Some slides for 20th Lecture, Algebra 1

Diego Ruano

Department of Mathematical Sciences
Aalborg University
Denmark

24-11-2011

Knapsack crytosystem (Merkle-Hellman)

A knapsack problem:

- Consider a knapsack (or rucksack) with volume N
- Consider n objects with volume e_1, \ldots, e_n
- Maybe we cannot put everything in the knapsack, but we want to fill it. That is, we want to find I ⊂ {1,...,n} such that

$$\sum_{i\in I}e_i=N$$

Our knapsack problem

Given $e_1, \ldots, e_n \in \mathbb{N}$ and $N \in \mathbb{N}$, find a binary number k with n bits $k = (\lambda_1, \ldots, \lambda_n)$ ($\lambda_i = 0$ means object e_i is not in the knapsack) such that:

$$\sum_{i=1}^{n} \lambda_i e_i = N$$

Our knapsack problem is NP-Complete, but there is an easy case:

$$e_i > \sum_{j=1}^{i-1} e_j, \quad \forall i$$

Example:
$$(e_1, ..., e_5) = (2, 3, 7, 15, 31)$$
 and $N = 24$.

$$24 - 15 = 9 \rightarrow e_4$$

$$9-7=2 \rightarrow e_3$$

$$2-2=0 \rightarrow e_1$$

Hence
$$N = 2 + 7 + 15$$
 and $k = (1, 0, 1, 1, 0) = 24$.

Message: is binary (0's and 1's). We cut it in blocks of length n. Consider that we send M, a block of length n.

- **①** Bob chooses an easy knapsack $(e_1, ..., e_n)$ and $N \in \mathbb{N}$ such that $N > \sum_{i=1}^n e_i$ (why? → unique encryption). He also chooses $w \in \mathbb{N}$ such that 0 < w < N and $\gcd(w, N) = 1$ (why?)
- ② Bob computes $[w^{-1}]_N$ ($[w][w^{-1}] = [1]$) and $(a_1, ..., a_n)$, with $0 < a_i < N$ where

$$a_i \equiv we_i \pmod{N}$$

Secret Key: (e_1, \ldots, e_n) , N, w, w^{-1} Public Key: (a_1, \ldots, a_n)

3 Alice wants to send $M = (M_1 ..., M_n) \in (\mathbb{Z}/2\mathbb{Z})^n$. She computes

$$C = \sum_{i=1}^{n} M_i a_i$$

and sends it to Bob

9 Bob gets C. He computes $[Cw^{-1}]_N$ because

$$w^{-1}C \equiv \sum_{i=1}^{n} w^{-1}a_{i}M_{i} \equiv \sum_{i=1}^{n} e_{i}M_{i} \pmod{N}$$

We have $[Cw^{-1}]_N = [\sum M_i e_i]_N$. Note that $\sum M_i e_i \leq \sum e_i < N$, then $0 < \sum M_i e_i < N$ and encryption is unique.

- **6** Bob uses the easy knapsack to find $(M_1, ..., M_n)$ from $\sum M_i e_i$.
- Eve?, she gets $C = \sum_{i=1}^{n} M_i a_i$, but it is not an easy knapsack.

Example knapsack

- M = (1, 1, 0, 0, 1)
- N = 61, w = 17, gcd(17, 61) = 1
- $w^{-1} \equiv 18 \pmod{61}$
- $a_1 = 17 \cdot 2 \equiv 34 \pmod{61}$ $a_2 = 17 \cdot 3 \equiv 51 \pmod{61}$ $a_3 = 17 \cdot 7 \equiv 58 \pmod{61}$ $a_4 = 17 \cdot 15 \equiv 11 \pmod{61}$ $a_5 = 17 \cdot 31 \equiv 39 \pmod{61}$
- Public Key=(34, 51, 58, 11, 39), so to encrypt (1,1,0,0,1) we have 34 + 51 + 39 = 124. Alice sends 124.
- Bob receives 124 and computes $124 \cdot 18 \equiv 36 \pmod{61}$. Then he has an easy knapsack for 36:

$$36-31=5 \rightarrow e_5$$

 $5-3=2 \rightarrow e_2$
 $2-2=0 \rightarrow e_1$, and recovers $M=(1,1,0,0,1)$

• Eve could do: $124 = a_1 + a_2 + a_5 = 34 + 51 + 39$ but this is a difficult knapsack (for large numbers!)