Some slides for 6th Lecture, Algebra 1

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

25-09-2012

Diego Ruano Some slides for 6th Lecture, Algebra 1

You are welcome to use Maple for computations.

To get some help type in Maple:

- >?mod
- >?isprime (or nextprime)
- >?ifactor
- >?igcdex

Do not forget that we use $\&\widehat{}$ to apply the repeated squaring algorithm in Maple. Type:

- >18^{5705890543 mod 37;}
- >18& 5705890543 mod 37;

RSA

- $N = p \cdot q$, p and q primes.
- *e* a number for encription, *d* a number for decription.
- Public: *N*, *e*. Private: *d*.
- Message: *X*, 0 ≤ *X* < *N*.
- Encription: $f(X) = [X^e]_N$ Decription: $g(X) = [X^d]_N$. g(f(X)) = X.

How do we choose e and d?

We know: $g(f(X)) = [[X^e]^d] = [X^{ed}] = X$ if and only if $X \equiv X^{ed} \pmod{N}$ $\varphi(N) = \varphi(p)\varphi(q) = (p-1)(q-1)$

Let *X* be any integer and *k* a natural number. Then

 $X^{k(p-1)(q-1)+1} \equiv X \pmod{N}$

Proof:

- It is enough to prove that $X^{k(p-1)(q-1)+1} \equiv X \pmod{p}$.
- If $p \mid x$. Thus, $[X]_p = 0 = [X^{k(p-1)(q-1)+1}]_p$, we have $X^{k(p-1)(q-1)+1} \equiv X \pmod{N}$.
- If $p \nmid x$. Thus, gcd(p, x) = 1, by Euler Theorem $X^{\varphi(p)} = X^{p-1} \equiv 1 \pmod{p}$ and

$$X^{k(p-1)(q-1)} \equiv (X^{p-1})^{k(q-1)} \equiv 1 \pmod{p}$$

• Multiply the previous congruence with X

Encryption and decryption exponents

Fermat's little theorem

Let p be a prime number and a an integer with gcd(a, p) = 1. Then

$$a^{p-1} \equiv 1 \pmod{p}$$

Definition 1.9.3

Let N be a composite natural number and a an integer. Then N is called a pseudoprime relative to the base a if

 $a^{N-1} \equiv 1 \pmod{N}$

- gcd(a, N) ≠ 1 ⇒ N cannot be a pseudoprime relative to a (EX 1.41).
- Carmichael numbers (or pseudoprimes).

Lemma 1.9.4

Let *p* be a prime number and $x \in \mathbb{Z}$. If $x^2 \equiv 1 \pmod{p}$ then $x \equiv 1 \pmod{p}$ or $x \equiv -1 \pmod{p}$

Proof:

•
$$p \mid (x^2 - 1) = (x + 1)(x - 1).$$

• Then
$$p \mid (x+1)$$
 or $p \mid (x-1)$

An odd composite *N* is called a strong pseudoprime relative to the base *a* if either

 $a^q \equiv 1 \pmod{N}$

or there exists i = 0, ..., k - 1 such that

 $a^{2^{i}q} \equiv -1 \pmod{N},$

where $N - 1 = 2^k q$ and $2 \nmid q$.

Proposition 1.9.6

Let p be an odd prime number and suppose that

$$p-1=2^kq,$$

where $2 \nmid q$. If $a \in \mathbb{Z}$ and gcd(a, p) = 1 then either

 $a^q \equiv 1 \pmod{p}$

or there exists i = 0, ..., k - 1 such that

 $a^{2^i q} \equiv -1 \pmod{p}.$

Proof:

- Let $a_i = a^{2^i q}$, i = 0, ..., k.
- By Fermat's th: $a_k \equiv 1 \pmod{p}$ and $a_{i+1} = a_i^2$, for $i = 0, \dots, k-1$.
- Therefore, $a_0 \equiv 1 \pmod{p} \Leftrightarrow a_k \equiv 1 \pmod{p}$ for every i.

- Let $a_i = a^{2^i q}, i = 0, ..., k$.
- By Fermat's th: $a_k \equiv 1 \pmod{p}$ and $a_{i+1} = a_i^2$, for i = 0, ..., k 1.
- Therefore, $a_0 \equiv 1 \pmod{p} \Leftrightarrow a_i \equiv 1 \pmod{p}$ for every i.
- If $a_0 \not\equiv 1 \pmod{p}$, then $\exists a_i, i \ge 0$, such that $a_i \not\equiv 1 \pmod{p}$.
- Let *j* be the largest index with this property.
- Since j < k and $a_j^2 \equiv a_{j+1} \equiv 1 \pmod{p}$, we get $a_j \equiv -1 \pmod{p}$ (by previous lemma).

Theorem 1.9.7 (Rabin)

Suppose that N > 4 is an odd composite integer and let *B* be the number of bases *a* (1 < a < N) such that *N* is a strong pseudoprime relative to *a*. Then

 $B < \varphi(N)/4 \le (N-1)/4$