Some slides for 1st Lecture, Algebra 1

Diego Ruano

Department of Mathematical Sciences
Aalborg University
Denmark

6-09-2012

The natural numbers and the integers

This is our starting point:

•
$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

•
$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

We may order \mathbb{Z} :

- $X \leq Y$ if $Y X \in \mathbb{N}$
- X < Y if $X \neq Y$ and $X \leq Y$

We say that:

$s \in S \subset \mathbb{Z}$ is a first element in S if $s \leq x$ for all $x \in S$

- Does any subset of Z have a first element?
- Can a subset of Z have two different first elements? (Exercise 1).

Axiom for \mathbb{N} : The previous ordering is a well ordering. That is:

- Every non-empty subset of IN has a first element
- And that is equivalent to mathematical induction

Division with remainder

Theorem 1.2.1

Let $d \in \mathbb{Z}$, where d > 0. For every $x \in \mathbb{Z}$ there is a unique remainder $r \in \mathbb{N}$ such that

$$x = qd + r$$
,

where $q \in \mathbb{Z}$ and $0 \le r < d$

Notation:

Let a = bc, with $a, b, c \in \mathbb{Z}$. Then c is a divisor of a,

 $[x]_d$ is the unique remainder r in Theorem 1.2.1, for x, $d \in \mathbb{Z}$.

Congruences

Let $a, b, c \in \mathbb{Z}$. Then a an b are congruent modulo c if $c \mid (b-a)$.

$$a \equiv b \pmod{c}$$

Proposition 1.3.2

Let $a, b, c \in \mathbb{Z}$, where c > 0. Then

- $a \equiv [a]_c \pmod{c}$
- $a \equiv b \pmod{c}$ if and only if $[a]_c = [b]_c$

Proposition 1.3.4

If $x_1 \equiv x_2 \pmod{d}$, $y_1 \equiv y_2 \pmod{d}$. Then

- $x_1 + y_1 \equiv x_2 + y_2 \pmod{d}$
- $\bullet \ x_1y_1 \equiv x_2y_2 \ (\bmod \ d)$

Repeated squared Algorithm

How to compute the remainder of 12¹¹ divided by 21?

- Exercise 1.3: [xy] = [[x][y]]
- $\bullet \ a^b a^c = a^{b+c}$
- $\bullet (a^b)^c = a^{bc}$

Allow us to have the repeated squared algorithm:

$$[a^{2^n}] = [(a^{2^{n-1}})^2] = [[a^{2^{n-1}}][a^{2^{n-1}}]]$$

Greatest common divisor

$$\operatorname{div}(n) = \{d \in \mathbb{N} : d \mid n\}$$

Lemma 1.4.2 (Euclid)

Let $m, n \in \mathbb{Z}$. There exists a unique natural number $d \in \mathbb{N}$ such that

$$\operatorname{div}(m) \cap \operatorname{div}(n) = \operatorname{div}(d)$$

d is called the greatest common divisor of *m* and *n* and denoted by

Exercise 9: greatest common divisor is really the greatest among these with respect to the usual ordering of \mathbb{Z} .

