Some slides for 22nd Lecture, Algebra 1

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

20-11-2012

Diego Ruano Some slides for 22nd Lecture, Algebra 1

A group *G* is called simple if $\{e\}$ and *G* are the only normal subgroups of *H*. Otherwise *G* is called solvable.

Examples:

- $\mathbb{Z}/p\mathbb{Z}$, with *p* prime.
- A_n , for $n \ge 5$ (Theorem 2.9.19 using lemma 2.9.18).

Simple finite groups form the building blocks for all finite groups.

Feit and Thomson's theorem: the order of a non-abelian finite simple group must be even.

In 2004: classification of simple groups, 18 families and 26 exceptions. See wikipedia.

Lemma 2.9.18

Every permutation in A_n is a product of 3-cycles if $n \ge 3$.

Proof:

 A permutation in A_n is product of an even number of transpositions

• (a b)(b c) = (a b c)

For self-study (lecture 24)

Theorem 2.9.19

The alternating group A_n is simple for $n \ge 5$.

Let G be a group and S a set. We will say that G acts (from the left) on S if there is a map

$$egin{array}{rcl} lpha:G imes S& o&S\ (g,s)&\mapsto&lpha(g,s)=g\cdot s=gs \end{array}$$

such that

• $e \cdot s = s$ for every $s \in S$

• $(g \cdot h) \cdot s = g \cdot (h \cdot s), \forall g, h \in G \text{ and } \forall s \in S.$

Let $\alpha : G \times S \to S$ be an action of G on $S, X \subset S$ subset of San element of S. $G \cdot s = Gs = \{gs : g \in G\}$ is called the orbit of s (under the action of G)

The set of orbits $\{Gs : s \in S\}$ is denoted S/G.

Actions of groups

Action of *G* acts (from the left) on *S*, $\alpha : G \times S \rightarrow S$, $\alpha(g, s) = g \cdot s = gs$

Let $\alpha : G \times S \to S$ be an action of G on $S, X \subset S$ subset of San element of S. $G \cdot s = Gs = \{gs : g \in G\}$, orbit of s (under the action of G)

Let $g \cdot X = gX = \{gx : x \in X\}$, where $g \in G$. Then

 $G_X = \{g \in G : gX = X\}$

is called the stabilizer of *X* If $X = \{x\}$, we denote G_X by G_x (instead of by $G_{\{x\}}$)

A fixed point for the action is an element $s \in S$ s.t. gs = s for every $g \in G$. The set of fixed points is denoted by S^G .

Diego Ruano Some slides for 22nd Lecture, Algebra 1

Proposition 2.10.5

Let $\alpha : G \times S \rightarrow S$ be an action

- Let $X \subset S$ be a subset of S. Then G_X is a subgroup of G.
- The set S is the union of G-orbits

$$S = \bigcup_{s \in S} Gs$$

where $Gs \neq Gt$ implies that $Gs \cap Gt = \emptyset$, if $s, t \in S$. • Let $x \in S$. Then

 $\widetilde{f}: G/G_X \to Gx \ gG_X \mapsto gx$

is a well defined and bijective map between the left cosets of G_x and the orbit G_x .

Corollary 2.10.7

Let $G \times S \rightarrow S$ be an action, where S is a finite set. Then

$$|S| = |S^G| + \sum_{x} |G/G_x|,$$

where the sumation is done by picking out an element *x* from each orbit with more than one element.

Conjugacy classes

This map is an action of G on G. It is called conjugation:

 $egin{array}{cccc} lpha: {f G} imes {f G} &
ightarrow & {f G} \ ({f g}, {f h}) & \mapsto & {f g} {f h} {f g}^{-1} \end{array}$

The orbit

$$G \cdot h = C(h) = \{ghg^{-1} : g \in G\}$$

is denoted C(h) and called the conjugacy class containing h.

We denote by Z(h) (centralizer of h) the stabilized G_h .

The set of fixed points

$$G^G = Z(G) = \{g \in G : gx = xg \ \forall x \in G\}$$

is denoted Z(G) and called the center of G.

Conjugacy classes

- There is at least one fixed point for the conjugation action, namely *e* ∈ *Z*(*G*).
- Z(G) is an abelian normal subgroup of G (exercise 2.50)

The stabilizer of a subgroup $H \subset G$

$$G_H = N_G(H) = \{g \in G : gHg^{-1} = H\}$$

is called the normalizer of H in G.

H is an normal subgroup if and only if $N_G(H) = G$ (ex 2.51).

If *G* is a finite group, corollary 2.10.7:

$$|G| = |Z(G)| + \sum_{h \in G} |G/Z(h)|,$$

where the sumation is done by picking out one element h from each conjugacy class with more than one element.