Some slides for 2nd Lecture, Algebra 1

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

11-09-2012

Diego Ruano Some slides for 2nd Lecture, Algebra 1

Greatest common divisor

Lemma 1.4.2 (Euclid)

Let $m, n \in \mathbb{Z}$. There exists a unique natural number $d \in \mathbb{N}$ such that

 $\operatorname{div}(m) \cap \operatorname{div}(n) = \operatorname{div}(d)$

d is called the greatest common divisor of *m* and *n* and denoted by

gcd(m, n)

Exercise 9: greatest common divisor is really the greatest among these with respect to the usual ordering of \mathbb{Z} .

Computing the gcd: The Euclidean algorithm

Proposition 1.5.1

Let $m, n, \in \mathbb{Z}$. Then,

- gcd(m, 0) = m if $m \in \mathbb{N}$
- gcd(m, n) = gcd(m qn, n), for every $q \in \mathbb{Z}$.

Let $m \ge n \ge 0$

•
$$r_{-1} = m$$
 and $r_0 = n$

• If $r_0 = 0$ then $gcd(r_{-1}, r_0) = r_1$. Otherwise define remainder r_1 :

$$r_{-1} = q_1 r_0 + r_1$$

• We have $gcd(r_{-1}, r_0) = gcd(r_0, r_1)$ and $r_{-1} > r_0 > r_1$ We iterate this process

Computing the gcd: The Euclidean algorithm

Let $m \ge n \ge 0$

• $r_{-1} = m$ and $r_0 = n$

• If $r_0 = 0$ then $gcd(r_{-1}, r_0) = r_1$. Otherwise define remainder r_1 :

$$r_{-1} = q_1 r_0 + r_1$$

• We have $gcd(r_{-1}, r_0) = gcd(r_0, r_1)$ and $r_{-1} > r_0 > r_1$ We iterate this process if $(r_1 \neq 0)$:

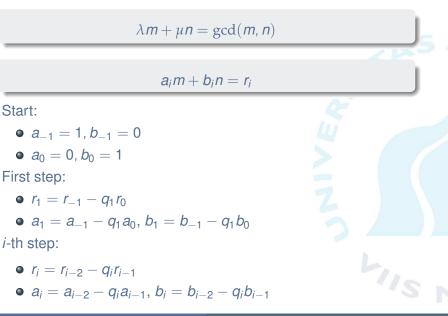
• Define remainder *r*₂:

$$r_0 = q_1 r_1 + r_2$$

• We have $gcd(r_0, r_1) = gcd(r_1, r_2)$ and $r_{-1} > r_0 > r_1 > r_2$

We will get $r_N = 0$ for some step N. Why???

Extended Euclidean algorithm



Assuming that

- $a_{i-1}m + b_{i-1}n = r_{i-1}$
- $a_{i-2}m + b_{i-2}n = r_{i-2}$

We have

$$a_{i}m + b_{i}n = (a_{i-2} - q_{i}a_{i-1})m + (b_{i-2} - q_{i}b_{i-1})n$$

= $a_{i-2}m + b_{i-2}n - q_{i}(a_{i-1}m + b_{i-1}n)$
= $r_{i-2} - q_{i}r_{i_{1}} = r_{i}$

Lemma 1.5.7

Let $m, n \in \mathbb{Z}$. Then there are integers $\lambda, \mu \in \mathbb{Z}$ such that

 $\lambda m + \mu n = \gcd(m, n)$

Two integers $a, b \in \mathbb{Z}$ are called relatively prime if

gcd(a, b) = 1

Exercise 14: If there are λ , $\mu \in \mathbb{Z}$ such that $\lambda m + \mu n = 1$ then *a* and *b* are relatively prime.

Corollary 1.5.10

Suppose that $a \mid bc$, where $a, b, c \in \mathbb{Z}$ and a and b are relatively prime. Then $a \mid c$.

Lemma 1.5.7

Let $m, n \in \mathbb{Z}$. Then there are integers $\lambda, \mu \in \mathbb{Z}$ such that

 $\lambda m + \mu n = \gcd(m, n)$

Corollary 1.5.11

Let $a, b, c \in \mathbb{Z}$

- If a and b are relatively prime, $a \mid c, b \mid c$ then $ab \mid c$.
- If *a* and *b* are relatively prime and *a* and *c* are relatively prime then *a* and *bc* are relatively prime.