Some slides for 17th Lecture, Algebra 1

Diego Ruano

Department of Mathematical Sciences **Aalborg University** Denmark

1-11-2012

Diego Ruano

Corollary 2.7.6

Let *N* be a positive integer. Then

$$\sum_{d|N} \varphi(d) = N,$$

(the sum is over the divisors of N)

Proof:

• Let G be the cyclic group $\mathbb{Z}/N\mathbb{Z}$.

0

$$N = \sum_{g \in G} 1 = \sum_{d \mid N} \sum_{g \in G, \operatorname{ord}(g) = d} 1 \xrightarrow{Prop. 2.7.4(3)} \sum_{d \mid N} \varphi(d)$$

New proof for Euler's theorem

Let $n \in \mathbb{N}$, $a \in \mathbb{Z}$ relative prime. Then

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

Proof:

- Consider $G = (\mathbb{Z}/n\mathbb{Z})^*$ with order $\varphi(n)$
- Since gcd(a, n) = 1, $[a] \in G$
- Prop. 2.6.3 (2) is $g^{|G|} = e$, hence:

$$[a]^{|G|} = [a]^{\varphi(n)} = [1]$$

• Hence, $a^{\varphi(n)} \equiv 1 \pmod{n}$

If G_1 , G_2 , ..., G_n are groups then the product

$$G = G_1 \times \cdots \times G_n = \{(g_1, \dots, g_n) : g_i \in G_i \forall i\}$$

has the natural composition

$$(g_1,\ldots,g_n)(h_1,\ldots,h_n)=(g_1h_1,\ldots,g_nh_n)$$

G is a group called product group:

- Associative: because each component is associative
- Neutral element: (e_1, \ldots, e_n)
- Inverse $g = (g_1, \ldots, g_n)$: $g^{-1} = (g_1^{-1}, \ldots, g_n^{-1})$.

If we have group homomorphisms $\varphi: H \to G_i$, for i = 1, ..., n. We have a group homomorphism:

$$\varphi: H \rightarrow G = G_1 \times \cdots \times G_n$$

 $g \mapsto (\varphi_1(g), \dots, \varphi_n(g))$

Lemma 2.8.1

Let M, N be normal subgroups of a group G with $M \cap N = \{e\}$. Then MN is a subgroup of G and

$$\begin{array}{ccc} \pi: M \times N & \to & MN \\ (x, y) & \mapsto & xy \end{array}$$

is an isomorphism.

Proof: By lemma 2.3.6, MN is a subgroup.

Lemma 2.3.6

Let H and K, where H is normal, be subgroups of a group. Then HK is a subgroup of G.

Lemma 2.8.1

Let M, N be normal subgroups of a group G with $M \cap N = \{e\}$. Then MN is a subgroup of G and

$$\begin{array}{cccc} \pi: M \times N & \to & MN \\ (x, y) & \mapsto & xy \end{array}$$

is an isomorphism.

Proof: π homomorphism. (xy)(x'y') = (xx')(yy')?

- $(xy)(x'y') = (xx')(x'^{-1}yx'y^{-1})(yy')$
- But $x'^{-1}yx'y^{-1} \in M \cap N = \{e\}$, since M, N are normal.

Proof: π isomorphism

- $\pi(M \times N) = MN$, it is surjective
- $\operatorname{Ker}(\pi) \cong M \cap N = \{e\}$
- Apply ismorphism theorem

Proposition 2.8.2-Group version of Chinese remainder theorem

Let $n_1, \ldots, n_r \in \mathbb{Z}$ be pairwise relative prime integers and let $N = n_1 \cdots n_r$. If φ_i denotes the canonical group homomorphism

$$\pi_{n_i\mathbb{Z}}:\mathbb{Z} \to \mathbb{Z}/n_i\mathbb{Z}$$
 $x \mapsto [x]$

then the map

$$\tilde{\varphi}: \mathbb{Z}/N\mathbb{Z} \rightarrow \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z}$$

 $x + N\mathbb{Z} \mapsto (\varphi_1(x), \dots, \varphi_r(x))$

is a group isomomorphism.

Proof:

• We know φ is a group homomorphism. Why?

$$\varphi: \mathbb{Z} \to \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z}$$
$$x \mapsto (\varphi_1(x), \dots, \varphi_r(x))$$

- If $n \in \text{Ker}(\varphi)$, then $n_1 | n, \dots, n_r | n$.
- Since n_1, \ldots, n_r are relative prime, $N = n_1 \cdots n_r | n$. So $\text{Ker}(\varphi) \subset N\mathbb{Z}$
- It is clear that $N\mathbb{Z} \subset \text{Ker}(\varphi)$ (is it?). Hence, $\text{Ker}(\varphi) = N\mathbb{Z}$
- By isomorphism theorem and since the map is surjective (why?), we have that $\tilde{\varphi}$ is an isomorphism

$$\tilde{\varphi}: \mathbb{Z}/N\mathbb{Z} \rightarrow \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_r\mathbb{Z}$$

 $x + N\mathbb{Z} \mapsto (\varphi_1(x), \dots, \varphi_r(x))$

(it is surjective because $\mathbb{Z}/N\mathbb{Z}$ and $\mathbb{Z}/n_1\mathbb{Z}\times\cdots\times\mathbb{Z}/n_r\mathbb{Z}$ have the same order)

Let's think about cyclic groups and this theorem

To remember it:

A cyclic group is a group G containing an element g such that $G = \langle g \rangle$.

Such a g is called a generator of G and we say that G is generated by g.

For $n_1, \ldots, n_r \in \mathbb{Z}$ pairwise relative prime integers and $N = n_1 \cdots n_r$. We have

$$\mathbb{Z}/n_1\mathbb{Z}\times\cdots\times\mathbb{Z}/n_r\mathbb{Z}$$

is a cyclic group isomorphic to $\mathbb{Z}/N\mathbb{Z}$.

- $X = \{1, 2, 3\}$
- *G* bijective maps $X \to X$.
- Composition: composition of maps

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, b = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$c = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, d = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

For instance:

$$\begin{array}{cccc} c: \{1,2,3\} & \to & \{1,2,3\} \\ & 1 & \mapsto & 3 \\ & 2 & \mapsto & 2 \\ & 3 & \mapsto & 1 \end{array}$$

- The same construction makes sense for a set with n elements. For instance $M_n = \{1, ..., n\}$.
- We have S_n : bijective maps $M_n \to M_n$.
- S_n is a group with the composition of maps and order $|S_n| = n!$
- $\sigma \in S_n$ is a bijection and denoted by

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

We know that S_3 is not abelian. Easily we see that S_n is not abelian. However: Are there some permutations in S_n that commute?, that is

$$\sigma \tau = \tau \sigma$$

Let $\sigma \in S_n$. We define M_{σ}

$$M_{\sigma} = \{x \in M_n : \sigma(x) \neq x\}$$

We say that σ , $\tau \in S_n$ are disjoint if $M_{\sigma} \cap M_{\tau} = \emptyset$.

Proposition 2.9.2

Let σ , $\tau \in S_n$ be disjoint permutations in S_n . Then $\sigma \tau = \tau \sigma$

Proof:

- We shall see that $\sigma(\tau(x)) = \tau(\sigma(x))$, for all $x \in M_n$.
- If $x \notin M_{\sigma} \cup M_{\tau}$, then $\sigma(x) = x$ and $\tau(x) = x$, so the equality holds.
- If $x \in M_{\sigma}$, then $\sigma(x) \neq x$ but $\sigma(x) \in M_{\sigma}$ (because $\sigma(x)$ cannot be invariant by σ).
- Hence, $\tau(\sigma(x)) = \sigma(x)$ and $\sigma(\tau(x)) = \sigma(x)$.
- Do the same for $x \in M_{\tau}$

A *k*-cycle is a permutation $\sigma \in S_n$ such that for *k* (different) elements $x_1, \ldots, x_k \in M_n$,

$$\sigma(x_1)=x_2, \ \ \sigma(x_2)=x_3, \ \ ,\dots \sigma(x_{k-1})=x_k, \ \ \sigma(x_k)=x_1$$
 and
$$\sigma(x)=x \text{ if } x\notin\{x_1,\dots,x_k\}.$$

We denote it by $\sigma = (x_1 x_2 \dots x_k)$

The k-cycle σ can be represented in k ways:

$$(x_1x_2...x_{k-1}x_k),$$

 $(x_2x_3...x_kx_1),$
 \vdots
 $(x_kx_1...x_{k-2}x_{k-1})$

- What is M_{σ} ?
- What is the order of a k-cycle in S_n ?

- 1-cycle: identity map
- 2-cycle: trasposition. σ transposition: σ^{-1} ?
- Simple trasposition: a transposition $s_i = (i \ i+1)$

Proposition 2.9.5

Let $\sigma \in S_n$ be written as a product of disjoint cycles $\sigma_1 \cdots \sigma_r$. Then the order of σ is the least common multiple of the orders of the cycles $\sigma_1, \ldots, \sigma_r$

Proof:

- $\bullet \ \sigma^n = \sigma_1^n \cdots \sigma_r^n$
- Then if $\sigma^n = e$, then n is divisible by order of the cycles (prop 2.6.3)
- Hence $m = \operatorname{lcm}(\operatorname{ord}(\sigma_1), \ldots, \operatorname{ord}(\sigma_r)) \leq \operatorname{ord}(\sigma)$
- But $\sigma_i^m = e$ for every i and the result holds.

Proposition 2.9.6

Every permutation $\sigma \in S_n$ is a product of unique disjoint cycles.

Proof existence, by induction on $|M_{\sigma}|$:

- If $|M_{\sigma}| = 0$, then σ is the identity map and it is the product of disjoint 1-cycles
- Assume that $|M_{\sigma}| \geq 0$. Pick $x \in M_{\sigma}$. Then $x \neq \sigma(x)$.
- Consider x, $\sigma(x)$, $\sigma^2(x)$, ... and stop when you find a repeated element
- The repeated element should be equal to x (if $\sigma^N(x) = \sigma^n(x) \Rightarrow \sigma^{N-n} = x$). Define the cycle $\tau = (x_1 \dots x_k)$ by $x_1 = x, \ x_2 = \sigma(x_1), \dots, x_k = \sigma(x_{k-1}), \ x_1 = \sigma(x_k)$
- $\bullet \ M_{\sigma\tau^{-1}} = M_{\sigma} \setminus \{x_1, \ldots, x_k\}$
- Apply induction hypothesis to $\sigma \tau^{-1}$, so $\sigma \tau^{-1} = \tau_1 \dots \tau_r$ product of disjoint cycles
- Then $\sigma = \tau_1 \dots \tau_r \tau$ and since τ is disjoint from τ_1, \dots, τ_r the result holds

Proof uniqueness:

- Let $\sigma = \sigma_1 \dots \sigma_r$ product of disjoint cycles
- Then $M_{\sigma} = M_{\sigma_1} \cup \ldots \cup M_{\sigma_r}$ and $M_{\sigma_i} \cap M_{\sigma_i} = \emptyset$ for $i \neq j$.
- Thus, if $x \in M_{\sigma}$ it only belongs to a unique M_{σ_j} and then $\sigma_j = (x\sigma(x)...)$ (by the previous proof). So the cycles are unique.

Lemma 2.9.8

Suppose that $\tau = (i_1 i_2 \dots i_k)$ is a k-cycle and σ a permutation in S_n . Then

$$\sigma(i_1i_2\ldots i_k)\sigma^{-1}=(\sigma(i_1)\sigma(i_2)\ldots\sigma(i_k))$$

Proof:

- Let $J = \{\sigma(i_1), \ldots, \sigma(i_k)\}$
- Check both sides of the equality give the same values for i ∈ J
- Both sides of the equality are the identity map for $i \notin J$

