Some slides for 10th Lecture, Algebra

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

14-10-2010

Diego Ruano Some slides for 10th Lecture, Algebra

Theorem 1.6.4-The Chinese remainder theorem

Let $N = n_1 \cdots n_t$, with $n_1, \ldots, n_t \in \mathbb{Z} \setminus \{0\}$ and $gcd(n_i, n_j) = 1$, for $i \neq j$. Consider the system

$$\begin{cases} X \equiv a_1 \pmod{n_1} \\ X \equiv a_2 \pmod{n_2} \\ \vdots \\ X \equiv a_t \pmod{n_t} \end{cases}$$

With $a_i \in \mathbb{Z}$. Then

① The system has a solution $X \in \mathbb{Z}$.

If X, Y ∈ Z are solutions of the system then X ≡ Y(mod N). If X is a solution of the system and X ≡ Y(mod N) then Y is a solution of the system. Suppose that $N = n_1 \cdots n_t$, where $n_1, \ldots, n_t \in \mathbb{N} \setminus \{0\}$ and $gcd(n_i, n_j) = 1$ if $i \neq j$. Then the remainder map

 $r:\mathbb{Z}/N:\to\mathbb{Z}/n_1\times\cdots\times\mathbb{Z}/n_t$

is bijective

We should define the product of groups to extend the Chinese remainder theorem:

If G_1, G_2, \ldots, G_n are groups then the product

$$G = G_1 \times \cdots \times G_n = \{(g_1, \ldots, g_n) : g_i \in G_i \forall i\}$$

has the natural composition

$$(g_1,\ldots,g_n)(h_1,\ldots,h_n)=(g_1h_1,\ldots,g_nh_n)$$

G is a group called product group:

- Associative: because each component is associative
- Neutral element: (e_1, \ldots, e_n)
- Inverse $g = (g_1, \dots, g_n)$: $g^{-1} = (g_1^{-1}, \dots, g_n^{-1})$.

If we have group homomorphisms $\varphi_i : H \to G_i$, for i = 1, ..., n. We have a group homomorphism:

$$\begin{array}{rcl} \varphi: H & \to & G = G_1 \times \cdots \times G_n \\ g & \mapsto & (\varphi_1(g), \dots, \varphi_n(g)) \end{array}$$

Lemma 2.8.1

Let *M*, *N* be normal subgroups of a group *G* with $M \cap N = \{e\}$. Then *MN* is a subgroup of *G* and

 $\begin{array}{rcccc} \pi: M \times N & \to & MN \\ (x, y) & \mapsto & xy \end{array}$

is an isomorphism.

Proof: By lemma 2.3.6, MN is a subgroup.

Lemma 2.3.6

Let H and K, where H is normal, be subgroups of a group. Then HK is a subgroup of G.

Proposition 2.8.2-Group version of Chinese remainder theorem

Let $n_1, \ldots, n_r \in \mathbb{Z}$ be pairwise relative prime integers and let $N = n_1 \cdots n_r$. If φ_i denotes the canonical group homomorphism

$$\begin{array}{rccc} \pi_{n_i\mathbb{Z}}:\mathbb{Z} & \to & \mathbb{Z}/n_i\mathbb{Z} \\ & x & \mapsto & [x] \end{array}$$

then the map

$$\begin{array}{lll} \tilde{\varphi} : \mathbb{Z}/N\mathbb{Z} & \to & \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z} \\ x + N\mathbb{Z} & \mapsto & (\varphi_1(x), \dots, \varphi_r(x)) \end{array}$$

is a group isomomorphism.

Proof:

• We know φ is a group homomorphism. Why?

$$\varphi: \mathbb{Z} \to \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z} \\ x \mapsto (\varphi_1(x), \dots, \varphi_r(x))$$

• If $n \in \text{Ker}(\varphi)$, then $n_1 | n, \dots, n_r | n$.

- Since n_1, \ldots, n_r are relative prime, $N = n_1 \cdots n_r | n$. So $\text{Ker}(\varphi) \subset N\mathbb{Z}$
- It is clear that $N\mathbb{Z} \subset \text{Ker}(\varphi)$ (is it?). Hence, $\text{Ker}(\varphi) = N\mathbb{Z}$
- By isomorphism theorem and since the map is surjective (why?), we have that φ̃ is an isomorphism

 $\tilde{\varphi} : \mathbb{Z}/N\mathbb{Z} \to \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z} \\ x + N\mathbb{Z} \mapsto (\varphi_1(x), \dots, \varphi_r(x))$

(it is surjective because $\mathbb{Z}/N\mathbb{Z}$ and $\mathbb{Z}/n_1\mathbb{Z}\times\cdots\times\mathbb{Z}/n_r\mathbb{Z}$) have the same order) To remember it:

A cyclic group is a group *G* containing an element *g* such that $G = \langle g \rangle$. Such a *g* is called a generator of *G* and we say that *G* is generated by *g*.

For $n_1, \ldots, n_r \in \mathbb{Z}$ pairwise relative prime integers and $N = n_1 \cdots n_r$. We have

 $\mathbb{Z}/n_1\mathbb{Z}\times\cdots\times\mathbb{Z}/n_r\mathbb{Z}$

is a cyclic group isomorphic to $\mathbb{Z}/N\mathbb{Z}$.

F

- $X = \{1, 2, 3\}$
- *G* bijective maps $X \to X$.
- Composition: composition of maps

•
$$X = \{1, 2, 3\}$$

• *G* bijective maps $X \to X$.
• Composition: composition of maps
 $e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, b = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$
 $c = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, d = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$
or instance:
 $c : \{1, 2, 3\} \to \{1, 2, 3\}$
 $1 \mapsto 3$
 $2 \mapsto 2$

 $3 \mapsto$

1

- The same construction makes sense for a set with *n* elements. For instance *M_n* = {1,..., *n*}.
- We have S_n : bijective maps $M_n \rightarrow M_n$.
- S_n is a group with the composition of maps and order $|S_n| = n!$
- $\sigma \in S_n$ is a bijection and denoted by

$$\sigma = \left(\begin{array}{cccc} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{array}\right)$$

We know that S_3 is not abelian. Easily we see that S_n is not abelian. However: Are there some permutations in S_n that commute?, that is

$$\sigma \tau = \tau \sigma$$

Let $\sigma \in S_n$. We define M_{σ}

$$M_{\sigma} = \{ x \in M_n : \sigma(x) \neq x \}$$

We say that σ , $\tau \in S_n$ are disjoint if $M_{\sigma} \cap M_{\tau} = \emptyset$.

Proposition 2.9.2

Let σ , $\tau \in S_n$ be disjoint permutations in S_n . Then $\sigma \tau = \tau \sigma$

Proof:

- We shall see that $\sigma(\tau(x)) = \tau(\sigma(x))$, for all $x \in M_n$.
- If $x \notin M_{\sigma} \cup M_{\tau}$, then $\sigma(x) = x$ and $\tau(x) = x$, so the equality holds.
- If x ∈ M_σ, then σ(x) ≠ x but σ(x) ∈ M_σ (because σ(x) cannot be invariant by σ).
- Hence, $\tau(\sigma(x)) = \sigma(x)$ and $\sigma(\tau(x)) = \sigma(x)$.
- Do the same for $x \in M_{\tau}$

A *k*-cycle is a permutation $\sigma \in S_n$ such that for *k* (different) elements $x_1, \ldots, x_k \in M_n$,

$$\sigma(x_1) = x_2$$
, $\sigma(x_2) = x_3$, ,... $\sigma(x_{k-1}) = x_k$, , $\sigma(x_k) = x_1$

We denote it by $\sigma = (x_1 x_2 \dots x_k)$

The *k*-cycle σ can be represented in *k* ways:

$$(x_1x_2\dots x_{k-1}x_k), (x_2x_3\dots x_kx_1), \\\vdots \\ (x_kx_1\dots x_{k-2}x_{k-1})$$

• What is M_{σ} ?

• What is the order of a *k*-cycle in *S_n*?

- 1-cycle: identity map
- 2-cycle: trasposition. σ transposition: σ^{-1} ?
- Simple trasposition: a transposition $s_i = (i \ i + 1)$

Proposition 2.9.5

Let $\sigma \in S_n$ be written as a product of disjoint cycles $\sigma_1 \cdots \sigma_r$. Then the order of σ is the least common multiple of the orders of the cycles $\sigma_1, \ldots, \sigma_r$

Proof:

- $\sigma^n = \sigma_1^n \cdots \sigma_r^n$
- Then if σⁿ = e, then n is divisible by order of the cycles (prop 2.6.3)
- Hence $m = \operatorname{lcm}(\operatorname{ord}(\sigma_1), \ldots, \operatorname{ord}(\sigma_r)) \leq \operatorname{ord}(\sigma)$
- But $\sigma_i^m = e$ for every *i* and the result holds.

Proposition 2.9.6

Every permutation $\sigma \in S_n$ is a product of unique disjoint cycles.

Proof existence, by induction in $|M_{\sigma}|$:

- If |M_σ| = 0, then σ is the identity map and it is the product of disjoint 1-cycles
- Assume that $|M_{\sigma}| \ge 0$. Pick $x \in M_{\sigma}$. Then $x \ne \sigma(x)$.
- Consider x, σ(x), σ²(x),... and stop when you find a repeated element
- The repeated element should be equal to *x* (if $\sigma^N(x) = \sigma^n(x) \Rightarrow \sigma^{N-n} = x$). Define the cycle $\tau = (x_1 \dots x_k)$ by

$$x_1 = x$$
, $x_2 = \sigma(x_1), \dots, x_k = \sigma(x_{k-1}), x_1 = \sigma(x_k)$

- $M_{\sigma\tau^{-1}} = M_{\sigma} \setminus \{x_1, \ldots, x_k\}$
- Apply induction hypothesis to $\sigma\tau^{-1}$, so $\sigma\tau^{-1} = \tau_1 \dots \tau_r$ product of disjoint cycles
- Then $\sigma = \tau_1 \dots \tau_r \tau$ and since τ is disjoint from τ_1, \dots, τ_r the result holds

Proof uniqueness:

- Let $\sigma = \sigma_1 \dots \sigma_r$ product of disjoint cycles
- Then $M_{\sigma} = M_{\sigma_1} \cup \ldots \cup M_{\sigma_r}$ and $M_{\sigma_i} \cap M_{\sigma_i} = \emptyset$ for $i \neq j$.
- Thus, if x ∈ M_σ it only belongs to a unique M_{σj} and then σ_j = (xσ(x)...) (by the previous proof). So the cycles are unique.

Lemma 2.9.8

Suppose that $\tau = (i_1 i_2 \dots i_k)$ is a *k*-cycle and σ a permutation in S_n . Then

$$\sigma(i_1i_2\ldots i_k)\sigma^{-1} = (\sigma(i_1)\sigma(i_2)\ldots \sigma(i_k))$$

Proof:

- Let $J = \{\sigma(i_1), ..., \sigma(i_k)\}$
- Check both sides of the equality give the same values for $i \in J$
- Both sides of the equality are the identity map for $i \notin J$

