Some slides for 19th Lecture, Algebra 1

Diego Ruano

Department of Mathematical Sciences
Aalborg University
Denmark

8-11-2011

S_n

- The same construction makes of S_3 sense for a set with n elements. For instance $M_n = \{1, ..., n\}$.
- We have S_n : bijective maps $M_n \to M_n$.
- S_n is a group with the composition of maps and order n!
- $\sigma \in S_n$ is a bijection and denoted by

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

Let $\sigma \in S_n$. We define M_{σ}

$$M_{\sigma} = \{x \in M_n : \sigma(x) \neq x\}$$

We say that $\sigma, \tau \in S_n$ are disjoint if $M_{\sigma} \cap M_{\tau} = \emptyset$.

Proposition 2.9.2

Let $\sigma, \tau \in S_n$ be disjoint permutations in S_n . Then $\sigma \tau = \tau \sigma$

A k-cycle is a permutation $\sigma \in S_n$ such that for k (different) elements $x_1, \ldots, x_k \in M_n$,

$$\sigma(x_1) = x_2$$
, $\sigma(x_2) = x_3$, ,... $\sigma(x_{k-1}) = x_k$, , $\sigma(x_k) = x_1$

We denote it by $\sigma = (x_1 x_2 \dots x_k)$

The k-cycle σ can be represented in k ways:

$$(x_1 x_2 \dots x_{k-1} x_k),$$

 $(x_2 x_3 \dots x_k x_1),$
 \vdots
 $(x_k x_1 \dots x_{k-2} x_{k-1})$

- $M_{\sigma} = \{x_1, \ldots, x_k\}$
- The order of a k-cycle in S_n is k.

- 1-cycle: identity map
- 2-cycle: trasposition. σ transposition: $\sigma^{-1} = \sigma$
- Simple trasposition: a transposition $s_i = (i \ i+1)$

Let $\sigma \in S_n$ be written as a product of disjoint cycles $\sigma_1 \cdots \sigma_r$. Then the order of σ is the least common multiple of the orders of the cycles $\sigma_1, \ldots, \sigma_r$

Proposition 2.9.6

Every permutation $\sigma \in S_n$ is a product of unique disjoint cycles.

Using bubble sort we saw:

$$\left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{array}\right) = (2\,3)(3\,4)(2\,3)(1\,2)$$

We wonder: What is the minimal number of simple transpositions needed for writing a permutation as a product in this way?

Let σ be a permutation. A pair of indices (i, j), where $1 \le i < j \le n$, is called an inversion of σ if $\sigma(i) < \sigma(j)$. Let

$$\frac{\mathbf{I}_{\sigma}}{\sigma} = \{(i, j) : 1 \le i < j \le n \text{ and } \sigma(i) > \sigma(j)\}$$

denote the set of inversions and $\mathbf{n}(\sigma) = |I_{\sigma}|$ the number of inversions of σ .

Example:

$$\sigma = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 1 & 5 & 4 & 2 \end{array}\right)$$

Compute: I_{σ} and $n(\sigma)$

Let σ be a permutation. A pair of indices (i, j), where $1 \le i < j \le n$, is called an inversion of σ if $\sigma(i) > \sigma(j)$. Let

$$I_{\sigma} = \{(i, j) : 1 \le i < j \le n \text{ and } \sigma(i) > \sigma(j)\}$$

denote the set of inversions and $n(\sigma) = |I_{\sigma}|$ the number of inversions of σ .

Example:

$$\sigma = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 1 & 5 & 4 & 2 \end{array}\right)$$

$$I_{\sigma} = \{(1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,6), (4,5), (4,6), (5,6)\}$$

 $n(\sigma) = 10$

The permutation $\sigma \in S_n$ is the identity map if and only if $n(\sigma) = 0$. If σ is not the identity map then there exists $i \in \{1, \ldots, n-1\}$ such that $\sigma(i) > \sigma(i+1)$.

Proof: $\sigma \in S_n$ is the identity map $\Leftrightarrow n(\sigma) = 0$

- If σ identity map, the it has no inversions and $n(\sigma) = 0$.
- If $n(\sigma) = 0$ and σ is not the identity map then there exists a smallest $i \in M_n$ such that $\sigma(i) > i$, but $(i, \sigma^{-1}(i))$ is an inversion.

Proof: If σ is not the identity map then there exists i = 1, ..., n-1 such that $\sigma(i) > \sigma(i+1)$.

• If σ is a permutation satisfying $\sigma(1) < \cdots < \sigma(n)$ then σ has to be the identity map, since $n(\sigma) = 0$.

Let $s_i \in S_n$ be a simple transposition and $\sigma \in S_n$. Then

$$n(\sigma s_i) = \begin{cases} n(\sigma) + 1 & \text{if } \sigma(i) < \sigma(i+1), \\ n(\sigma) - 1 & \text{if } \sigma(i) > \sigma(i+1), \end{cases}$$

Proof: Assume $\sigma(i) < \sigma(i+1)$

- (i, i + 1) is an inversion for σs_i since (i, i + 1) is not an inversion for σ .
- Consider

$$\varphi: I_{\sigma} \rightarrow I_{\sigma s_{i}} \setminus \{(i, i+1)\}
(k, l) \mapsto (s_{i}(k), s_{i}(l))$$

- We should prove that φ is bijective:
 - If $(k, l) \in I_{\sigma}$ then $s_i(k) < s_i(l)$. It is clear for every k, l, excepting k = i and l = i + 1, but we assumed $(i, i + 1) \notin I_{\sigma}$
 - We have that $(s_i(k), s_i(l)) \in I_{\sigma s_i}$ since $(k, l) \in I_{\sigma}$
 - If $(k, l) \in I_{\sigma s_i} \setminus \{(i, i+1)\}$ then $(s_i(k), s_i(l)) \in I_{\sigma}$.

Let $s_i \in S_n$ be a simple transposition and $\sigma \in S_n$. Then

$$n(\sigma s_i) = \begin{cases} n(\sigma) + 1 & \text{if } \sigma(i) < \sigma(i+1), \\ n(\sigma) - 1 & \text{if } \sigma(i) > \sigma(i+1), \end{cases}$$

Proof: Assume $\sigma(i) > \sigma(i+1)$

- $(\sigma s_i)(i) < (\sigma s_i)(i+1)$ since $\sigma(i) > \sigma(i+1)$
- Then $n((\sigma s_i)s_i) = n(\sigma s_i) + 1$ by previous slide.
- And $\sigma s_i s_i = \sigma$, hence $n(\sigma) = n(\sigma s_i) + 1$ and the result holds

Let $\sigma \in S_n$. Then

- **①** σ is a product of $n(\sigma)$ simple transpositions
- 2 $n(\sigma)$ is the minimal product of simple transpositions needed in writing σ as a product of simple transpositions.

Proof of (1) by induction on $n(\sigma)$:

- For $n(\sigma) = 0$, σ is the identity map and it is the empty product of simple transpositions
- Assume we can write a transposition τ with $n(\tau) = n 1$ as product of transpositions
 - If $n(\sigma) \neq 0$, we may find $i \in \{1, ..., n-1\}$ such that $\sigma(i) > \sigma(i+1)$ (by prop. 2.9.12)
 - Then $n(\sigma s_i) = n(\sigma) 1$ by lemma 2.9.13.
 - By induction, $\tau = \sigma s_i$ can be written as the product of n-1 transpositions.
 - Then, $\sigma = \tau s_i$ is a product of $n(\sigma)$ transpositions.

Let $\sigma \in S_n$. Then

- **①** σ is a product of $n(\sigma)$ simple transpositions
- **2** $n(\sigma)$ is the minimal product of simple transpositions needed in writing σ as a product of simple transpositions.

Proof: $\ell(\sigma)$ is the minimal number of simple transpositions needed in writing σ as a product of simple transpositions.

- $n(\sigma) \ge \ell(\sigma)$ by (1)
- We prove $n(\sigma) = \ell(\sigma)$ by induction on $\ell(\sigma)$
- $\ell(\sigma) = 0$, trivial
- For $\ell(\sigma) > 0$:
 - We can find a simple transposition s_i such that $\ell(\sigma s_i) = \ell(\sigma) 1$
 - Thus, $\ell(\sigma s_i) = n(\sigma s_i)$ by induction
 - Hence $\ell(\sigma) \ge n(\sigma)$

The sign of a permutation $\sigma \in S_n$ is

$$sgn(\sigma) = (-1)^{n(\sigma)}$$

A permutation with sign 1 is called even and with sign -1 is called odd.

Proposition 2.9.16

The sign

$$\operatorname{sgn}: S_n \to \{-1, 1\}$$

 $\sigma \mapsto \operatorname{sgn}(\sigma)$

of a permutation is a group homomorphism (the composition for $\{-1,1\}$ is multiplication).

Actually, $(\{-1,1\},\cdot)$ is isomorphic to $(\mathbb{Z}/2\mathbb{Z},+)$.

$$\operatorname{sgn}: S_n \to \{-1, 1\}$$

 $\sigma \mapsto \operatorname{sgn}(\sigma)$

Proof sgn is a group homomorphism:

- We have to prove $sgn(\sigma\tau) = sgn(\sigma)sgn(\tau)$ for $\sigma, \tau \in S_n$
- Assume that τ is a simple transposition: $n(\sigma s_i) = n(\sigma) \pm 1$ (lemma 2.9.13). Thus $\mathrm{sgn}(\sigma s_i) = -\mathrm{sgn}(\sigma)$.
- Then $sgn(\sigma s_i) = sgn(\sigma)sgn(s_i)$, because $n(s_i) = 1$.
- ullet By previous proposition au is a product of simple transpositions, apply the previous proof several times

The set of even permutations in S_n is denoted A_n and called the alternating group

- A_n is a normal subgroup of S_n , since A_n is the kernel of sgn.
- By isomorphism theorem:

$$S_n/A_n \stackrel{\sim}{\rightarrow} \{-1,1\}$$

- Then $|A_n| = |S_n|/2 = n!/2$
- How do we compute $sgn(\sigma)$ of a permutation?
- By computing the sign of a k-cycle

Suppose that $\tau = (i_1 i_2 \dots i_k)$ is a k-cycle and σ a permutation in S_n . Then $\sigma(i_1 i_2 \dots i_k) \sigma^{-1} = (\sigma(i_1) \sigma(i_2) \dots \sigma(i_k))$

Proposition 2.9.17

Let $n \ge 2$. A transposition $\tau = (i \ j) \in S_n$ is an odd permutation. The sign of an r-cycle $\sigma = (x_1 \dots x_r) \in S_n$ is $(-1)^{r-1}$.

Proof: A transposition $\tau = (i j) \in S_n$ is an odd permutation

- Consider a permutation $\eta \in S_n$ such that $\eta(1) = i$ and $\eta(2) = j$
- $-1 = \operatorname{sgn}(1\ 2) = \operatorname{sgn}(\eta(1\ 2)\eta^{-1}) = \operatorname{sgn}((\eta(1)\ \eta(2)) = \operatorname{sgn}(\tau).$

Proof $sgn((x_1...x_r)) = (-1)^{r-1}$

- $(x_1 ... x_r)$ is the product of r-1 transpositions and the result holds

Every permutation in A_n is a product of 3-cycles if $n \ge 3$.

Proof:

- A permutation in A_n is product of an even number of transpositions
- $\bullet (ab)(cd) = (adc)(abc)$
- (ab)(bc) = (abc)

Simple groups

A group G is called simple if $\{e\}$ and G are the only normal subgroups of H. Otherwise G is called solvable.

Examples:

- $\mathbb{Z}/p\mathbb{Z}$, with p prime.
- A_n , for $n \ge 5$ (Theorem 2.9.19).

Simple finite groups form the building blocks for all finite groups.

Feit and Thomson's theorem: the order of a non-abelian finite simple group must be even.

In 2004: classification of simple groups, 18 families and 26 exceptions. See wikipedia.