Some slides for 1st Lecture, Algebra 1

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

5-09-2011

Diego Ruano Some slides for 1st Lecture, Algebra 1

The natural numbers and the integers

This is our starting point:

•
$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

•
$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

We may order \mathbb{Z} :

• $X \leq Y$ if $Y - X \in \mathbb{N}$

• X < Y if $X \neq Y$ and $X \leq Y$

We say that:

 $s \in S \subset \mathbb{Z}$ is a first element in S if $s \leq x$ for all $x \in S$

- Does any subset of Z have a first element?
- Can a subset of Z have two different first elements? (Exercise 1).

Axiom for \mathbb{N} : The previous ordering is a well ordering. That is:

- Every non-empty subset of N has a first element
- And that is equivalent to mathematical induction

Theorem 1.2.1

Let $d \in \mathbb{Z}$, where d > 0. For every $x \in \mathbb{Z}$ there is a unique remainder $r \in \mathbb{N}$ such that

x = qd + r,

where $q \in \mathbb{Z}$ and $0 \leq r < d$

Notation:

Let a = bc, with $a, b, c \in \mathbb{Z}$. Then c is a divisor of a,

c a

 $[x]_d$ is the unique remainder *r* in Theorem 1.2.1, for *x*, *d* $\in \mathbb{Z}$.

Congruences

Let $a, b, c \in \mathbb{Z}$. Then a an b are congruent modulo c if $c \mid (b-a)$.

 $a \equiv b \pmod{c}$

Proposition 1.3.2

Let $a, b, c \in \mathbb{Z}$, where c > 0. Then

•
$$a \equiv [a]_c \pmod{c}$$

• $a \equiv b \pmod{c}$ if and only if $[a]_c = [b]_c$

Proposition 1.3.4

If
$$x_1 \equiv x_2 \pmod{d}$$
, $y_1 \equiv y_2 \pmod{d}$. Then

•
$$x_1 + y_1 \equiv x_2 + y_2 \pmod{d}$$

• $x_1y_1 \equiv x_2y_2 \pmod{d}$

How to compute the remainder of 12¹¹ divided by 21?

• Exercise 1.3: [xy] = [[x][y]]

•
$$a^b a^c = a^{b+c}$$

•
$$(a^b)^c = a^{bc}$$

Allow us to have the repeated squared algorithm:

$$\left[a^{2^{n}}\right] = \left[(a^{2^{n-1}})^{2}\right] = \left[\left[a^{2^{n-1}}\right]\left[a^{2^{n-1}}\right]\right]$$

Diego Ruano Some slides for 1st Lecture, Algebra 1

Greatest common divisor

Lemma 1.4.2 (Euclid)

Let $m, n \in \mathbb{Z}$. There exists a unique natural number $d \in \mathbb{N}$ such that

 $\operatorname{div}(m) \cap \operatorname{div}(n) = \operatorname{div}(d)$

d is called the greatest common divisor of *m* and *n* and denoted by

gcd(m, n)

Exercise 9: greatest common divisor is really the greatest among these with respect to the usual ordering of \mathbb{Z} .