn. We define Mσ

Mσ = {x ∈ Mn : σ(x) 6= x}

We say that σ, τ ∈ Sn are disjoint if Mσ ∩Mτ = ∅.

Proposition 2.9.2
Let σ, τ ∈ Sn be disjoint permutations in Sn. Then στ = τσ
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A k -cycle is a permutation σ ∈ Sn such that for k (different)
elements x1, . . . , xk ∈ Mn,

σ(x1) = x2, σ(x2) = x3, , . . . σ(xk−1) = xk , , σ(xk ) = x1

We denote it by σ = (x1x2 . . . xk )

The k -cycle σ can be represented in k ways:

(x1x2 . . . xk−1xk ),
(x2x3 . . . xkx1),

...
(xkx1 . . . xk−2xk−1)

Mσ = {x1, . . . , xk}
The order of a k -cycle in Sn is k .
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1-cycle: identity map
2-cycle: trasposition. σ transposition: σ−1 = σ

Simple trasposition: a transposition si = (i i + 1)

Proposition 2.9.5
Let σ ∈ Sn be written as a product of disjoint cycles σ1 · · · σr .
Then the order of σ is the least common multiple of the orders
of the cycles σ1, . . . , σr

Proposition 2.9.6
Every permutation σ ∈ Sn is a product of unique disjoint cycles.
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Using bubble sort we saw:(
1 2 3 4
4 1 3 2

)
= (2 3)(3 4)(2 3)(1 2)

.We wonder: What is the minimal number of simple
transpositions needed for writing a permutation as a product in
this way?

Let σ be a permutation. A pair of indices (i , j), where
1 ≤ i < j ≤ n, is called an inversion of σ if σ(i) < σ(j). Let

Iσ = {(i , j) : 1 ≤ i < j ≤ n and σ(i) > σ(j)}

denote the set of inversions and n(σ) = |Iσ| the number of
inversions of σ.

Example:

σ =
(

1 2 3 4 5 6
6 3 1 5 4 2

)
Compute: Iσ and n(σ)
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Let σ be a permutation. A pair of indices (i , j), where
1 ≤ i < j ≤ n, is called an inversion of σ if σ(i) > σ(j). Let

Iσ = {(i , j) : 1 ≤ i < j ≤ n and σ(i) > σ(j)}

denote the set of inversions and n(σ) = |Iσ| the number of
inversions of σ.

Example:

σ =
(

1 2 3 4 5 6
6 3 1 5 4 2

)

Iσ = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 6), (4, 5), (4, 6), (5, 6)}

n(σ) = 10
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Proposition 2.9.12
The permutation σ ∈ Sn is the identity map if and only if
n(σ) = 0. If σ is not the identity map then there exists
i ∈ {1, . . . , n− 1} such that σ(i) > σ(i + 1).

Proof: σ ∈ Sn is the identity map⇔ n(σ) = 0

If σ identity map, the it has no inversions and n(σ) = 0.
If n(σ) = 0 and σ is not the identity map then there exists a
smallest i ∈ Mn such that σ(i) > i , but (i , σ−1(i)) is an
inversion.

Proof: If σ is not the identity map then there exists
i = 1, . . . , n− 1 such that σ(i) > σ(i + 1).

If σ is a permutation satisfying σ(1) < · · · < σ(n) then σ
has to be the identity map, since n(σ) = 0.

Diego Ruano Some slides for 11th Lecture, Algebra



Lemma 2.9.13
Let si ∈ Sn be a simple transposition and σ ∈ Sn. Then

n(σsi) =
{

n(σ) + 1 if σ(i) < σ(i + 1),
n(σ)− 1 if σ(i) > σ(i + 1),

Proof: Assume σ(i) < σ(i + 1)

(i , i + 1) is an inversion for σsi since (i , i + 1) is not an
inversion for σ.
Consider

ϕ : Iσ → Iσsi \ {(i , i + 1)}
(k , l) 7→ (si(k), si(l))

We should prove that ϕ is bijective:
If (k , l) ∈ Iσ then si (k) < si (l). It is clear for every k , l ,
excepting k = i and l = i + 1, but we assumed
(i , i + 1) 6∈ Iσ
We have that (si (k), si (l)) ∈ Iσsi since (k , l) ∈ Iσ
If (k , l) ∈ Iσsi \ {(i , i + 1)} then (si (k), si (l)) ∈ Iσ.
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Lemma 2.9.13
Let si ∈ Sn be a simple transposition and σ ∈ Sn. Then

n(σsi) =
{

n(σ) + 1 if σ(i) < σ(i + 1),
n(σ)− 1 if σ(i) > σ(i + 1),

Proof: Assume σ(i) > σ(i + 1)

(σsi)(i) < (σsi)(i + 1) since σ(i) > σ(i + 1)
Then n((σsi)si) = n(σsi) + 1 by previous slide.
And σsisi = σ, hence n(σ) = n(σsi) + 1 and the result
holds

Diego Ruano Some slides for 11th Lecture, Algebra



Proposition 2.9.14
Let σ ∈ Sn. Then

1 σ is a product of n(σ) simple transpositions
2 n(σ) is the minimal product of simple transpositions

needed in writing σ as a product of simple transpositions.

Proof of (1) by induction on n(σ):

For n(σ) = 0, σ is the identity map and it is the empty
product of simple transpositions
Assume we can write a transposition τ with n(τ) = n− 1
as product of transpositions

If n(σ) 6= 0, we may find i ∈ {1, . . . , n− 1} such that
σ(i) > σ(i + 1) (by prop. 2.9.12)
Then n(σsi ) = n(σ)− 1 by lemma 2.9.13.
By induction, τ = σsi can be written as the product of n− 1
transpositions.
Then, σ = τsi is a product of n(σ) transpositions.
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Proposition 2.9.14
Let σ ∈ Sn. Then

1 σ is a product of n(σ) simple transpositions
2 n(σ) is the minimal product of simple transpositions

needed in writing σ as a product of simple transpositions.

Proof: `(σ) is the minimal number of simple transpositions
needed in writing σ as a product of simple transpositions.

n(σ) ≥ `(σ) by (1)
We prove n(σ) = `(σ) by induction on `(σ)
`(σ) = 0, trivial
For `(σ) > 0:

We can find a simple transposition si such that
`(σsi ) = `(σ)− 1
Thus, `(σsi ) = n(σsi ) by induction
Hence `(σ) ≥ n(σ)
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The sign of a permutation σ ∈ Sn is

sgn(σ) = (−1)n(σ)

A permutation with sign 1 is called even and with sign −1 is
called odd.

Proposition 2.9.16
The sign

sgn : Sn → {−1, 1}
σ 7→ sgn(σ)

of a permutation is a group homomorphism (the composition for
{−1, 1} is multiplication).

Actually, ({−1, 1}, ·) is isomorphic to (Z/2Z, +).
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sgn : Sn → {−1, 1}
σ 7→ sgn(σ)

Proof sgn is a group homomorphism:

We have to prove sgn(στ) = sgn(σ)sgn(τ) for σ, τ ∈ Sn

Assume that τ is a simple transposition: n(σsi) = ±1
(lemma 2.9.13). Thus sgn(σsi) = −sgn(σ).
Then sgn(σsi) = sgn(σ)sgn(si), because n(si) = 1.
By previous proposition τ is a product of simple
transpositions, apply the previous proof several times
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The set of even permutations in Sn is denoted An and called the
alternating group

An is a normal subgroup of Sn, since An is the kernel of
sgn.
By isomorphism theorem:

Sn/An
∼→ {−1, 1}

Then |An| = |Sn|/2 = n!/2
How do we compute sgn(σ) of a permutation?
By computing the sign of a k -cycle
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Lemma 2.9.8
Suppose that τ = (i1i2 . . . ik ) is a k -cycle and σ a permutation in
Sn. Then σ(i1i2 . . . ik )σ−1 = (σ(i1)σ(i2) . . . σ(ik ))

Proposition 2.9.17

Let n ≥ 2. A transposition τ = (i j) ∈ Sn is an odd permutation.
The sign of an r -cycle σ = (x1 . . . xr ) ∈ Sn is (−1)r−1.

Proof: A transposition τ = (i j) ∈ Sn is an odd permutation

Consider a permutation η ∈ Sn such that η(1) = i and
η(2) = j
−1 = sgn(1 2) = sgn(η(1 2)η−1) = sgn((η(1) η(2)) =
sgn(τ).

Proof sgn((x1 . . . xr )) = (−1)r−1

(x1 . . . xr ) = (x1 x2)(x2 x3) . . . (xr−1 xr )
(x1 . . . xr ) is the product of r − 1 transpositions and the
result holds
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Lemma 2.9.18
Every permutation in An is a product of 3-cycles if n ≥ 3.

Proof:

A permutation in An is product of an even number of
transpositions
(a b)(c d) = (a d c)(a b c)
(a b)(b c) = (a b c)
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