Some slides for 11th Lecture, Algebra 1

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

11-10-2012

Diego Ruano Some slides for 11th Lecture, Algebra 1

Let *G* and *K* be groups. A map $f : G \to K$ is called a group homomorphism if

$$f(xy) = f(x)f(y)$$

for every $x, y \in G$.

- Example: exponential function
- Example: determinant
- Example: $\pi: G \to G/N$ for a normal subgroup N of G.

The kernel of a group homomorphism $f: G \to K$ is

$$\operatorname{Ker}(f) = \{g \in G : f(g) = e\}$$

The image of *f* is

$$f(G) = \{f(g) : g \in G\}$$

A bijective group homomorphism is called a group isomorphism. We write $G \cong K$ and say G and K are isomorphic.

Proposition 2.4.9

Let $f : G \to K$ be a group homomorphism.

- The image $f(G) \subset K$ is a subgroup of K
- 2 The kernel $\text{Ker}(f) \subset G$ is a normal subgroup of G.
- *f* is injective if and only if $\text{Ker}(f) = \{e\}$

Proof: (1)

- $e \in f(G)$?: $f(e) = f(ee) = f(e)f(e) \Rightarrow f(e) = e$
- $f(x)^{-1} \in f(G)$?: Yes, $f(x)^{-1} = f(x^{-1})$. For $x \in G$,

$$e = f(e) = f(xx^{-1}) = f(x)f(x^{-1})$$

$$e = f(e) = f(x^{-1}x) = f(x^{-1})f(x)$$

• $f(x)f(y) \in f(G)$?: For $x, y \in G, f(x)f(y) = f(xy)$

Proof: (2), ker(f) is a subgroup

• $e \in \operatorname{ker}(f)$?: f(e) = e

• $x^{-1} \in \text{ker}(f)$?: For $x \in \text{ker}(f)$, $e = f(x) = f(x)^{-1} = f(x^{-1})$

• $xy \in \text{ker}(f)$?: For $x, y \in \text{ker}(f), f(xy) = f(x)f(y) = ee = e$

Proof: (2), the subgroup $N = \ker(f)$ is a normal subgroup. $N = gNg^{-1}$, $\forall g \in G$.

- $gNg^{-1} \subset N$: For $x \in N$, $f((gx)g^{-1}) = (f(g)f(x))f(g^{-1}) = f(g)f(g)^{-1} = e$.
- $gNg^{-1} \supset N$: Consider the previous statement for g^{-1} : $g^{-1}Ng \subset N$. Then $Ng \subset gN$ and $N \subset gNg^{-1}$.

Proof: (3) *f* is injective $\Leftrightarrow \text{Ker}(f) = \{e\}$

- \Rightarrow): For *f* injective, Ker(f) = e since f(e) = e.
- \leftarrow): For Ker $(f) = \{e\}$ and f(x) = f(y),

$$e = f(y)^{-1}f(x) = f(y^{-1})f(x) = f(y^{-1}x)$$

Then, $y^{-1}x \in \text{ker}(f)$, and therefore $y^{-1}x = e$ and x = y.

To think: The previous result tells us that the kernel of any homomorphism is a normal subgroup. Is the converse true?

Something useful:

Tricks

Let $f : G \to K$ be a group homomorphism.

Diego Ruano Some slides for 11th Lecture, Algebra 1

Theorem 2.5.1-The isomorphism theorem

Let *G* and *K* be groups and $f : G \to K$ a group homomorphism and N = ker(f). Then

$$egin{array}{rcl} f:G/N& o&f(G)\ gN&\mapsto&f(g) \end{array}$$

is a well defined map and a group isomorphism

How do we understand G/N? Finding a group K, a surjective morphism $f : G \to K$ such that N = ker(f)

Theorem 2.5.1

Let *G* and *K* be groups and $f : G \to K$ a group homomorphism and N = ker(f). Then

$$egin{array}{rcl} ilde{f}: G/N & o & f(G) \ gN & \mapsto & f(g) \end{array}$$

is a well defined map and a group isomorphism

Proof: well defined and injective. For $x, y \in G$:

•
$$f(x) = f(y) \Leftrightarrow$$

•
$$f(y)^{-1}f(x) = e \Leftrightarrow$$

- $f(y^{-1})f(x) = e \Leftrightarrow$
- $f(y^{-1}x) = e \Leftrightarrow$
- $y^{-1}x \in N \Leftrightarrow$
- xN = yN

Theorem 2.5.1

Let *G* and *K* be groups and $f : G \to K$ a group homomorphism and N = ker(f). Then

$$ilde{f}: G/N o f(G) \ gN \mapsto f(g)$$

is a well defined map and a group isomorphism

Proof: \tilde{f} is a group homorphism

 $\tilde{f}((g_1N)(g_2N)) = \tilde{f}((g_1g_2)N) = f(g_1g_2) = f(g_1)f(g_2) = \tilde{f}(g_1N)\tilde{f}(g_2N)$

Proof: \tilde{f} is surjective f is surjective onto f(G)

Diego Ruano Some slides for 11th Lecture, Algebra 1