Some slides for 21st Lecture, Algebra 1

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

30-11-2011

Diego Ruano Some slides for 21st Lecture, Algebra 1

- The same construction makes of S_3 sense for a set with n elements. For instance $M_n = \{1, ..., n\}$.
- We have S_n : bijective maps $M_n \to M_n$.
- S_n is a group with the composition of maps and order n!
- $\sigma \in S_n$ is a bijection and denoted by

$$\sigma = \left(\begin{array}{ccc} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{array}\right)$$

Let $\sigma \in S_n$. We define M_{σ}

$$M_{\sigma} = \{ x \in M_n : \sigma(x) \neq x \}$$

We say that $\sigma, \tau \in S_n$ are disjoint if $M_{\sigma} \cap M_{\tau} = \emptyset$.

Proposition 2.9.2

Let σ , $\tau \in S_n$ be disjoint permutations in S_n . Then $\sigma \tau = \tau \sigma$

Diego Ruano Some slides for 21st Lecture, Algebra 1

A *k*-cycle is a permutation $\sigma \in S_n$ such that for *k* (different) elements $x_1, \ldots, x_k \in M_n$,

$$\sigma(x_1) = x_2$$
, $\sigma(x_2) = x_3$, ,... $\sigma(x_{k-1}) = x_k$, , $\sigma(x_k) = x_1$

We denote it by $\sigma = (x_1 x_2 \dots x_k)$

The *k*-cycle σ can be represented in *k* ways:

$$(x_1x_2\dots x_{k-1}x_k), (x_2x_3\dots x_kx_1), \\\vdots \\ (x_kx_1\dots x_{k-2}x_{k-1})$$

*M*_σ = {*x*₁,..., *x*_k}
 The order of a *k*-cycle in *S*_σ is *k*.

- 1-cycle: identity map
- 2-cycle: trasposition. σ transposition: $\sigma^{-1} = \sigma$
- Simple trasposition: a transposition $s_i = (i \ i + 1)$

Let $\sigma \in S_n$ be written as a product of disjoint cycles $\sigma_1 \cdots \sigma_r$. Then the order of σ is the least common multiple of the orders of the cycles $\sigma_1, \ldots, \sigma_r$

Proposition 2.9.6

Every permutation $\sigma \in S_n$ is a product of unique disjoint cycles.

Using bubble sort we saw:

$$\left(\begin{array}{rrrr}1 & 2 & 3 & 4\\ 4 & 1 & 3 & 2\end{array}\right) = (2\ 3)(3\ 4)(2\ 3)(1\ 2)$$

We wonder: What is the minimal number of simple transpositions needed for writing a permutation as a product in this way?

Let σ be a permutation. A pair of indices (i, j), where $1 \le i < j \le n$, is called an inversion of σ if $\sigma(i) < \sigma(j)$. Let

$$I_{\sigma} = \{(i, j) : 1 \le i < j \le n \text{ and } \sigma(i) > \sigma(j)\}$$

denote the set of inversions and $n(\sigma) = |I_{\sigma}|$ the number of inversions of σ .

Example:

$$\sigma = \left(egin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 1 & 5 & 4 & 2 \end{array}
ight)$$

Compute: I_{σ} and $n(\sigma)$

Let σ be a permutation. A pair of indices (i, j), where $1 \le i < j \le n$, is called an inversion of σ if $\sigma(i) > \sigma(j)$. Let

$$I_{\sigma} = \{(i, j) : 1 \le i < j \le n \text{ and } \sigma(i) > \sigma(j)\}$$

denote the set of inversions and $n(\sigma) = |I_{\sigma}|$ the number of inversions of σ .

Example:

$$I_{\sigma} = \{(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 6), (4, 5), (4, 6), (5, 6)\}$$

$$n(\sigma) = 10$$

The permutation $\sigma \in S_n$ is the identity map if and only if $n(\sigma) = 0$. If σ is not the identity map then there exists $i \in \{1, ..., n-1\}$ such that $\sigma(i) > \sigma(i+1)$.

Proof: $\sigma \in S_n$ is the identity map $\Leftrightarrow n(\sigma) = 0$

- If σ identity map, the it has no inversions and $n(\sigma) = 0$.
- If n(σ) = 0 and σ is not the identity map then there exists a smallest i ∈ M_n such that σ(i) > i, but (i, σ⁻¹(i)) is an inversion.

Proof: If σ is not the identity map then there exists i = 1, ..., n-1 such that $\sigma(i) > \sigma(i+1)$.

If *σ* is a permutation satisfying *σ*(1) < · · · < *σ*(*n*) then *σ* has to be the identity map, since *n*(*σ*) = 0.

Let $s_i \in S_n$ be a simple transposition and $\sigma \in S_n$. Then

$$n(\sigma s_i) = \begin{cases} n(\sigma) + 1 & \text{if } \sigma(i) < \sigma(i+1), \\ n(\sigma) - 1 & \text{if } \sigma(i) > \sigma(i+1), \end{cases}$$

Proof: Assume $\sigma(i) < \sigma(i+1)$

- (i, i + 1) is an inversion for σs_i since (i, i + 1) is not an inversion for σ .
- Consider

$$\begin{array}{rcl} \varphi: I_{\sigma} & \to & I_{\sigma s_i} \setminus \{(i, i+1)\} \\ (k, l) & \mapsto & (s_i(k), s_i(l)) \end{array}$$

- We should prove that φ is bijective:
 - If (k, l) ∈ l_σ then s_i(k) < s_i(l). It is clear for every k, l, excepting k = i and l = i + 1, but we assumed (i, i + 1) ∉ l_σ
 - We have that $(s_i(k), s_i(l)) \in I_{\sigma s_i}$ since $(k, l) \in I_{\sigma}$
 - If $(k, l) \in I_{\sigma s_i} \setminus \{(i, i+1)\}$ then $(s_i(k), s_i(l)) \in I_{\sigma}$.

Let $s_i \in S_n$ be a simple transposition and $\sigma \in S_n$. Then

$$n(\sigma s_i) = \begin{cases} n(\sigma) + 1 & \text{if } \sigma(i) < \sigma(i+1), \\ n(\sigma) - 1 & \text{if } \sigma(i) > \sigma(i+1), \end{cases}$$

Proof: Assume $\sigma(i) > \sigma(i+1)$

- $(\sigma s_i)(i) < (\sigma s_i)(i+1)$ since $\sigma(i) > \sigma(i+1)$
- Then $n((\sigma s_i)s_i) = n(\sigma s_i) + 1$ by previous slide.
- And $\sigma s_i s_i = \sigma$, hence $n(\sigma) = n(\sigma s_i) + 1$ and the result holds

Let $\sigma \in S_n$. Then

- σ is a product of $n(\sigma)$ simple transpositions
- *n*(σ) is the minimal product of simple transpositions needed in writing σ as a product of simple transpositions.

Proof of (1) by induction on $n(\sigma)$:

- For $n(\sigma) = 0$, σ is the identity map and it is the empty product of simple transpositions
- Assume we can write a transposition τ with $n(\tau) = n 1$ as product of transpositions
 - If $n(\sigma) \neq 0$, we may find $i \in \{1, ..., n-1\}$ such that $\sigma(i) > \sigma(i+1)$ (by prop. 2.9.12)
 - Then $n(\sigma s_i) = n(\sigma) 1$ by lemma 2.9.13.
 - By induction, $\tau = \sigma s_i$ can be written as the product of n-1 transpositions.
 - Then, $\sigma = \tau s_i$ is a product of $n(\sigma)$ transpositions.

Let $\sigma \in S_n$. Then

- σ is a product of $n(\sigma)$ simple transpositions
- *n*(σ) is the minimal product of simple transpositions needed in writing σ as a product of simple transpositions.

Proof: $\ell(\sigma)$ is the minimal number of simple transpositions needed in writing σ as a product of simple transpositions.

- $n(\sigma) \ge \ell(\sigma)$ by (1)
- We prove $n(\sigma) = \ell(\sigma)$ by induction on $\ell(\sigma)$
- $\ell(\sigma) = 0$, trivial
- For ℓ(σ) > 0:
 - We can find a simple transposition s_i such that $\ell(\sigma s_i) = \ell(\sigma) 1$
 - Thus, $\ell(\sigma s_i) = n(\sigma s_i)$ by induction
 - Hence $\ell(\sigma) \ge n(\sigma)$

The sign of a permutation $\sigma \in S_n$ is

$$\operatorname{sgn}(\sigma) = (-1)^{n(\sigma)}$$

A permutation with sign 1 is called even and with sign -1 is called odd.

Proposition 2.9.16

The sign

$$sgn: S_n \rightarrow \{-1, 1\}$$

$$\sigma \mapsto sgn(\sigma)$$

of a permutation is a group homomorphism (the composition for $\{-1,1\}$ is multiplication).

Actually, $(\{-1, 1\}, \cdot)$ is isomorphic to $(\mathbb{Z}/2\mathbb{Z}, +)$.

$$sgn: S_n \rightarrow \{-1, 1\}$$

$$\sigma \mapsto sgn(\sigma)$$

Proof sgn is a group homomorphism:

- We have to prove $sgn(\sigma\tau) = sgn(\sigma)sgn(\tau)$ for $\sigma, \tau \in S_n$
- Assume that τ is a simple transposition: $n(\sigma s_i) = n(\sigma) \pm 1$ (lemma 2.9.13). Thus $sgn(\sigma s_i) = -sgn(\sigma)$.
- Then $sgn(\sigma s_i) = sgn(\sigma)sgn(s_i)$, because $n(s_i) = 1$.
- By previous proposition τ is a product of simple transpositions, apply the previous proof several times

The set of even permutations in S_n is denoted A_n and called the alternating group

- A_n is a normal subgroup of S_n , since A_n is the kernel of sgn.
- By isomorphism theorem:

$$S_n/A_n \xrightarrow{\sim} \{-1,1\}$$

- Then $|A_n| = |S_n|/2 = n!/2$
- How do we compute $sgn(\sigma)$ of a permutation?
- By computing the sign of a k-cycle

Suppose that $\tau = (i_1 i_2 \dots i_k)$ is a *k*-cycle and σ a permutation in S_n . Then $\sigma(i_1 i_2 \dots i_k) \sigma^{-1} = (\sigma(i_1)\sigma(i_2)\dots\sigma(i_k))$

Proposition 2.9.17

Let $n \ge 2$. A transposition $\tau = (i j) \in S_n$ is an odd permutation. The sign of an *r*-cycle $\sigma = (x_1 \dots x_r) \in S_n$ is $(-1)^{r-1}$.

Proof: A transposition $\tau = (i j) \in S_n$ is an odd permutation

- Consider a permutation $\eta \in S_n$ such that $\eta(1) = i$ and $\eta(2) = j$
- $-1 = \operatorname{sgn}(1\ 2) = \operatorname{sgn}(\eta(1\ 2)\eta^{-1}) = \operatorname{sgn}((\eta(1)\ \eta(2)) = \operatorname{sgn}(\tau).$

 $\operatorname{Proof} \operatorname{sgn}((x_1 \dots x_r)) = (-1)^{r-1}$

- $(x_1 \ldots x_r) = (x_1 \ x_2)(x_2 \ x_3) \ldots (x_{r-1} \ x_r)$
- $(x_1 \dots x_r)$ is the product of r 1 transpositions and the result holds

Every permutation in A_n is a product of 3-cycles if $n \ge 3$.

Proof:

- A permutation in A_n is product of an even number of transpositions
- (*a b*)(*c d*) = (*a d c*)(*a b c*)
- (a b)(b c) = (a b c)

A group *G* is called simple if $\{e\}$ and *G* are the only normal subgroups of *H*. Otherwise *G* is called solvable.

Examples:

- $\mathbb{Z}/p\mathbb{Z}$, with *p* prime.
- A_n , for $n \ge 5$ (Theorem 2.9.19).

Simple finite groups form the building blocks for all finite groups.

Feit and Thomson's theorem: the order of a non-abelian finite simple group must be even.

In 2004: classification of simple groups, 18 families and 26 exceptions. See wikipedia.