Some slides for 17th Lecture, Algebra 1

Diego Ruano

Department of Mathematical Sciences Aalborg University Denmark

16-11-2011

Diego Ruano Some slides for 17th Lecture, Algebra 1

Public-key crytography (from Wikipedia)

- The key used to encrypt a message is not the same as the key used to decrypt it.
- Each user has a pair of cryptographic keys-a public key and a private key. The private key is kept secret, while the public key may be widely distributed.
- Messages are encrypted with the recipient's public key and can only be decrypted with the corresponding private key.
- The keys are related mathematically, but the private key cannot feasibly (ie, in actual or projected practice) be derived from the public key.
- The discovery of algorithms that could produce public/private key pairs revolutionized the practice of cryptography beginning in the middle 1970s.

Based on discrete logarithm problem:

Given a prime p and y, $g \in \mathbb{N}$, find x such that

 $y \equiv g^x \pmod{p}$

- Alice and Bob choose *p*, a big prime, and *g* ∈ ℕ s.t.
 0 < g < p and g has order p − 1 in (ℤ/pℤ)* (a generator of (ℤ/pℤ)*)
- Alice chooses *a*, with 0 < a < p and computes [g^a]_p.
 Secret Key=a Public Key=[g^a]_p
- Secret Key=b
 Public Key= $[g^b]_p$

Alice wants to send a message m, 0 < m < p to Bob. She sends:</p>

 $\left([g^a]_{
ho}, [m(g^b)^a]_{
ho}
ight)$

5 Bob gets $([x_1]_p, [x_2]_p)$ and computes

 $[x_2]_{\rho}([x_1^b]_{\rho})^{-1} = [mg^{ab}]_{\rho}([g^{ab}]_{\rho})^{-1} = [m]_{\rho}$

and since m < p he can recover m.

To encrypt the message one uses the public key of the receiver and the secret key of the sender.

• Eve?: she had to compute *b* from $[g^b]_p$