Some slides for 16th Lecture, Algebra 1

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

30-10-2012

Diego Ruano Some slides for 16th Lecture, Algebra 1

For $g \in G$:

- $g^0 = e$
- $g^n = g^{n-1}g$ for n > 0
- $g^n = (g^{-1})^{-n}$ for n < 0

Proposition 2.6.1

Let *G* be group and $g \in G$. The map

$$egin{array}{ccc} f_g:\mathbb{Z}& o&G\ n&\mapsto&g^n \end{array}$$

is a group homomorphism from $(\mathbb{Z}, +)$ to *G*.

- Notation: $\langle g \rangle = f_g(\mathbb{Z}) = \{g^n : n \in \mathbb{Z}\}$
- Exercise 2.26: $\langle g \rangle$ is an abelian group
- ord = $|\langle g \rangle|$ is called order of g

- Order of e?
- Order of a?
- Order of f?

0	е	а	b	С	d	f
е	е	а	b	С	d	f
а	а	е	f	d	С	b
b	b	d	е	f	а	С
С	С	f	d	е	b	а
d	d	b	С	а	f	е
f	f	С	а	b	е	d

$$egin{array}{ccc} f_g:\mathbb{Z}& o&G\ n&\mapsto&g^n \end{array}$$

Proof Proposition 2.6.1: (f_g is a group homomorphism) By definition of g^n , $n \in \mathbb{Z}$:

- $f_{g^{-1}}(-m) = f_g(m)$, for every $g \in G$, $m \in \mathbb{Z}$.
- $f_g(m+1) = f_g(m)f_g(1)$, for every $g \in G$, $m \ge 0$.
- $f_g(m-1) = f_g(m)f_g(-1)$, for every $g \in G$, $m \ge 0$

Hence,

- $f_g(m+1) = f_g(m)f_g(1)$ for every $g \in G$, $m \in \mathbb{Z}$
- $f_g(m+n) = f_g(m)f_g(n)$ for every $g \in G$, $m \in \mathbb{Z}$, $n \ge 0$
- If n < 0: $f_g(m+n) = f_{g^{-1}}(-m+(-n)) = f_{g^{-1}}(-m)f_{g^{-1}}(-n) = f_g(m)f_g(n)$

Proposition 2.6.3

Let *G* be a finite group and let $g \in G$.

- ord(g) divides |G|
- **2** $g^{|G|} = e$
- 3 If $g^n = e$ for some n > 0 then ord(g) divides n

Diego Ruano Some slides for 16th Lecture, Algebra 1

If $H \subset G$ is a subgroup of a finite group G then |G| = [G : H]|H|

$$egin{array}{cccc} f_g:\mathbb{Z}& o&G\ n&\mapsto&g^n \end{array}$$

Proof: ord(g) divides |G|

• Let $H = \langle g \rangle$. Then $|H| = \operatorname{ord}(g)$.

Apply Lagrange's theorem.

Proof: $g^{|G|} = e$

• $g^{|G|} = g^{\operatorname{ord}(g)[G:H]} = (g^{\operatorname{ord}(g)})^{[G:H]} = e^{[G:H]} = e^{[G:H]}$

proof: If $g^n = e$ for some n > 0 then ord(g) divides n

• If $g^n = e$, $n \in \ker(f_g) = \operatorname{ord}(g)\mathbb{Z}$

• Thus $\operatorname{ord}(g)|n$

For $g \in G$, $\langle g \rangle = f_g(\mathbb{Z}) = \{g^n : n \in \mathbb{Z}\}$. Hence, $\langle g \rangle \subset G$

A cyclic group is a group *G* containing an element *g* such that $G = \langle g \rangle$. Such a *g* is called a generator of *G* and we say that *G* is generated by *g*.

$$egin{array}{ccc} f_g:\mathbb{Z}& o&G\ n&\mapsto&g^n \end{array}$$

What is $Ker(f_g)$? How are the subgroups of $(\mathbb{Z}, +)$?

Group isomorphism Theorem (Theorem 2.5.1):

 $\mathbb{Z}/n_g\mathbb{Z} o \langle g \rangle = G$

for some unique natural number $n_g \ge 0$.

Proposition 2.7.2

A group *G* of prime order |G| = p is isomorphic to the cyclic group $\mathbb{Z}/p\mathbb{Z}$

Proof:

- Let $g \in G$ with $g \neq e$
- $H = f_b(\mathbb{Z}) \subset G$ and it has more than one element
- By Lagrange's Theorem, |H| divides p = |G|
- Then |H| = |G| and therefore H = G (since $H \subset G$)
- Thus, $f_g : \mathbb{Z} \to G$ is a surjective morphism.
- $\operatorname{ker}(f_g) = p\mathbb{Z} (\operatorname{ord}(p) \operatorname{divides} |G|)$
- Apply Theorem 2.5.1-Isomorphism theorem

Example

- $[a] = a + 12\mathbb{Z}$
- $\mathbb{Z}/12\mathbb{Z} = \{[0], [1], [2], \dots, [10], [11]\}$

Table for ord([a]):

[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
1	12	6	4	3	12	2	12	3	4	6	12

- For a divisor *d* of 12. There is a unique subgroup of order *d*, the subgroup generated by [12/d]
- There are $\varphi(d)$ elements of order d (d divisor of 12)

d	0	1	2	3	4	5	6	7	8	9	10	11	12
$\varphi(d)$	0	1	1	2	2	4	2	6	4	6	4	10	4

Proposition 2.7.4

Let G be a cyclic group

- Every subgroup of G is cyclic
- Suppose that *G* is finite and that *d* is a divisor in |*G*|. Then *G* contains a unique subgroup *H* or order *d*.
- There are φ(d) elements of order d in G. These are the generators of H.

Proof: Every subgroup of *G* is cyclic. If |G| is infinite:

- Then $G \cong \mathbb{Z}$
- The subgroups of *G* are $d\mathbb{Z}$, with $d \in \mathbb{N}$. They are cyclic and generated by *d*.

Proof: Every subgroup of *G* is cyclic. If |G| = N > 0 is finite:

- Let $G = \{[0], [1], \dots, [N-1]\}$ and $H \subset G$ a subgroup
- If $H \neq \{0\}$ consider smallest d > 0, s.t. $[d] \in H$
- Euclid's trick: If $[n] \in H$ then $[n qd] = [r] \in H$ for $n = qd + r, 0 \le r < d$.
- But, since *d* is minimal: r = 0 and $H = \langle [d] \rangle$

Proof: Suppose that *G* is finite and that *d* is a divisor in |G|. Then *G* contains a unique subgroup *H* or order *d*.

- Let m = N/d, then [m] is an element of order d in G.
- If [n] is another element of order *d* then [dn] = [0]
- Then *N*|*nd* and *m*|*n*. That is, an element of order *d* is a multiple of [*m*]
- But by (1), subgroups are cyclic. Hence, H = ([m]) is the only subgroup of order d

Proof there are $\varphi(d)$ elements of order *d* in *G*. These are the generators of *H*:

- *H* unique subgroup of order *d*, the elements of order *d* in *G* must be in one-to-one correspondence with the generators of *H*.
- $H = \{[0], [1], \dots, [d-1]\}$ since $H \cong \mathbb{Z}/d\mathbb{Z}$

The $\varphi(d)$ elements of order *d* in $\mathbb{Z}/N\mathbb{Z}$ are

$$\left\{ \left[k\frac{N}{d} \right] : 0 \le k < d, \gcd(k, d) = 1 \right\}$$