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Revisiting Chinese reamainder theorem

Theorem 1.6.4-The Chinese remainder theorem
Let N = n1 · · · nt , with n1, . . . ,nt ∈ Z \ {0} and gcd(ni ,nj) = 1,
for i 6= j . Consider the system

X ≡ a1(mod n1)
X ≡ a2(mod n2)

...
X ≡ at (mod nt )

With ai ∈ Z. Then

1 The system has a solution X ∈ Z.
2 If X ,Y ∈ Z are solutions of the system then

X ≡ Y (mod N). If X is a solution of the system and
X ≡ Y (mod N) then Y is a solution of the system.
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Revisiting the remainder map

Suppose that N = n1 · · · nt , where n1, . . . ,nt ∈N \ {0} and
gcd(ni ,nj) = 1 if i 6= j . Then the remainder map

r : Z/N :→ Z/n1 × · · · ×Z/nt

is bijective

We should define the product of groups to extend the Chinese
remainder theorem:
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If G1,G2, . . . ,Gn are groups then the product

G = G1 × · · · ×Gn = {(g1, . . . ,gn) : gi ∈ Gi∀i}

has the natural composition

(g1, . . . ,gn)(h1, . . . ,hn) = (g1h1, . . . ,gnhn)

G is a group called product group:

Associative: because each component is associative
Neutral element: (e1, . . . ,en)

Inverse g = (g1, . . . ,gn): g−1 = (g−1
1 , . . . ,g−1

n ).

If we have group homomorphisms ϕi : H → Gi , for i = 1, . . . ,n.
We have a group homomorphism:

ϕ : H → G = G1 × · · · ×Gn
g 7→ (ϕ1(g), . . . , ϕn(g))
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Lemma 2.8.1
Let M, N be normal subgroups of a group G with M ∩N = {e}.
Then MN is a subgroup of G and

π : M ×N → MN
(x , y) 7→ xy

is an isomorphism.

Proof: By lemma 2.3.6, MN is a subgroup.

Lemma 2.3.6
Let H and K , where H is normal, be subgroups of a group.
Then HK is a subgroup of G.
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Proposition 2.8.2-Group version of Chinese remainder theorem
Let n1, . . . ,nr ∈ Z be pairwise relative prime integers and let
N = n1 · · · nr . If ϕi denotes the canonical group homomorphism

πni Z : Z → Z/niZ

x 7→ [x ]

then the map

ϕ̃ : Z/NZ → Z/n1Z× · · · ×Z/nr Z

x + NZ 7→ (ϕ1(x), . . . , ϕr (x))

is a group isomomorphism.
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Proof:
We know ϕ is a group homomorphism. Why?

ϕ : Z → Z/n1Z× · · · ×Z/nr Z

x 7→ (ϕ1(x), . . . , ϕr (x))

If n ∈ Ker(ϕ), then n1|n, . . . ,nr |n.
Since n1, . . . ,nr are relative prime, N = n1 · · · nr |n. So
Ker(ϕ) ⊂ NZ

It is clear that NZ ⊂ Ker(ϕ) (is it?). Hence, Ker(ϕ) = NZ

By isomorphism theorem and since the map is surjective
(why?), we have that ϕ̃ is an isomorphism

ϕ̃ : Z/NZ → Z/n1Z× · · · ×Z/nr Z

x + NZ 7→ (ϕ1(x), . . . , ϕr (x))

(it is surjective because Z/NZ and Z/n1Z× · · · ×Z/nr Z

have the same order)
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Let’s think about cyclic groups and this theorem

To remember it:

A cyclic group is a group G containing an element g such that
G = 〈g〉.
Such a g is called a generator of G and we say that G is
generated by g.

For n1, . . . ,nr ∈ Z pairwise relative prime integers and
N = n1 · · · nr . We have

Z/n1Z× · · · ×Z/nr Z

is a cyclic group isomorphic to Z/NZ.
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S3

X = {1,2,3}
G bijective maps X → X .
Composition: composition of maps

e =

(
1 2 3
1 2 3

)
, a =

(
1 2 3
2 1 3

)
, b =

(
1 2 3
1 3 2

)

c =

(
1 2 3
3 2 1

)
, d =

(
1 2 3
3 1 2

)
, f =

(
1 2 3
2 3 1

)
For instance:

c : {1,2,3} → {1,2,3}
1 7→ 3
2 7→ 2
3 7→ 1
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Sn

The same construction makes sense for a set with n
elements. For instance Mn = {1, . . . ,n}.
We have Sn: bijective maps Mn → Mn.
Sn is a group with the composition of maps and order
|Sn| = n!
σ ∈ Sn is a bijection and denoted by

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)

We know that S3 is not abelian. Easily we see that Sn is not
abelian. However: Are there some permutations in Sn that
commute?, that is

στ = τσ
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Let σ ∈ Sn. We define Mσ

Mσ = {x ∈ Mn : σ(x) 6= x}

We say that σ, τ ∈ Sn are disjoint if Mσ ∩Mτ = ∅.

Proposition 2.9.2
Let σ, τ ∈ Sn be disjoint permutations in Sn. Then στ = τσ

Proof:

We shall see that σ(τ(x)) = τ(σ(x)), for all x ∈ Mn.
If x 6∈ Mσ ∪Mτ, then σ(x) = x and τ(x) = x , so the
equality holds.
If x ∈ Mσ, then σ(x) 6= x but σ(x) ∈ Mσ (because σ(x)
cannot be invariant by σ).
Hence, τ(σ(x)) = σ(x) and σ(τ(x)) = σ(x).
Do the same for x ∈ Mτ
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A k -cycle is a permutation σ ∈ Sn such that for k (different)
elements x1, . . . , xk ∈ Mn,

σ(x1) = x2, σ(x2) = x3, , . . . σ(xk−1) = xk , , σ(xk ) = x1

We denote it by σ = (x1x2 . . . xk )

The k -cycle σ can be represented in k ways:

(x1x2 . . . xk−1xk ),
(x2x3 . . . xkx1),

...
(xkx1 . . . xk−2xk−1)

What is Mσ?
What is the order of a k -cycle in Sn?
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1-cycle: identity map
2-cycle: trasposition. σ transposition: σ−1?
Simple trasposition: a transposition si = (i i + 1)

Proposition 2.9.5
Let σ ∈ Sn be written as a product of disjoint cycles σ1 · · · σr .
Then the order of σ is the least common multiple of the orders
of the cycles σ1, . . . , σr

Proof:

σn = σn
1 · · · σn

r

Then if σn = e, then n is divisible by order of the cycles
(prop 2.6.3)
Hence m = lcm(ord(σ1), . . . , ord(σr )) ≤ ord(σ)
But σm

i = e for every i and the result holds.
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Proposition 2.9.6
Every permutation σ ∈ Sn is a product of unique disjoint cycles.

Proof existence, by induction in |Mσ|:
If |Mσ| = 0, then σ is the identity map and it is the product
of disjoint 1-cycles
Assume that |Mσ| ≥ 0. Pick x ∈ Mσ. Then x 6= σ(x).
Consider x , σ(x), σ2(x), . . . and stop when you find a
repeated element
The repeated element should be equal to x (if
σN(x) = σn(x)⇒ σN−n = x). Define the cycle
τ = (x1 . . . xk ) by
x1 = x , x2 = σ(x1), . . . , xk = σ(xk−1), x1 = σ(xk )

Mστ−1 = Mσ \ {x1, . . . , xk}
Apply induction hypothesis to στ−1, so στ−1 = τ1 . . . τr
product of disjoint cycles
Then σ = τ1 . . . τr τ and since τ is disjoint from τ1, . . . , τr
the result holds
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Proof uniqueness:

Let σ = σ1 . . . σr product of disjoint cycles
Then Mσ = Mσ1 ∪ . . . ∪Mσr and Mσi ∩Mσj = ∅ for i 6= j .
Thus, if x ∈ Mσ it only belongs to a unique Mσj and then
σj = (xσ(x) . . .) (by the previous proof). So the cycles are
unique.
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Lemma 2.9.8
Suppose that τ = (i1i2 . . . ik ) is a k -cycle and σ a permutation in
Sn. Then

σ(i1i2 . . . ik )σ−1 = (σ(i1)σ(i2) . . . σ(ik ))

Proof:

Let J = {σ(i1), . . . , σ(ik )}
Check both sides of the equality give the same values for
i ∈ J
Both sides of the equality are the identity map for i 6∈ J
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Bubble sort
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