Some slides for 10th Lecture, Algebra 1

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

9-10-2011

Diego Ruano Some slides for 10th Lecture, Algebra 1

A pair (G, \circ) consisting of a set *G* and a composition $\circ : G \times G \rightarrow G$ is a group if it satisfies:

- The composition is associative: for every s_1 , s_2 , $s_3 \in G$, $s_1 \circ (s_2 \circ s_3) = (s_1 \circ s_2) \circ s_3$.
- 2 There is a neutral element $e \in G$: for every $s \in G$, $e \circ s = s \circ e = e$.
- **③** For every $s \in G$ there is an inverse element $t \in G$ such that $s \circ t = t \circ s = e$.

A subgroup of a group *G* is a non-empty subset $H \subset G$ such that the composition of *G* makes it into a group. That is *H* is a subgroup of *G* if and only if

- $\bullet \in H$
- **2** $x^{-1} \in H$ for every $x \in H$
- 3 $xy \in H$, for every $x, y \in H$

Let *H* be a subgroup of *G* and $g \in G$. Then the subset

 $gH = \{gh : h \in H\} \subset G$

is called a left coset of H. The subset

 $Hg = \{hg : h \in H\} \subset G$

is called a right coset of *H*. (coset=sideklasse)

G/*H*: The set of left cosets of *H H**G*: The set of right cosets of *H*

Theorem 2.2.8 Lagrange

If $H \subset G$ is a subgroup of a finite group G then

|G| = |G/H||H|

The order of a subgroup divides the order of the group

Diego Ruano Some slides for 10th Lecture, Algebra 1

- Can we make *G*/*H* into a group?
- For *X*, *Y* ∈ *G*, Define the composition of subsets:
 XY = {*xy*; *x* ∈ *X*, *y* ∈ *Y*}
- Let G be the symmetric group and H = {e, a}. Compute (bH)(cH). What does it mean?

0	е	а	b	С	d	f
е	е	а	b	С	d	f
а	e a	е	f	d	С	b
b	b	d	е	f	а	С
С	b c d	f	d	е	b	а
d	d	b	С	а	f	е
f	f	С	а	b	е	d

Proposition 2.3.1

Let *H* be a subgroup of a group *G*. If gH = Hg for every $g \in G$ then

(xH)(yH) = (xy)H,

for every $x, y \in G$.

Proof $(xH)(yH) \supset (xy)H$: (we do not need proposition hypothesis)

- Let $(xy)h \in (xy)H$.
- Then $(xy)h = (xe)(yh) \in (xH)(yH)$

Proof $(xH)(yH) \subset (xy)H$:

- Let $(xh_1)(yh_2) \in (xH)(yH)$
- Then, $(xh_1)(yh_2) = x((h_1y)h_2)) = ??$

Proposition 2.3.1

Let *H* be a subgroup of a group *G*. If gH = Hg for every $g \in G$ then

 $(\mathbf{x}\mathbf{H})(\mathbf{y}\mathbf{H}) = (\mathbf{x}\mathbf{y})\mathbf{H},$

for every $x, y \in G$.

Proof: $(xH)(yH) \supset (xy)H$ (we do not need proposition hypothesis)

- Let $(xy)h \in (xy)H$.
- Then $(xy)h = (xe)(yh) \in (xH)(yH)$

Proof: $(xH)(yH) \subset (xy)H$

• Let $(xh_1)(yh_2) \in (xH)(yH)$

• Then,

 $(xh_1)(yh_2) = x((h_1y)h_2)) = x((yh_3)h_2) = (xy)(h_3h_2)$ for some $h_3 \in H$ since Hy = yH. A subgroup N of group G is called normal if

$$gNg^{-1} = \{gng^{-1} : n \in N\} = N,$$

for every $g \in G$.

Exercise 13: A normal subgroup *N* of *G* satisfies gN = Ng for every $g \in G$. So we have two equivalent conditions for normality

Corollary 2.3.3

Let *N* be a normal subgroup of the group *G*. Then the composition of subsets makes G/N into a group and

 $(g_1N)(g_2N) = (g_1g_2)N$,

for $g_1N, g_2N \in G/N$.

Corollary 2.3.3

Let *N* be a normal subgroup of the group *G*. Then the composition of subsets makes G/N into a group and

 $(g_1 N)(g_2 N) = (g_1 g_2) N$,

for $g_1N, g_n \in G/N$.

Proof:

- Proposition 2.3.1 \Rightarrow $(g_1N)(g_2N) = (g_1g_2)N$
- Composition of subsets is associative
- Neutral element: eN = N
- Inverse element: $(gN)^{-1} = g^{-1}N$

Let *N* be a normal subgroup of *G*. The group G/N is called a **quotient group**.

Exercise 2.14: A subgroup of an abelian group is normal.

Exercise 2.17: Consider a group *G* such that every subgroup in it is normal. Is *G* abelian?

Lemma 2.3.6

Let H and K, where H is normal, be subgroups of a group. Then HK is a subgroup of G.

Proof:

- *e* ∈ *HK*
- $x \in H, y \in K$: $(xy)^{-1} = (y^{-1}x^{-1}y)y^{-1} \in HK$
- $x, x' \in H, y, y' \in K$: $(xy)(x'y') = (x(yx'y^{-1}))yy' \in HK^{4}$

Quotient group of the integers

Prime residue classes: $[a] = a + n\mathbb{Z}$ with gcd(a, n) = 1.

Let n > 0.

 $(\mathbb{Z}/n\mathbb{Z})^* = \{ [a] \in \mathbb{Z}/n\mathbb{Z} : \gcd(a, n) = 1 \}$

with [a][b] = [ab] is a group of order $\varphi(n)$.

- [a] = [b] and $gcd(a, n) = 1 \Rightarrow gcd(b, n) = 1$.
- gcd(a, n) = 1, $gcd(b, n) = 1 \Rightarrow gcd(ab, n) = 1$.
- Neutral: [1]
- Inverse?: using extended Euclidean algorithm. $\lambda a + \mu n = 1 \Rightarrow [1] = [\lambda a + \mu n] = [\lambda a]$