Some slides for 8th Lecture, Algebra 1

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

2-10-2012

Diego Ruano Some slides for 8th Lecture, Algebra 1

A pair (G, \circ) consisting of a set *G* and a composition $\circ : G \times G \rightarrow G$ is a group if it satisfies:

• The composition is associative: for every $s_1, s_2, s_3 \in G$, $s_1 \circ (s_2 \circ s_3) = (s_1 \circ s_2) \circ s_3$.

2 There is a neutral element $e \in G$: for every $s \in G$, $e \circ s = s \circ e = e$.

Solution For every $s \in G$ there is an inverse element $t \in G$ such that $s \circ t = t \circ s = e$.

A group is called abelian or commutative if for every $g, h \in G$:

 $g \circ h = h \circ g$

The number of elements |G| = #G in G is called the order of G.

A subgroup of a group *G* is a non-empty subset $H \subset G$ such that the composition of *G* makes it into a group. That is *H* is a subgroup of *G* if and only if

- $\bullet \in H$
- **2** $x^{-1} \in H$ for every $x \in H$
- 3 $xy \in H$, for every $x, y \in H$

In S_3 : {*e*, *a*} and {*e*, *f*, *d*} are subgroups. How do we see it?

0	е	а	b	С	d	f
е	е	а	b	С	d	f
а	а	е	f	d	С	b
b	b	d	е	f	а	С
					b	
d	d	b	С	а	f	е
f	f	С	а	b	е	d

$(\mathbb{Z}, +)$ is a group. Application of division with remainder:

Proposition 2.2.3

Let *H* be a subgroup of $(\mathbb{Z}, +)$. Then

$$\mathsf{H} = \mathsf{d}\mathbb{Z} = \{\mathsf{dn} : \mathsf{n} \in \mathbb{Z}\}$$

for a unique number $d \in \mathbb{N}$.

• If $H = \{0\}$, then set d = 0.

Proof $d\mathbb{Z} \subset H$:

- For H ≠ {0}, N ∩ H contains a smallest number d > 0
 Then, -d ∈ H
- Also, $d + \cdots + d \in H$ and $(-d) + \cdots + (-d) \in H$

Proof $H \subset d\mathbb{Z}$:

- Let $m \in H$, division: m = qd + r, with $0 \le r < d$
- $m, d \in H \Rightarrow -qd \in H$ and $r = m qd \in H$
- But d was the first element, then r = 0 and m = qd

Let *H* be a subgroup of *G* and $g \in G$. Then the subset

 $gH = \{gh : h \in H\} \subset G$

is called a left coset of *H*. The subset

 $Hg = \{hg : h \in H\} \subset G$

is called a right coset of *H*. (coset=sideklasse)

Notation:

- G/H: The set of left cosets of H
- $H \setminus G$: The set of right cosets of H

Lemma 2.2.6

Let *H* be a subgroup of a group *G* and let $x, y \in G$. Then

- $x \in xH$
- $2 \quad xH = yH \Leftrightarrow x^{-1}y \in H$
- 3 If $xH \neq yH$ then $xH \cap yH = \emptyset$
- The map $\varphi: H \to xH$ given by $\varphi(h) = xh$ is bijective.

Proof (1):

• x = xe ($e \in H$), hence $x \in xH$

Proof (2):

- If xH = yH then xh = ye = y for some $h \in H$. Then $x^{-1}y = h \in H$.
- If $x^{-1}y = h \in H$ then y = xh. Then, $yH \subset xH$.
- Since $x = yh^{-1}$ we get $xH \subset yH$.

Proof (3): If $xH \neq yH$ then $xH \cap yH = \emptyset$

- Let $z \in xH \cap yH$, then $z = xh_1 = yh_2$ for some $h_1, h_2 \in H$.
- Then, $x^{-1}y \in H$ and xH = yH by (2).

Proof (4): The map φ : $H \rightarrow xH$ given by $\varphi(h) = xh$ is bijective.

- φ is multiplication by *x*, then it is bijective.
- It is just the restriction to H

Corollary 2.2.7

Let H be a subgroup of G. Then

 $G = \bigcup_{g \in G} gH,$

and if $g_1H \neq g_2H$ then $g_1H \cap g_2H = \emptyset$.

Proof: Think in (1) and (3) of previous lemma:

- $x \in xH$
- If $xH \neq yH$ then $xH \cap yH = \emptyset$

Theorem 2.2.8 Lagrange

If $H \subset G$ is a subgroup of a finite group G then

|G| = |G/H||H|

The order of a subgroup divides the order of the group

Proof:

- Let gH be a coset in G/H.
- We know that there is a bijection between gH and H. Then |gH| = |H|.
- G is disjoint union of cosets, hence |G| is equal to the number of cosets times |H|

The number of cosets |G/H| is called the index of H in G and denoted by [G:H].