Some slides for 5th Lecture, Algebra 1

Diego Ruano

Department of Mathematical Sciences
Aalborg University
Denmark

19-09-2011

Computing $\varphi(n)$

knowing the prime factorization of a number:

$$\varphi(\mathbf{n}) = \varphi(\mathbf{p}_1^{r_1}) \cdots \varphi(\mathbf{p}_s^{r_s}),$$

where $n = p_1^{r_1} \cdots p_s^{r_s}$, $p_i \neq p_i$ for all $i \neq j$.

How do we compute $\varphi(p^m)$?

Computing $\varphi(n)$

knowing the prime factorization of a number:

$$\varphi(\mathbf{n}) = \varphi(\mathbf{p}_1^{r_1}) \cdots \varphi(\mathbf{p}_s^{r_s}),$$

where $n = p_1^{r_1} \cdots p_s^{r_s}$, $p_i \neq p_j$ for all $i \neq j$.

How do we compute $\varphi(p^m)$?

- $gcd(x, p) = 1 \Leftrightarrow p \nmid x$
- $x \le p^m$ is NOT relative prime to $p^m \Leftrightarrow p \mid x$

Hence, $\varphi(p^m) = p^m - p^{m-1}$.

$$\varphi(n) = (p_1^{r_1} - p_1^{r_1 - 1}) \cdots (p_s^{r_s} - p_s^{r_s - 1}) = n \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_s}\right)$$

RSA

- $N = p \cdot q$, p and q primes.
- e a number for encription, d a number for decription.
- Public: N, e. Private: d.
- Message: X, $0 \le X < N$.
- Encription: $f(X) = [X^e]_N$ Decription: $g(X) = [X^d]_N$. g(f(X)) = X.

How do we choose e and d?

We know:

$$g(f(X)) = [[X^e]^d] = [X^{ed}] = X \text{ if and only if } X \equiv X^{ed} \pmod{N}$$

$$\varphi(N) = \varphi(p)\varphi(q) = (p-1)(q-1)$$

Let X be any integer and k a natural number. Then

$$X^{k(p-1)(q-1)+1} \equiv X \pmod{N}$$

Proof:

- It is enough to prove that $X^{k(p-1)(q-1)+1} \equiv X \pmod{p}$.
- If $p \mid x$. Thus, $[X]_p = 0 = [X^{k(p-1)(q-1)+1}]_p$, we have $X^{k(p-1)(q-1)+1} \equiv X \pmod{N}$.
- If $p \nmid x$. Thus, $\gcd(p, x) = 1$, by Euler Theorem $X^{\varphi(p)} = X^{p-1} \equiv 1 \pmod{p}$ and

$$X^{k(p-1)(q-1)} \equiv (X^{p-1})^{k(q-1)} \equiv 1 \pmod{p}$$

• Multiply the previous congruence with X

Encryption and decryption exponents

You are welcome to use Maple for computations.

To get some help type in Maple:

- >?mod
- >?isprime (or nextprime)
- >?ifactor
- >?igcdex

Do not forget that we use $\&\widehat{}$ to apply the repeated squaring algorithm in Maple. Type:

- >18^{5705890543 mod 37;}
- >18& 5705890543 mod 37;