Some slides for 3rd Lecture, Algebra 1

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

13-09-2012

Diego Ruano Some slides for 3rd Lecture, Algebra 1

Lemma 1.5.7

Let $m, n \in \mathbb{Z}$. Then there are integers $\lambda, \mu \in \mathbb{Z}$ such that

 $\lambda m + \mu n = \gcd(m, n)$

Two integers $a, b \in \mathbb{Z}$ are called relatively prime if

gcd(a, b) = 1

Exercise 14: If there are λ , $\mu \in \mathbb{Z}$ such that $\lambda m + \mu n = 1$ then *a* and *b* are relatively prime.

Corollary 1.5.10

Suppose that $a \mid bc$, where $a, b, c \in \mathbb{Z}$ and a and b are relatively prime. Then $a \mid c$.

Lemma 1.5.7

Let $m, n \in \mathbb{Z}$. Then there are integers $\lambda, \mu \in \mathbb{Z}$ such that

 $\lambda m + \mu n = \gcd(m, n)$

Corollary 1.5.11

Let $a, b, c \in \mathbb{Z}$

- If *a* and *b* are relatively prime, *a* | *c*, *b* | *c* then *ab* | *c*.
- If *a* and *b* are relatively prime and *a* and *c* are relatively prime then *a* and *bc* are relatively prime.

$$\mathbb{Z}/N = \{X \in \mathbb{N} : 0 \le X < N\},\$$
for $N \in \mathbb{N}$
Let $N = n_1 \cdots n_t \neq 0$, we define *r* the remainder map:
 $r : \mathbb{Z}/N \rightarrow \mathbb{Z}/n_1 \times \cdots \times \mathbb{Z}/n_t$
 $X \mapsto ([X]_{n_1}, \dots, [X]_{n_t})$
Lemma 1.6.3
Let $N = n_1 \cdots n_t$, with $n_1, \dots, n_t \in \mathbb{N} \setminus \{0\}$ and $gcd(n_i, n_j) = 1$
if $i \neq j$. Then the remainder map is bijective.

Theorem 1.6.4-The Chinese remainder theorem

Let $N = n_1 \cdots n_t$, with $n_1, \ldots, n_t \in \mathbb{Z} \setminus \{0\}$ and $gcd(n_i, n_j) = 1$, for $i \neq j$. Consider the system

 $\begin{cases} X \equiv a_1 \pmod{n_1} \\ X \equiv a_2 \pmod{n_2} \\ \vdots \\ X \equiv a_t \pmod{n_t} \end{cases}$

With $a_i \in \mathbb{Z}$. Then

 The system has a solution X ∈ Z.
 If X, Y ∈ Z are solutions of the system then X ≡ Y(mod N). If X is a solution of the system and X ≡ Y(mod N) then Y is a solution of the system.

Proof:

- Consider n_j and N/n_j, they are relative prime for all j (Corollary 1.5.11).
- Consier the extended Euclidean algorithm to get λ_j , μ_j :

$$\lambda_j n_j + \mu_j \frac{N}{n_j} = 1$$

• Let $A_j = \mu_j \frac{N}{n_j}$ for all *j*.

 $A_j \equiv ?? (\text{mod } n_i)$

Proof (1):

- Consider n_j and N/n_j, they are relative prime for all j (Corollary 1.5.11).
- Consier the extended Euclidean algorithm to get λ_i, μ_i :

$$\lambda_j n_j + \mu_j \frac{N}{n_j} = 1$$

• Let
$$A_j = \mu_j \frac{N}{n_j}$$
 for all j .

$$\begin{cases}
A_j \equiv 1 \pmod{n_j} \\
A_j \equiv 0 \pmod{n_i}, & \text{for } i \neq j
\end{cases}$$
Set $X = a_1 A_1 + \dots + a_t A_t$.

Proof (2)

- We have two solutions $X, Y \in \mathbb{Z}$
 - $\begin{cases} X \equiv a_j \pmod{n_j} & \text{for all } j \\ Y \equiv a_j \pmod{n_j} & \text{for all } j \end{cases}$
- Hence $X \equiv Y \pmod{n_j}$ for all *j*
- Therefore $n_j \mid X Y$, for all *j*.
- By corollary 1.5.11, $N = n_1 \cdots n_t | X Y$, i.e.

 $X \equiv Y \pmod{N}$

For the second part, assume *X* is a solution of the system and $X \equiv Y \pmod{N}$.

- Then $X \equiv Y \pmod{n_i}$, for all *j*
- Hence, Y is also a solution.

Example:

