Some slides for 19th Lecture, Algebra 1

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

23-11-2011

Diego Ruano Some slides for 19th Lecture, Algebra 1

F

- $X = \{1, 2, 3\}$
- *G* bijective maps $X \to X$.
- Composition: composition of maps

•
$$X = \{1, 2, 3\}$$

• *G* bijective maps $X \to X$.
• Composition: composition of maps
 $e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, b = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$
 $c = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, d = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$
or instance:
 $c : \{1, 2, 3\} \to \{1, 2, 3\}$
 $\begin{array}{c} 1 & \mapsto & 3 \\ 2 & \mapsto & 2 \end{array}$

 $3 \mapsto$

1

- The same construction makes sense for a set with *n* elements. For instance *M_n* = {1,..., *n*}.
- We have S_n : bijective maps $M_n \rightarrow M_n$.
- S_n is a group with the composition of maps and order $|S_n| = n!$
- $\sigma \in S_n$ is a bijection and denoted by

$$\sigma = \left(\begin{array}{cccc} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{array}\right)$$

We know that S_3 is not abelian. Easily we see that S_n is not abelian. However: Are there some permutations in S_n that commute?, that is

$$\sigma \tau = \tau \sigma$$

Let $\sigma \in S_n$. We define M_{σ}

$$M_{\sigma} = \{ x \in M_n : \sigma(x) \neq x \}$$

We say that $\sigma, \tau \in S_n$ are disjoint if $M_{\sigma} \cap M_{\tau} = \emptyset$.

Proposition 2.9.2

Let σ , $\tau \in S_n$ be disjoint permutations in S_n . Then $\sigma \tau = \tau \sigma$

Proof:

- We shall see that $\sigma(\tau(x)) = \tau(\sigma(x))$, for all $x \in M_n$.
- If $x \notin M_{\sigma} \cup M_{\tau}$, then $\sigma(x) = x$ and $\tau(x) = x$, so the equality holds.
- If x ∈ M_σ, then σ(x) ≠ x but σ(x) ∈ M_σ (because σ(x) cannot be invariant by σ).
- Hence, $\tau(\sigma(x)) = \sigma(x)$ and $\sigma(\tau(x)) = \sigma(x)$.
- Do the same for $x \in M_{\tau}$

A *k*-cycle is a permutation $\sigma \in S_n$ such that for *k* (different) elements $x_1, \ldots, x_k \in M_n$,

$$\sigma(x_1) = x_2, \ \sigma(x_2) = x_3, \ \dots, \sigma(x_{k-1}) = x_k, \ \sigma(x_k) = x_1$$

and $\sigma(x) = x$ if $x \notin \{x_1, \ldots, x_k\}$.

We denote it by $\sigma = (x_1 x_2 \dots x_k)$

The *k*-cycle σ can be represented in *k* ways:

$$(x_1x_2\ldots x_{k-1}x_k), (x_2x_3\ldots x_kx_1), \\\vdots \\ (x_kx_1\ldots x_{k-2}x_{k-1})$$

- What is M_{σ} ?
- What is the order of a *k*-cycle in *S_n*?

- 1-cycle: identity map
- 2-cycle: trasposition. σ transposition: σ^{-1} ?
- Simple trasposition: a transposition $s_i = (i \ i + 1)$

Proposition 2.9.5

Let $\sigma \in S_n$ be written as a product of disjoint cycles $\sigma_1 \cdots \sigma_r$. Then the order of σ is the least common multiple of the orders of the cycles $\sigma_1, \ldots, \sigma_r$

Proof:

- $\sigma^n = \sigma_1^n \cdots \sigma_r^n$
- Then if σⁿ = e, then n is divisible by order of the cycles (prop 2.6.3)
- Hence $m = \operatorname{lcm}(\operatorname{ord}(\sigma_1), \dots, \operatorname{ord}(\sigma_r)) \leq \operatorname{ord}(\sigma)$
- But $\sigma_i^m = e$ for every *i* and the result holds.

Proposition 2.9.6

Every permutation $\sigma \in S_n$ is a product of unique disjoint cycles.

Proof existence, by induction on $|M_{\sigma}|$:

- If |M_σ| = 0, then σ is the identity map and it is the product of disjoint 1-cycles
- Assume that $|M_{\sigma}| \ge 0$. Pick $x \in M_{\sigma}$. Then $x \neq \sigma(x)$.
- Consider x, σ(x), σ²(x),... and stop when you find a repeated element
- The repeated element should be equal to *x* (if $\sigma^N(x) = \sigma^n(x) \Rightarrow \sigma^{N-n} = x$). Define the cycle $\tau = (x_1 \dots x_k)$ by

 $x_1 = x$, $x_2 = \sigma(x_1)$, ..., $x_k = \sigma(x_{k-1})$, $x_1 = \sigma(x_k)$

- $M_{\sigma\tau^{-1}} = M_{\sigma} \setminus \{x_1, \ldots, x_k\}$
- Apply induction hypothesis to $\sigma\tau^{-1}$, so $\sigma\tau^{-1} = \tau_1 \dots \tau_r$ product of disjoint cycles
- Then $\sigma = \tau_1 \dots \tau_r \tau$ and since τ is disjoint from τ_1, \dots, τ_r the result holds

Proof uniqueness:

- Let $\sigma = \sigma_1 \dots \sigma_r$ product of disjoint cycles
- Then $M_{\sigma} = M_{\sigma_1} \cup \ldots \cup M_{\sigma_r}$ and $M_{\sigma_i} \cap M_{\sigma_i} = \emptyset$ for $i \neq j$.
- Thus, if x ∈ M_σ it only belongs to a unique M_{σj} and then σ_j = (xσ(x)...) (by the previous proof). So the cycles are unique.

Lemma 2.9.8

Suppose that $\tau = (i_1 i_2 \dots i_k)$ is a *k*-cycle and σ a permutation in S_n . Then

$$\sigma(i_1i_2\ldots i_k)\sigma^{-1} = (\sigma(i_1)\sigma(i_2)\ldots \sigma(i_k))$$

Proof:

- Let $J = \{\sigma(i_1), ..., \sigma(i_k)\}$
- Check both sides of the equality give the same values for $i \in J$
- Both sides of the equality are the identity map for $i \notin J$

