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Abstract

Modern digital communication systems often face the challenge of data corruption due to
noise, leading to discrepancies between transmitted and received symbols. Error-correcting
codes guarantee reliable and fast transmission of information in such systems by adding
redundant symbols. Algebraic Coding Theory plays an important role not only in many
different aspects of communication but also in cryptography and quantum computing.
This is because the additional algebraic structure of algebraic codes allows us to derive
further properties of them. Since these properties characterize the performance of the code
for certain applications, we can consider or design codes that are suitable for each setting.
In particular, in this thesis we are interested in using tools from Commutative Algebra to
derive properties of linear codes. We focus mainly on evaluation codes, since they have
a natural connection to Commutative Algebra, but we also consider other types of codes
such as cyclic codes (which can be viewed as subfield subcodes of evaluation codes) or
matrix-product codes.

Many aspects of evaluation codes can be understood by means of the vanishing ideal
of the set of points considered. A natural question that arises is how to compute this
vanishing ideal. When one considers the evaluation points over the affine space, this
computation is straightforward. However, in the projective setting one usually has to
compute the radical of an ideal. In Paper A, we give an alternative and more efficient way
of computing the vanishing ideal by using the saturation with respect to the homogeneous
maximal ideal. Another option to study evaluation codes over the projective space is to
consider a set of fixed representatives of the points, regarded as a subset of the affine
space, and its vanishing ideal. In Papers B and C, we give a universal Gröbner basis for
this vanishing ideal when the set of points corresponds to certain subsets of the projective
line, or to the whole projective space.

Obtaining long codes with good parameters over a small finite field, which is desirable
for applications, is a complicated problem in general. One approach to achieve this is to
take codes with good parameters over a large field (e.g., Reed-Solomon codes), and then
consider their subfield subcodes. The resulting code usually has lower dimension than the
original code, and obtaining bases for the subfield subcodes (which give the dimension)
is one of the main problems to study when working with subfield subcodes. By using
the aforementioned Gröbner bases, in Papers B and C we obtain bases for the subfield
subcodes of projective Reed-Solomon codes and projective Reed-Muller codes in many
cases. An alternative approach for this problem is also given in Paper D, using a recursive
construction for projective Reed-Muller codes.

The interest of the generalized Hamming weights of a linear code originates from the
fact that they determine its performance on the wire-tap channel of type II. Since they

iii



Introduction

were introduced by Wei, many more applications have been found for them, such as list
decoding or secret sharing schemes (considering relative generalized Hamming weights).
In Paper D, we provide lower and upper bounds for the generalized Hamming weights
of projective Reed-Muller codes, determining the true values in many cases. Inspired
by the approach from Paper D, in Paper H we also provide bounds for the generalized
Hamming weights of matrix-product codes. As a sample of our results, we obtain the
exact value of the generalized Hamming weights of matrix-product codes obtained with
two Reed-Solomon codes.
The development of reliable quantum computing and communication requires error-

correction to deal with noise and decoherence. To perform error-correction, we can con-
sider stabilizer quantum codes. The CSS construction provides a way to construct such
codes using self-orthogonal classical linear codes. Furthermore, we consider two additional
aspects specific to quantum codes: we can assume entanglement between the encoder and
the decoder, giving rise to entanglement-assisted quantum error-correcting codes; and we
can also consider two different types of errors, qudit-flip and phase-shift errors, leading to
asymmetric quantum codes. The CSS construction can be generalized to cover these cases
by considering a pair of classical linear codes, and their minimum distances. The dimen-
sion of their relative hull gives the parameter c, which is the minimum number required of
maximally entangled pairs. Therefore, in this more general setting we do not require any
self-orthogonality condition, but we have an additional parameter to compute. In Paper
B, we have used the subfield subcodes of projective Reed-Solomon codes to construct both
symmetric and asymmetric entanglement-assisted quantum error-correcting codes.
Since we have seen that the dimension of the hull determines the parameter c of the cor-

responding quantum code, the study of the hulls of projective Reed-Muller codes over the
projective plane carried out in Paper E determines all the parameters of the corresponding
quantum codes. Entanglement assistance can improve the rate of the corresponding quan-
tum code, but maintaining entanglement over time can be costly. Therefore, this trade-off
must be analyzed for each application, and this also motivates obtaining codes with dif-
ferent requirements of entanglement assistance. In Paper F, we study how to change the
dimension of the hull of projective Reed-Muller codes by considering monomially equiva-
lent codes, giving rise to families of codes with a flexible amount of entanglement.
One of the main problems for quantum computing is the fault-tolerant implementa-

tion of non-Clifford gates. In Paper G, we study CSS-T codes, which are quantum codes
derived from the CSS construction that support the transversal T gate. We give a new
characterization of CSS-T codes, and we use it to determine which CSS-T codes can be
constructed from cyclic codes. Moreover, we also obtain a propagation rule for nonde-
generate CSS-T codes, and we use it to obtain CSS-T codes with better parameters than
those available in the literature.
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Resumen

Los sistemas modernos de comunicación digital a menudo sufren de corrupción de datos
debido al ruido, dando lugar a discrepancias entre los śımbolos enviados y recibidos. Los
códigos correctores de errores garantizan una transmisión fiable y rápida de la información
en tales sistemas al agregar śımbolos redundantes. La Teoŕıa Algebraica de Códigos juega
un papel importante en muchos aspectos diferentes de la comunicación, aśı como en la crip-
tograf́ıa y la computación cuántica. Esto se debe a que la estructura algebraica adicional de
los códigos algebraicos nos permite derivar propiedades adicionales de los mismos. Dado
que estas propiedades caracterizan el rendimiento del código para ciertas aplicaciones,
podemos considerar o diseñar códigos que sean adecuados para cada contexto. En par-
ticular, en esta tesis estamos interesados en usar herramientas de Álgebra Conmutativa
para derivar propiedades de códigos lineales. Nos centramos principalmente en códigos de
evaluación, ya que tienen una conexión natural con el Álgebra Conmutativa, pero también
consideramos otros tipos de códigos como los códigos ćıclicos (que pueden verse como
subcódigos subcuerpo de los códigos de evaluación) o los códigos producto de matrices.

Muchos aspectos de los códigos de evaluación pueden entenderse mediante el ideal de
anulación del conjunto de puntos considerado. Una pregunta natural que surge es cómo
calcular este ideal de anulación. Cuando se consideran los puntos de evaluación sobre el
espacio af́ın, este cálculo es sencillo. Sin embargo, en el caso proyectivo, generalmente se
tiene que calcular el radical de un ideal. En el Art́ıculo A, damos una forma alternativa y
más eficiente de calcular el ideal de anulación utilizando la saturación con respecto al ideal
homogéneo maximal. Otra opción para estudiar los códigos de evaluación sobre el espacio
proyectivo es considerar un conjunto de representantes fijados de los puntos, considerados
como un subconjunto del espacio af́ın, y su ideal de anulación. En los Art́ıculos B y C,
obtenemos una base de Gröbner universal para este ideal de anulación cuando el conjunto
de puntos corresponde a ciertos subconjuntos de la recta proyectiva o a todo el espacio
proyectivo.

Obtener códigos largos con buenos parámetros sobre un cuerpo finito pequeño, lo cual
es deseable para aplicaciones, es un problema complicado en general. Una manera de
lograr esto es considerar códigos con buenos parámetros sobre un cuerpo grande (por
ejemplo, códigos Reed-Solomon), y luego considerar sus subcódigos subcuerpo. El código
resultante generalmente tiene menor dimensión que el código original, y obtener bases
para los subcódigos subcuerpo (lo cual también determina la dimensión) es uno de los
principales problemas a estudiar cuando se trabaja con subcódigos subcuerpo. Utilizando
las bases de Gröbner mencionadas anteriormente, en los Art́ıculos B y C obtenemos bases
para los subcódigos subcuerpo de los códigos Reed-Solomon proyectivos y los códigos Reed-
Muller proyectivos en muchos casos. Un enfoque alternativo para este problema también
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Introduction

se presenta en el Art́ıculo D, utilizando una construcción recursiva para los códigos Reed-
Muller proyectivos.
El interés por los pesos de Hamming generalizados de un código lineal surge del hecho de

que determinan su rendimiento en el canal wire-tap de tipo II. Desde que fueron introduci-
dos por Wei, se han encontrado muchas más aplicaciones para ellos, como la decodificación
en lista o los esquemas de compartición de secretos. En el Art́ıculo D, proporcionamos
cotas inferiores y superiores para los pesos de Hamming generalizados de los códigos Reed-
Muller proyectivos, determinando los valores verdaderos en muchos casos. Generalizando
las ideas del Art́ıculo D, en el Art́ıculo H también proporcionamos cotas para los pesos
de Hamming generalizados de los códigos producto de matrices. Como muestra de nue-
stros resultados, obtenemos el valor exacto de los pesos de Hamming generalizados de los
códigos producto de matrices obtenidos a partir dos códigos Reed-Solomon.
El desarrollo de la computación cuántica y la comunicación cuántica fiable requiere

corrección de errores para lidiar con el ruido y la decoherencia. Para realizar la cor-
rección de errores, podemos considerar códigos cuánticos estabilizadores. La construcción
CSS proporciona una forma de construir dichos códigos utilizando códigos lineales clásicos
auto-ortogonales. Además, consideramos dos aspectos adicionales espećıficos de los códigos
cuánticos: podemos asumir entrelazamiento previo entre el codificador y el decodificador,
dando lugar a códigos cuánticos de corrección de errores asistidos por entrelazamiento;
y también podemos considerar dos tipos diferentes de errores, errores de qudit-flip y er-
rores de phase-shift, lo que da lugar a los códigos cuánticos asimétricos. La construcción
CSS se puede generalizar para cubrir estos casos considerando un par de códigos lineales
clásicos y sus distancias mı́nimas. La dimensión de su hull relativo da el parámetro c,
que es el número mı́nimo requerido de pares entrelazados maximalmente. Por lo tanto,
en esta situación más general no requerimos ninguna condición de auto-ortogonalidad,
pero tenemos un parámetro adicional que calcular. En el Art́ıculo B, hemos utilizado
los subcódigos subcuerpo de los códigos Reed-Solomon proyectivos para construir códigos
cuánticos de corrección de errores asistidos por entrelazamiento tanto simétricos como
asimétricos.
Dado que hemos visto que la dimensión del hull determina el parámetro c del código

cuántico correspondiente, el estudio de los hulls de los códigos Reed-Muller proyectivos
sobre el plano proyectivo realizado en el Art́ıculo E determina todos los parámetros de los
códigos cuánticos correspondientes. El entrelazamiento puede mejorar la tasa de trans-
misión del código cuántico correspondiente, pero mantenerlo a lo largo del tiempo puede
ser costoso. Por lo tanto, este compromiso debe ser analizado para cada aplicación, y
esto también motiva la obtención de códigos con diferentes requisitos de asistencia por
entrelazamiento. En el Art́ıculo F, estudiamos cómo cambiar la dimensión del hull de
los códigos Reed-Muller proyectivos considerando códigos monomialmente equivalentes,
dando lugar a familias de códigos cuánticos con requisitos flexibles de entrelazamiento.
Uno de los principales problemas para la computación cuántica es la implementación

tolerante a fallos de puertas non-Clifford. En el Art́ıculo G, estudiamos los códigos CSS-
T, que son códigos cuánticos derivados de la construcción CSS que soportan la puerta
transversal T . Damos una nueva caracterización de los códigos CSS-T, y la usamos para
determinar qué códigos CSS-T pueden construirse a partir de códigos ćıclicos. Además,
obtenemos una regla de propagación para los códigos CSS-T no degenerados, y la usamos
para obtener códigos CSS-T con mejores parámetros que los disponibles en la literatura.
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Introduction

Linear codes, which were originally considered for reliable communication protocols, have
found many different applications during the last few decades: secret sharing, post-
quantum cryptography, quantum error-correction and quantum fault-tolerant computa-
tion, secure multiparty computation, etc. For each particular application, one needs to
consider different aspects beyond the basic parameters of the codes involved. Two exam-
ples of these aspects of linear codes which are relevant to this thesis are the generalized
Hamming weights and the hulls (for both the Euclidean and Hermitian inner products).
One can impose additional structure on the codes considered to gain insight into these ad-
ditional properties. A flexible framework for this purpose is provided by evaluation codes,
which are obtained by evaluating functions at certain sets of points. Depending on the
choice of functions and points, it is possible to use techniques from Algebraic Geometry
and Commutative Algebra to study the properties of the codes involved.

In this thesis, we further explore the connections between Commutative Algebra and
Coding Theory, with a particular focus on applications to quantum codes. This intro-
duction provides an overview of the main results obtained during the development of the
thesis, and it is organized according to several transversal topics which link the publica-
tions associated to this thesis together.

In Section 1, we introduce the main tools from Commutative Algebra that we use for
the rest of the sections, which can be found in Papers A and C. In Section 2, we use the
aforementioned tools to obtain bases for the subfield subcodes of projective Reed-Solomon
codes and projective Reed-Muller codes. In Section 3, we obtain bounds for the generalized
Hamming weights of projective Reed-Muller codes (Subsection 3.1) and matrix-product
codes (Subsection 3.2). Finally, in Section 4, we derive quantum error-correcting codes
appropriate for both quantum communication (Subsection 4.1) and fault-tolerant quantum
computing (Subsection 4.2), using the results from Sections 1 and 2 (mainly for the case
of quantum communication).

Since in Section 2 we consider several fields, mainly Fqs and Fq, we note now that all
the codes are considered to be over Fq, except in Section 2, where the original codes
are considered over Fqs and their subfield subcodes over Fq. All the references from this
chapter correspond to the global bibliography at the end of this thesis, which collects all
the references mentioned in this introduction and in the publications.

1 Vanishing ideals and Coding Theory

We start this section by introducing evaluation codes, which are one of the main objects
of study of this work. Let Fq be a finite field, let R = Fq[x1, . . . , xm], and let I ⊂ R be
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an ideal. We denote by X = VFq(I) = {P1, . . . , Pn} ⊂ Am the finite set of rational points
in which all the polynomials of I vanish. We denote its vanishing ideal by I(X ), and we
define the evaluation map

evX : R/I(X ) → Fn
q , f + I(X) 7→ (f(P1), . . . , f(Pn)) .

This evaluation map provides an isomorphism of Fq-vector spaces R/I(X ) ∼= Fn
q . We

can consider L a vector subspace of R/I(X ) and define the affine variety code C(I, L) as
the image of L under the evaluation map evX . That is:

C(I, L) := evX (L) = {evX (f + I(X )) | f + I(X ) ∈ L}.

One of the key aspects of evaluation codes is that, since evX is an isomorphism, we
can identify the codewords of C(I, L) with (classes of) polynomials. Thus, we can use
polynomial-related techniques to gain information about the code C(I, L).

Following a similar idea, one can consider evaluation codes over the projective space
Pm. Let I ⊂ S = Fq[x0, . . . , xm] be a homogeneous ideal, and let X = VPm(I) = {[P1], . . . ,
[Pn]} ⊂ Pm be the finite set of projective points defined by I with representatives Pi. As
before, if we denote the vanishing ideal of X by I(X), we can define the following Fq-linear
map for each degree d:

evd : Sd → Fn
q , f 7→

(
f(P1)

f1(P1)
, . . . ,

f(Pn)

fn(Pn)

)
,

where fi ∈ Sd are fixed homogeneous polynomials satisfying fi(Pi) ̸= 0. The image of Sd

under evd, denoted by CX(d), is called a projective Reed-Muller type code of degree d on X.
By definition, I(X)d = ker evd. Thus, Sd/I(X)d ∼= CX(d). It can easily be checked that the
basic parameters of the code (length, dimension and minimum distance) do not depend on
the choice of the polynomials fi. These codes have been studied in various contexts [27,28,
125] and they provide a nice connection between Coding Theory and Commutative Algebra
[33, 60, 96, 131]. For example, the length of these codes is given by n = deg(S/I(X)), and
the dimension is given by k = HX(d) = dim(Sd/I(X)d). Furthermore, the minimum
distance of CX(d), and, more generally, its generalized Hamming weights (which we will
introduce in later section), can also be expressed in terms of invariants of the ideal [33,96].

Therefore, the vanishing ideal I(X) plays a crucial role in studying this family of codes.
In many cases, the set of points X is usually given as the projective variety defined by
a homogeneous ideal, and one may wonder how to compute I(X) from this ideal. If
we consider first an affine variety X defined by an ideal I ⊂ R instead, the answer is
straightforward. The ideal Iq = I + I(Am) = I + ⟨xq1 − x1, . . . , x

q
m − xm⟩ satisfies

VFq
(Iq) = VFq(Iq) = VFq(I) = VFq(I(X)) = X .

By Seidenberg’s Lemma [85, Prop. 3.7.15], Iq is radical. Hence, in this case Iq = I(X )
by Hilbert’s Nullstellensatz (also see [55]).

We can replicate this idea in the projective case and consider, for a homogeneous ideal
I ⊂ S, the ideal Iq = I + I(Pm), where

I(Pm) = ⟨{xqixj − xix
q
j , 0 ≤ i < j ≤ m}⟩

4



Introduction

was obtained in [99]. However, Iq is not radical in general. In fact, we have observed that
this ideal is radical only in very specific cases. Since the computation of the radical of an
ideal may be computationally intensive, this raises the question of finding easier ways to
compute I(X). In Paper A, we obtain the following result.

Theorem 1.1 [Thm. A.2.10]. Let I be an homogeneous ideal such that (I(Pm) : I) ̸=
I(Pm). Let X = VPm(I) and m = (x0, . . . , xm) the homogeneous maximal ideal. Then

I(X) = (I + I(Pm)) : m∞.

The condition (I(Pm) : I) ̸= I(Pm) is equivalent to having X ̸= ∅, which is the case
we are interested in for Coding Theory. Thus, this result provides a more efficient way of
computing I(X) by using the saturation with respect to the homogeneous maximal ideal
instead of computing the radical, since the saturation is regarded as a less computationally
intensive operation than obtaining the radical.

Another approach to study Reed-Muller type codes is to fix the representatives of the
points of Pm. Indeed, we can fix the standard representatives, that is, for each point in
Pm, we consider the representative with the leftmost nonzero coordinate equal to 1. In
this way, we obtain a set of representatives, denoted Pm, which can be regarded as a
subset of Am+1. Analogously, from X ⊂ Pm we obtain its set of standard representatives
X ⊂ Pm ⊂ Am+1. We can extend the definition of evX to S, and then we can consider
the code evX(Sd), which is monomially equivalent to CX(d). This gives the isomorphism

evX(Sd) ∼= Sd/(I(X) ∩ Sd) ∼= (Sd + I(X))/I(X),

and we can also study the properties of the code evX(Sd) (or CX(d)) by studying the ideal
I(X). To compute I(X), first we consider I(Pm), for which we have the following result
from Paper C.

Theorem 1.2 [Thm. C.4.1]. The vanishing ideal of Pm is generated by:

I(Pm) =⟨x20 − x0, x
q
1 − x1, x

q
2 − x2, . . . , x

q
m − xm, (x0 − 1)(x21 − x1),

(x0 − 1)(x1 − 1)(x22 − x2), . . . , (x0 − 1) · · · (x2m−1 − xm−1), (x0 − 1) · · · (xm − 1)⟩.

Moreover, these generators form a universal Gröbner basis of the ideal I(Pm), and we
have that

in(I(Pm)) = ⟨x20, x
q
1, x

q
2, . . . , x

q
m, x0x

2
1, x0x1x

2
2, . . . , x0x1 · · ·x2m−1, x0x1 · · ·xm⟩.

With this result, we can argue as before and, if we consider a homogeneous ideal I such
that VFq(I) = X, then Iq = I + I(Pm−1) is radical by Seidenberg’s Lemma [85, Prop.
3.7.15], and Iq = I(X) (again, also see [55]).

The most well known family of projective Reed-Muller type codes are obtained when
one considers X = Pm. In that case, the code evX(Sd) is called a projective Reed-Muller
code of degree d, and is denoted by PRMd(q,m), or by PRMd(m) if there is no confusion
about the field. This family of codes was introduced in [88], and their basic parameters
were studied in [125]. In particular, from [125] we have the following results (for the
minimum distance, also see [56,126]).
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Theorem 1.3. The projective Reed-Muller code PRMd(q,m), 1 ≤ d ≤ m(q − 1), is an
[n, k]-code with

n =
qm+1 − 1

q − 1
,

k =
∑

t≡d mod q−1,0<t≤d

m+1∑
j=0

(−1)j
(
m+ 1

j

)(
t− jq +m

t− jq

) .

For the minimum distance, we have

wt(PRMd(q,m)) = (q − ℓ)qm−r−1, where d− 1 = r(q − 1) + ℓ, 0 ≤ ℓ < q − 1.

Theorem 1.4. Let 1 ≤ d ≤ m(q − 1) and let d⊥ = m(q − 1)− d. Then

PRM⊥
d (q,m) = PRMd⊥(q,m) if d ̸≡ 0 mod q − 1,

PRM⊥
d (q,m) = PRMd⊥(q,m) + ⟨(1, . . . , 1)⟩ if d ≡ 0 mod q − 1.

In [89], it is shown that the parameters of projective Reed-Muller codes can outperform
those of affine Reed-Muller codes. However, projective Reed-Muller codes have received
much less attention than their affine counterpart, and a substantial part of this thesis is
devoted to filling this gap.
To study PRMd(m), we study first how to work over the quotient ring S/I(Pm), which

contains (Sd + I(Pm))/I(Pm) ∼= PRMd(m). From Macaulay’s classical result [42, Thm.
15.3], the monomials not contained in in(Pm) (sometimes called the footprint) form a basis
for S/I(Pm). Therefore, using Theorem 1.5, in Paper C we obtain the following basis.

Lemma 1.5 [Lem. C.4.3]. The set given by the classes of the following monomials

{xa11 · · ·xamm , x0x
a2
2 · · ·xamm , . . . , x0x1 · · ·xm−2x

am
m , x0 · · ·xm−1 | 0 ≤ ai ≤ q − 1, 1 ≤ i ≤ m}

is a basis for S/I(Pm).

One can check that there are exactly qm+qm−1+ · · ·+q+1 = (qm+1−1)/(q−1) = |Pm|
monomials in the basis.

Example 1.6. We have in(I(P 1)) = ⟨x21, x
q
2, x1x2⟩ and in(I(P 2)) = ⟨x21, x

q
2, x

q
3, x1x

2
2,

x1x2x3⟩. For q = 4, we have the following footprints:

x0

x1
S/I(P 1)

x1

x2

x0

S/I(P 2)

6



Introduction

We have used different colors to show the correspondence between the number of mono-
mials in the footprint and |Pm|. For m = 2 and q = 4, we obtain 42 = 16 monomials
in black, which is the number of points of A2, and 4 + 1 = 5 monomials in blue or red,
corresponding to the line at infinity, which can be regarded as an affine line (monomials
in blue) and a point at infinity (monomial in red).

Additionally, in Theorem C.4.4, we prove how to reduce any monomial with respect to
the Gröbner basis from Theorem 1.2, thus obtaining its expression in terms of the basis
from Lemma 1.5. These are the main tools we use to study projective Reed-Muller codes
and to obtain applications in the following sections.

2 Subfield subcodes

Given a code C ⊂ Fn
qs , its subfield subcode is the linear code C ∩ Fn

q , which we denote Cq

(it can be denoted by Cσ as well). Considering subfield subcodes is a standard technique
for constructing long linear codes over a small finite field. For instance, BCH codes can
be seen as subfield subcodes of Reed-Solomon codes [13]. In the multivariate case, the
subfield subcodes of J-affine variety codes are well known [47] (in particular, the subfield
subcodes of Reed-Muller codes) and have been used for several applications [46, 52]. The
main problem that arises when working with subfield subcodes is the computation of a
basis for the code, which also gives the dimension. In this section, we study the subfield
subcodes of projective Reed-Solomon codes, which can be regarded as doubly extended
BCH codes, and projective Reed-Muller codes. Throughout this section, the polynomial
rings are understood to have coefficients in Fqs , and the codes are understood to be over
Fqs except when considering subfield subcodes, which are assumed to be over Fq.

We introduce first projective Reed-Solomon codes. We consider X ⊂ P 1 (over Fqs),
and the polynomial ring S = Fqs [x0, x1]. Given ∆ ⊂ {0, 1, . . . , n − 1}, we define d(∆) :=
max{i | i ∈ ∆}. The projective Reed-Solomon code associated to ∆ and X is the code
generated by

{evX(x
d(∆)−i
0 xi1) | i ∈ ∆},

which will be denoted by PRS(X,∆). Given a degree 1 ≤ d ≤ qs, the most standard
definition of projective Reed-Solomon code in the literature is the code PRS(P 1,∆d),
where ∆d := {0, 1, . . . , d}. The code PRS(P 1,∆d) is also called doubly extended Reed-
Solomon code and its parameters are [qs +1, d+1, qs − d+1]. This code can be regarded
as a projective Reed-Muller code in 1 variable.

For the evaluation points X, we are going to consider a subgroup of the multiplicative
group F∗

qs , plus zero and the point at infinity. Indeed, given N such that N − 1 | qs − 1,

we define YN to be the zero locus of ⟨xN − x⟩, that is, a multiplicative subgroup of
F∗
qs plus zero, and XN = ({1} × Yn) ∪ {(0, 1)} ⊂ P 1. For convenience, we will denote

PRS(N,∆) := PRS(XN ,∆). With this notation, doubly extended Reed-Solomon codes
are denoted by PRS(qs,∆d). In general, for the codes PRS(N,∆) we have the parameters
[N + 1, |∆|,≥ N − d(∆) + 1].

We will say that a polynomial evaluates to Fq in X if evX(f) ∈ Fn
q . The following result,

which partially appears in Papers B and C, is crucial for relating the subfield subcodes of
codes over the affine space and the projective space.

7
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Lemma 2.1 [Lem. B.3.1 and Lem. C.2.6]. Let XN ⊂ P 1. Then f ∈ Fqs [x0, x1] eval-
uates to Fq in XN ⇐⇒ f(1, x1) evaluates to Fq in YN and f(0, 1) is in Fq. For
the case m ≥ 2, one has that f ∈ Fqs [x0, . . . , xm] evaluates to Fq in Pm if and only
if f(1, x1, . . . , xm), f(0, 1, x2, . . . , xm), f(0, 0, 1, x3, . . . , xm),. . . , and f(0, 0, . . . , 0, 1, xm)
evaluate to Fq in Am,Am−1,Am−2, . . . ,A, respectively, and f(0, . . . , 0, 1) ∈ Fq.

Since bases for subfield subcodes of Reed-Solomon codes and the subfield subcodes of
affine Reed-Muller codes are known [47], by homogenizing those polynomials we get can-
didates for polynomials that evaluate to Fq in the projective space, because the homog-
enization will automatically satisfy that, when setting x0 = 1, the resulting polynomial
evaluates to Fq (the first condition in Lemma 2.1 for both P 1 and Pm). For simplicity, we
show next how to use this Lemma to obtain bases for the subfield subcodes of projective
Reed-Solomon codes only. The details for the case of projective Reed-Muller codes are in
Paper C. First, we need to introduce the notation of cyclotomic sets and trace functions.

For N such that N − 1 | qs − 1, we define ZN = {0} ∪ Z/⟨N − 1⟩, where we represent
the classes of Z/⟨N − 1⟩ by {1, . . . , N}. A subset I of ZN is called a cyclotomic set with
respect to q if q ·z ∈ I for any z ∈ I. I is said to be minimal (with respect to q) if it can be
expressed as I = {qi · z, i = 1, 2, . . . } for a fixed z ∈ I, and in that situation we will write
Iz := I and nz = |Iz|. We say z is a minimal representative of Iz if z is the least element
in Iz, and we will say it is a maximal representative of Iz if it is the biggest element. We
will denote by A the set of minimal representatives of the minimal cyclotomic cosets, and
by B the set of maximal representatives of the minimal cyclotomic cosets.

Given a degree d and a polynomial f(x1) ∈ Fqs [x1] with deg(f) ≤ d, its homogenization
up to degree d is the homogeneous polynomial fh(x0, x1) := xd0f(x1/x0) ∈ Fqs [x0, x1]d.
For each a ∈ A, we define the following trace map:

Ta : Fqs [x1]/I(YN ) → Fqs [x1]/I(YN ), f 7→ f + f q + · · ·+ f q(na−1)
,

and given ∆ ⊂ {0, 1, . . . , N − 1}, we denote ∆I :=
⋃

Ia⊂∆ Ia ⊂ ∆.

Consider f ∈ Fq[x1]. We choose for Ta(f) the representative of the class in Fqs [x1]/I(YN )
which has the exponents of each monomial reduced modulo qs − 1. Given d ≥ 1, if the
degree of Ta(f) is lower than or equal to d, then we define T h

a (f) := (Ta(f))h. With this
notation, in Paper B we obtain the following basis for PRS(N,∆)q.

Theorem 2.2 [Thm. B.3.4]. Let N | qs−1, let ∆ be a nonempty subset of {0, 1, . . . , N−1},
and let d = d(∆). Set ξb a primitive element of the field Fqnb . A basis for PRS(N,∆)q is
given by the image by evXN

of the following polynomials.

If Id ⊂ ∆: ⋃
b∈B|Ib⊂∆,b<d

{T h
b (ξrbx

b
1) | 0 ≤ r ≤ nb − 1} ∪ {T h

d (xd1)}.

If Id ̸⊂ ∆: ⋃
b∈B|Ib⊂∆

{T h
b (ξrbx

b
1) | 0 ≤ r ≤ nb − 1}.

As a corollary, one can deduce a formula for the dimension of these subfield subcodes.
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Corollary 2.3 [Cor. B.3.7]. The dimension of PRS(N,∆)q is the following:

dimPRS(N,∆)q =


∑

b∈B:Ib⊂∆

nb − (nd − 1) =
∑

b∈B:Ib⊂∆,b<d

nb + 1 if Id ⊂ ∆∑
b∈B:Ib⊂∆

nb otherwise

For the minimum distance, since PRS(N,∆)q ⊂ PRS(N,∆), we always have

wt(PRS(N,∆)q) ≥ N − d(∆) + 1.

For some applications (e.g., for quantum codes) it is useful to also have a basis for the
dual of the code. The following result is due to Delsarte [38] and is often used to study
the dual of subfield subcodes.

Theorem 2.4. Let C ⊂ Fn
qs be a linear code.

C⊥
q = (C ∩ Fn

q )
⊥ = Tr(C⊥),

where Tr : Fqs → Fq maps x to x+ xq + · · ·+ xq
s−1

and is applied componentwise to C⊥.

The dual of PRS(N,∆) is studied in Paper B. We show that PRS(N,∆)⊥ is not gen-
erated by the evaluation of some monomials unless p | N (where p is the characteristic
of Fqs) or wt(PRS(N,∆)) = 1. For the case p | N , we obtain a basis for PRS(N,∆)⊥ in
Proposition B.4.10. This result, together with Delsarte’s theorem, allows us to obtain a
basis for (PRS(N,∆)q)

⊥ in Theorem B.4.14.
Following the ideas from [53], we can evaluate at the zeroes of a trace (plus the point

at infinity). In that case, instead of having a formula for the dimension, we only have a
lower bound, which gives room for improvements in some cases. Indeed, by doing this, in
Paper B, we obtain codes with parameters [129, 90, 15]4, [129, 86, 16]4 and [129, 41, 44]4.
In [64], a construction for a code with parameters [129, 86, 16]4 is missing, and the pa-
rameters [129, 90, 15]4 and [129, 41, 44]4 exceed the best known values. By shortening and
puncturing, we obtain 22 new codes in total, whose parameters improve the ones in the
table or whose construction was missing.
For the case of projective Reed-Muller codes, for m = 2 we obtain explicit bases for

their subfield subcodes and for the duals thereof in Paper C. To understand the linear
independence of the evaluation of the polynomials involved, the crucial tool is considering
the normal form of these polynomials with respect to the Gröbner basis from Theorem
1.2. When increasing m, the computations get increasingly involved. We give now a
complementary approach, using the recursive construction from Paper D, which allows
us to obtain bases for the subfield subcodes of projective Reed-Muller codes for any m
for some particular degrees. We start with the aforementioned recursive construction.
We denote by RMd(m) the affine Reed-Muller code of degree obtained by evaluating the
polynomials of degree ≤ d in m variables.

Theorem 2.5 [Thm.D.3.1]. Let 1 ≤ d ≤ m(qs − 1) and let ξ be a primitive element in
Fqs. We have the following recursive construction:

PRMd(m) = {(u+ vξ,d, v) | u ∈ RMd−1(m), v ∈ PRMd(m− 1)},

where vξ,d := v × ξdv × · · · × ξ(q
s−2)dv × {0} = (v, ξdv, ξ2dv, . . . , ξ(q

s−2)dv, 0).

9
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This is reminiscent of what happens with binary Reed-Muller codes, which can be con-
structed recursively using the (u, u + v) construction. Also note that, more generally,
q-ary Reed-Muller codes can be constructed recursively using a matrix-product code con-
struction [16]. For some particular degrees, this construction translates for the subfield
subcodes.

Corollary 2.6 [Cor. D.4.2]. Let ξ ∈ Fqs be a primitive element. Let m > 1 and let
dλ = λ qs−1

q−1 for some λ ∈ {1, 2, . . . ,m(q − 1)}. Then we have

(PRMdλ(m))q = {(u+ vξ,dλ , v), u ∈ (RMdλ−1(m))q, v ∈ (PRMdλ(m− 1))q}.

As a consequence, we obtain:

dim((PRMdλ(m))q) = dim((RMdλ−1(m))q) + dim((PRMdλ(m− 1))q).

We see that, for those particular degrees, we obtain the dimension of the subfield subcode
in a recursive manner. The dimension of the subfield subcodes of affine Reed-Muller codes
is known, and the formula can be applied recursively until it depends on the projective
Reed-Muller codes over P2 or P1, for which we know the dimension of their subfield
subcodes by Papers B and C. In a similar recursive way, it is also possible to derive a basis
for (PRMdλ(m))q from bases of subfield subcodes of affine Reed-Muller codes (which are
known [47]) and subfield subcodes of projective Reed-Muller codes in less variables.

In Table 1 we show the parameters of some subfield subcodes of projective Reed-Muller
codes. All codes presented in Table 1 exceed the Gilbert-Varshamov bound, and some of
them have the best known parameters according to [64]. More examples can be found in
Papers C and D.

Table 1: Parameters of some subfield subcodes of projective Reed-Muller codes arising
from the recursive construction.

q s m λ n k wt(C) ≥
2 2 2 1 21 9 8
2 2 3 1 85 16 32
2 2 3 2 85 60 8
3 9 2 1 91 9 54
4 2 2 1 273 9 192
5 2 2 1 651 9 500
7 2 2 1 2451 9 2058

3 Generalized Hamming weights

The generalized Hamming weights (GHWs) of a code, introduced in [132], are a set of
parameters that generalizes the minimum distance of a code. As such, they give finer
information about the code, and, in terms of applications, they characterize the perfor-
mance of the code on the wire-tap channel of type II and as a t-resilient function [132],
and they also have applications to list decoding [62, 69]. Moreover, for certain families
of codes, they are interesting by themselves, e.g., for projective Reed-Muller codes, they
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give the maximum number of solutions of a system of homogeneous polynomial equations
in the projective space over a finite field. In this thesis, we have studied the GHWs of
projective Reed-Muller codes and matrix-product codes (which we will define later).

To introduce the GHWs of a code, we first start with the notion of support. Let C ⊂ Fn
q ,

and let D ⊂ C be a subcode. The support of D, denoted by supp(D), is defined as

supp(D) := {i | ∃ u = (u1, . . . , un) ∈ D, ui ̸= 0}.

The r-th generalized Hamming weight of C, denoted by dr(C), is defined as

dr(C) := min{|supp(D)| | D is a subcode of C with dimD = r}.

Remark 3.1. Note that we use the notation dr(C) for the r-th generalized Hamming
weight, and di for some particular degree (depending on i) in some results. There is no
confusion between the two notations since dr(C) always makes reference to the code C.

For ease of notation, throughout this thesis we will denote d0(C) = 0, and dr(C) = ∞
if r > dimC. The GHWs satisfy the following general properties for any linear code C,
as shown in [132].

Theorem 3.2 (Monotonicity). For an [n, k] linear code C with k > 0 we have

1 ≤ d1(C) < d2(C) < · · · < dk(C) ≤ n.

Corollary 3.3 (Generalized Singleton Bound). For an [n, k] linear code C we have

dr(C) ≤ n− k + r, 1 ≤ r ≤ k.

Remark 3.4. As a consequence of the previous results, for an MDS code C we have

dr(C) = n− k + r,

for all 1 ≤ r ≤ k.

In the following subsections, we show the results we have obtained in Papers D and H
regarding the GHWs of projective Reed-Muller codes and matrix-product codes.

3.1 GHWs of projective Reed-Muller codes

The GHWs of affine Reed-Muller codes were completely determined more than 20 years
ago in [72]. However, the computation of the GHWs of projective Reed-Muller codes in
general remains an open problem and only partial results are known [9, 17, 36]. In [11],
many of the previous results and hypotheses are collected, and the authors obtain the
GHWs of projective Reed-Muller codes in some cases for degree d < q. In Paper D, we
use the recursive construction from Theorem 2.5 to give a recursive lower bound for the
GHWs of a projective Reed-Muller code of any degree, which we show next (note that we
use q instead of qs, which is what we used in Section 2 since we were considering subfield
subcodes).

11
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Theorem 3.5 [Thm. D.5.7]. Let 1 ≤ d ≤ m(q − 1) and 2 ≤ r ≤ dim(PRMd(m)). We
consider

Y =

{
(α, γ) :

max{r − dimRMd−1(m), 0} ≤ α ≤ min{dimPRMd(m− 1), r}
max{r − dimRMd(m), 0} ≤ γ ≤ min{dimPRMd−(q−1)(m− 1), α}

}
.

Then we have
dr(PRMd(m)) ≥ min

(α,γ)∈Y
Bα,γ ,

where Bα,γ is defined as

Bα,γ :=max(dr−γ(RMd(m)), dr−α(RMd−1(m)))

+ max(dα(PRMd(m− 1)), dγ(PRMd−(q−1)(m− 1))).

We say that the bound is recursive because it bounds the GHWs of PRMd(m) using the
GHWs of affine Reed-Muller codes (which are known [72]), and the GHWs of projective
Reed-Muller codes in less variables. For m = 1, projective Reed-Muller codes are doubly
extended Reed-Solomon codes, which are MDS and, thus, we know their GHWs by Remark
3.4. With the GHWs of doubly extended Reed-Solomon codes, we can bound the GHWs
of projective Reed-Muller codes over P2, which can be used to bound the GHWs for
P3, etc. There is another bound for the GHWs of projective Reed-Muller codes, the
projective footprint bound, which is a generalization of the well known footprint bound
to the projective case [10,96]. In all the cases we have checked, the bound from Theorem
3.5 is greater than or equal to the projective footprint bound, and in many cases it is
strictly greater. Moreover, the bound from Theorem 3.5 has proven to be much less
computationally intensive to compute in our experiments than the projective footprint
bound.
Since this result mainly depends on the recursive construction from Theorem 2.5, in

Paper D we also use Theorem 2.6 to obtain a recursive bound for the GHWs of the
subfield subcodes of projective Reed-Muller codes for some degrees.
To complement the lower bound from Theorem 3.5, we obtain the following upper

bound.

Lemma 3.6 [Lem. D.5.8]. Let 2 ≤ r ≤ max{dimRMd−1(m),dimPRMd(m − 1)} and
1 ≤ d ≤ m(q − 1). Then

dr(PRMd(m)) ≤ min{dr(RMd−1(m)), q · dr(PRMd(m− 1))}.

Note that the previous result only gives a nontrivial bound if r ≤ dimRMd−1(m) or
r ≤ dimPRMd(m− 1). This upper bound, together with the monotonicity of the GHWs
3.2, allows us to obtain a criterion for verifying that the bound from Theorem 3.5 is sharp
in many cases. In Table 2, we show the values we obtain for q = 4 and m = 2. We use
dots when the GHWs grow by one unit when increasing r by one unit (note that, for these
values, we obtain the exact value of the GHWs). Thus, with the general properties of the
GHWs and our bounds, we obtain the exact value of the GHWs, except in 6 cases.
This table can be improved by considering the following result from [132].

Theorem 3.7 (Duality). Let C be an [n, k] code. Then

{dr(C) : 1 ≤ r ≤ k} = {1, 2, . . . , n} \ {n+ 1− dr(C
⊥) : 1 ≤ r ≤ n− k}.
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Table 2: Generalized Hamming weights for q = 4, m = 2.

d\r 2 3 4 5 6 7 8 9 10 11 · · · 20

1 20 21
2 15 16 19 20 21
3 10-11 11-12 14 15 16 18 19 20 21
4 5-7 8 9-10 10-11 12 13 14 15 16 17 · · ·
5 4 5-6 7 8 9 10 11 12 13 14 · · ·
6 3 4 5 6 7 8 9 10 11 12 · · · 21

The set {dr(C) : 1 ≤ r ≤ k} is called the weight hierarchy of the code C. From
Theorem 3.7 we see that the weight hierarchy of a code is completely determined by the
weight hierarchy of its dual, and vice versa. Since we know that, for d ̸≡ 0 mod q− 1, the
dual of a projective Reed-Muller code is also a projective Reed-Muller code by Theorem
1.4, for a given code PRMd(m) we can apply our bounds to its dual code and obtain
additional information about the weight hierarchy of PRMd(m). In this way, for the case
d ̸≡ 0 mod q− 1, we improve the values from Table 2 to the ones in Table 3. We note that
we obtain the exact value of all the GHWs with d ̸≡ 0 mod q − 1 in this case. Further
examples can be found in Paper D.

Table 3: Improved table of the generalized Hamming weights for q = 4, m = 2, with
d ̸≡ 0 mod q − 1.

d\r 2 3 4 5 6 7 8 9 10 11 · · · 18

1 20 21
2 15 16 19 20 21
4 5 8 9 11 12 13 14 15 16 17 · · ·
5 4 5 7 8 9 10 11 12 13 14 · · · 21

3.2 GHWs of matrix-product codes

Matrix-product codes (MPCs) were introduced by Blackmore and Norton in [16]. These
codes have been object of study for many different applications [50, 51, 92, 93]. From the
properties of the constituent codes, one can derive properties of the corresponding MPC.
Most notably, one can obtain a lower bound for the minimum distance of the MPC from the
minimum distances of the constituent codes [16], but one can also derive self-orthogonality
properties for some matrices [51,81,95] or decoding algorithms [73,74,77].

The aim of this subsection is to study the GHWs of a MPC in terms of those of its
constituent codes. By doing this, one can consider families of codes with known GHWs,
and derive different codes with bounded GHWs using the MPC construction. This allows
us to substantially expand the families of codes for which we have bounds for their GHWs.
Some of the results of in subsection are reminiscent of the results from Section 3.1, since
the techniques are inspired by the ones used in Paper D. This is mainly due to the fact
that the recursive construction from Theorem 2.5 resembles the (u, u + v) construction,
a particular case of a matrix-product code construction. We start by defining MPCs as
in [16].
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Definition 3.8. Let C1, . . . , Cℓ ⊂ Fn
q be linear codes of length n, which we call constituent

codes, and let A = (aij) ∈ Fℓ×h
q be an ℓ× h matrix, with ℓ ≤ h. The matrix-product code

associated to A and C1, . . . , Cℓ is denoted C = [C1, . . . , Cℓ] · A, and it is the set of all
matrix products [v1, . . . , vℓ] ·A, where vi = (v1i, . . . , vni)

t ∈ Ci is an n× 1 column vector,
for i = 1, . . . , ℓ. Thus, the codewords of C are n× h matrices

c =

v11a11 + · · ·+ v1ℓaℓ1 · · · v11a1h + · · ·+ v1ℓaℓh
...

. . .
...

vn1a11 + · · ·+ vnℓaℓ1 · · · vn1a1h + · · ·+ vnℓaℓh

 .

Let us denote by Ri = (ai,1, . . . , ai,h) the element of Fh
q given by the i-th row of A, for

1 ≤ i ≤ ℓ. We denote by d1(CRi) the minimum distance of the code CRi generated by
⟨R1, . . . , Ri⟩ in Fh

q . In [106] it is proven that

d1(C) ≥ min{d1(C1)d1(CR1), . . . , d1(Cℓ)d1(CRℓ
)}, (3.1)

where d1(D) denotes the minimum distance the code D. Moreover, in [74], the authors
prove that the previous bound is sharp if Cℓ ⊂ · · · ⊂ C1. When working with MPCs, it is
usual to consider the following condition, introduced in [16].

Definition 3.9. Let A be an ℓ × h matrix, and let At be the matrix formed by the first
t rows of A. For 1 ≤ ji < · · · < jt ≤ h, we denote by A(j1, . . . , jt) the t × t matrix
consisting of the columns j1, . . . , jt of At. A matrix A is non-singular by columns (NSC)
if A(j1, . . . , jt) is non-singular for each 1 ≤ t ≤ ℓ and 1 ≤ j1 < · · · < jt ≤ h. In particular,
an NSC matrix has full rank.

In [16] it is shown that, if A is NSC, then the codes CRi are MDS, for 1 ≤ i ≤ ℓ. This
implies that the bound (3.1) becomes

d1(C) ≥ min{hd1(C1), (h− 1)d1(C2), . . . , (h− ℓ+ 1)d1(Cℓ)} (3.2)

for the case of an NSC matrix. One of the goals of this subsection is to generalize the
bounds (3.1) and (3.2) to the case of the GHWs of C.
We start by considering a 2× 2 NSC matrix A. If we denote

A =

(
a11 a12
a21 a22

)
,

since A is NSC, we have a1j ̸= 0, 1 ≤ j ≤ 2, and we will assume (without loss of generality)
that a22 ̸= 0. The following result from Paper H bounds from below the GHWs of a MPC
in terms of the GHWs of sums and intersections of the constituent codes.

Theorem 3.10 [Thm.H.3.1]. Let C1, C2 ⊂ Fn
q , and let C = [C1, C2] ·A, with A as above.

Let 1 ≤ r ≤ dimC and consider

Y =

(α1, α2) :
max{r − dim(C1 + C2), 0} ≤ α1 ≤ min{dimC2, r}

max{r − dim(C1 + C2), 0} ≤ α2 ≤ min{dim(C1 ∩ C2), r}
α1 + α2 ≤ r

 .

Then
dr(C) ≥ min

(α1,α2)∈Y
Bα1,α2 ,

14



Introduction

where

Bα1,α2 = max{dr−α1(C1 + C2), dα2(C1 ∩ C2)}+max{dr−α2(C1 + C2), dα1(C2)}.

For the case in which the constituent codes are nested, a lower bound for the MPCs of
a code with any number of constituent codes is given in Paper H, in terms of the GHWs
of the constituent codes. We show next the explicit bounds we obtain for the case of two
and three constituent codes, which are the most frequent cases for applications.

Corollary 3.11 [Cor. H.4.3]. Let C2 ⊂ C1 ⊂ Fn
q , C = [C1, C2] · A, for some 2 × 2 NSC

matrix A. Consider 1 ≤ r ≤ dimC1 + dimC2, and let

Y =

{
(α1, α2) :

max{r − dimC1, 0} ≤ αi ≤ min{dimC2, r}, 1 ≤ i ≤ 2
α1 + α2 ≤ r

}
.

We consider

Bα1,α2 = max{dr−α1(C1), dα2(C2)}+max{dr−α2(C1), dα1(C2)}.

Then
dr(C) ≥ min

(α1,α2)∈Y
Bα1,α2 .

For the following result, when a subindex is greater than 3, we consider its reduction
modulo 3. For instance, for i = 2, we have αi+1 + αi+2 = α3 + α1.

Theorem 3.12 [Thm. H.4.4]. Let C3 ⊂ C2 ⊂ C1 ⊂ Fn
q and C = [C1, C2, C3] ·A, for some

3× 3 NSC matrix A. Let Z3,3,1 := Z3
≥0 ×Z3

≥0 ×Z≥0. Consider 1 ≤ r ≤
∑3

i=1 dimCi, and
let

Y =


(α, γ, β) ∈ Z3,3,1 :

0 ≤ γi ≤ dimC3, 1 ≤ i ≤ 3
max{r − dimC1, γi+1 + γi+2} ≤ αi, 1 ≤ i ≤ 3

αi+1 + αi+2 − γi ≤ β, 1 ≤ i ≤ 3

β ≤ min

{
3∑

i=1

(αi − γi), dimC2 +min{αi, 1 ≤ i ≤ 3}, r

}


.

For (α, γ, β) ∈ Y , we consider

Bα,γ,β =
3∑

i=1

max{dr−αi(C1), dβ−αi
(C2), dγi(C3)}.

Then we have
dr(C) ≥ min

(α,γ,β)∈Y
Bα,γ,β.

Note that Theorem 3.10 simplifies to Corollary 3.11 when assuming C2 ⊂ C1. Moreover,
for r = 1, both Corollary 3.11 and Theorem 3.12 reduce to the bound (3.2). Therefore,
they can be seen as a generalization of the usual bound for the minimum distance of
MPCs.
In Paper H, for the nested case we also provide an upper bound for the GHWs of MPCs,

which is very similar to the bound (3.1) (we recall that this bound is known to be sharp
for the nested case).
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Proposition 3.13 [Prop. H.5.1]. Let Cℓ ⊂ · · · ⊂ C1, and C = [C1, . . . , Cℓ] · A, where
A ⊂ Fℓ×h

q and has full rank. Let 1 ≤ r ≤ dimC1 and let 1 ≤ i ≤ ℓ be such that r ≤ dimCi.
Then

dr(C) ≤ dr(Ci)d1(CRi).

As a sample of what can be obtained with our results for particular families of codes, we
show the following result for Reed-Solomon codes. Here, RS(k) denotes a Reed-Solomon
code of length n ≤ q and dimension k.

Theorem 3.14 [Thm. H.6.1]. Let 1 ≤ k2 ≤ k1 ≤ n ≤ q, let A ⊂ F2×2
q be a NSC matrix,

and let RS(k1, k2) := [RS(k1),RS(k2)] ·A. For 1 ≤ r ≤ dimRS(k1, k2) = k1 + k2, we have

dr(RS(k1, k2)) =

{
2n+ r − (k1 + k2) if r > max{k1 − k2, k2},
min{2dr(RS(k1)), dr(RS(k2))} if r ≤ max{k1 − k2, k2}.

4 Applications to quantum error-correction

The interest in quantum computation is rapidly growing due to the possibility of imple-
menting algorithms with exponential speedups with respect to the classical counterparts,
e.g., Shor’s algorithm for finding prime factors of an integer [124]. In this setting, we are
mainly interested in quantum computing and quantum communication. In both scenarios,
due to noise and decoherence, the physical qudits can be subject to errors. Similarly to
the classical case, one can consider quantum error-correcting codes (QECCs), first intro-
duced by Shor [123], which allow us to recover the correct quantum state as long as the
amount of errors does not surpass the error-correction capabilities of the QECC. Unlike
the classical scenario, there are (at least) two types of errors we can consider for qudits,
namely qudit-flip and phase-shift errors, which are not equally likely to occur [79, 121].
This gives rise to asymmetric QECCs, which have two minimum distances, δx and δz,
meaning that they can correct up to ⌊(δx − 1)/2⌋ qudit-flip errors and ⌊(δz − 1)/2⌋ phase-
flip errors, respectively. However, most known families QECCs are symmetric, meaning
that they only consider one minimum distance δ = min{δx, δz}, that is, they are assumed
to have the same error-correction capabilities for each type of error. For instance, one of
the constructions we will see below only works for the symmetric case.

Focusing on the problem of constructing quantum codes, Calderbank and Shor [23], and
Steane [127], independently showed how to use classical codes to construct QECCs. These
constructions require self-orthogonal classical codes with respect to the Euclidean or Her-
mitian inner product, and the respective constructions are known as the CSS construction
and the Hermitian construction, respectively. By considering entanglement between the
encoder and the decoder, it is possible to construct entanglement-assisted error-correcting
codes (EAQECCs) [21,48] with higher rate than usual QECCs. Even though creating and
maintaining entanglement between the encoder and the decoder can be costly, the increase
in rate and the fact that EAQECCs can be constructed from classical codes that are not
necessarily self-orthogonal make these codes good candidates for quantum communication.
Since EAQECCs are a generalization of QECCs, we state now the CSS construction in its
general form for EAQECCs [48].
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Theorem 4.1 (CSS construction). Let Ci ⊂ Fn
q be linear codes of dimension ki, for

i = 1, 2. Then, there is an asymmetric EAQECC with parameters [[n, κ, δz/δx; c]]q, where

c = k1 − dim(C1 ∩ C⊥
2 ), κ = n− (k1 + k2) + c,

δz = wt
(
C⊥
1 \

(
C⊥
1 ∩ C2

))
and δx = wt

(
C⊥
2 \

(
C⊥
2 ∩ C1

))
.

With respect to the parameters of a quantum code, the length n is the number of physical
qudits used, the dimension κ is the number of logical qudits, and the meaning of δz and δx
in terms of error-correction capabilities was explained previously. Let δ∗z := d1(C

⊥
1 ) and

δ∗x := d1(C
⊥
2 ). If δz = δ∗z and δx = δ∗x, we say that the corresponding EAQECC is pure (or

nondegenerate), and we say it is impure (or degenerate) if δz > δ∗z or δx > δ∗x.
Regarding c, this parameter determines the minimum number required of maximally

entangled pairs. Note that if we take C1 ⊂ C⊥
2 , then c = 0. Indeed, the parameter c is

determined by the dimension of the relative hull of C1 with respect to C2, which is defined
in [3] as

HullC2(C1) := C1 ∩ C⊥
2 .

This justifies the study of the hulls of certain families of codes, since, together with the
minimum distance and dimension, they determine the parameters of the corresponding
EAQECC.
For the Hermitian construction, we have to introduce first the Hermitian inner product.

Let C ⊂ Fn
q2 . The Hermitian product of two vectors v, w ∈ Fn

q2 is defined as

v ·h w =
n∑

i=1

viw
q
i .

The Hermitian dual of a code C ⊂ Fn
q2 is defined as C⊥h := {v ∈ Fn

q2 | v·hw = 0, ∀ w ∈ C}.
With this notation, we can introduce the Hermitian construction [48].

Theorem 4.2 (Hermitian construction). Let C ⊂ Fn
q2 be a linear code of dimension k and

C⊥h its Hermitian dual. Then, there is an EAQECC with parameters [[n, κ, δ; c]]q, where

c = k − dim(C ∩ C⊥h), κ = n− 2k + c, and δ = d1(C
⊥h \ (C ∩ C⊥h)).

We note that this construction considers only the case of symmetric QECCs. Let δ∗ =
d1(C

⊥h). In the symmetric case we say that the corresponding EAQECC is pure (or
nondegenerate) if δ = δ∗, and impure (or degenerate) otherwise. Similarly to the Euclidean
setting, we can define the Hermitian hull of C as

HullH(C) = C ∩ C⊥h ,

which determines the parameter c for the EAQECCs obtained from the Hermitian con-
struction.

4.1 Quantum communication

In this section we highlight some of the results of this thesis which are better suited for
quantum communication, although the codes that we obtain in this section with c = 0
could also be considered for fault-tolerant computation.
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In Paper B, we use subfield subcodes of projective Reed-Solomon codes (mentioned in
Section 2) to construct EAQECCs with both the CSS construction and the Hermitian
construction. Recall the notation ∆I =

⋃
Ia⊂∆ Ia ⊂ ∆, and we also introduce ∆⊥ :=

{α ∈ {0, 1, . . . , N − 1} | α ̸= N − 1 − h, h ∈ ∆}. Also recall that N − 1 | qs − 1. The
following result shows the parameters of the asymmetric EAQECCs obtained with subfield
subcodes of projective Reed-Solomon codes.

Theorem 4.3 [Thm. B.5.11]. Let 1 ≤ d1, d2 ≤ N − 1, such that di ∈ B, for i = 1, 2, and
p | N . We consider ∆di = {0, 1, . . . , di} and we denote ∆′

di
:= ∆di \ {di}, for i = 1, 2. If

((∆′
d1
)I)

⊥ ⊂ (∆′
d2
)I, then we can construct an asymmetric EAQECC with parameters

[[N + 1,
∑

b∈B,b<d1

nb +
∑

b∈B,b<d2

nb + 2−N, δz/δx; 1]]q,

where δz ≥ N − d1 + 1, δx ≥ N − d2 + 1.

The codes from this construction are shown to outperform the ones obtained with BCH
codes in [49] in Paper B.

Given ai ∈ A, we denote by a′i the minimal element in A such that Ia′i = I−qai . Let

∆ =
⋃t

i=0 Iai . We denote ∆⊥h := {0, 1, . . . , N − 1} \
⋃t

i=0 Ia′i . With the Hermitian
construction, the following result is obtained using subfield subcodes of projective Reed-
Solomon codes.

Theorem 4.4 [Thm. B.5.15]. Let A = {a0 = 0 < a1 < a2 < · · · < az} be the set of
minimal representatives of the cyclotomic sets Iai, 0 ≤ i ≤ z, of {0, 1, . . . , N − 1} with
respect to q2. Let ∆ =

⋃t−1
i=0 Iai ∪ {at} such that d(∆) < N − 1 and ∆′′ ⊂ (∆′′)⊥h.

Then we can construct an EAQECC with parameters [[n, κ,≥ δ; c]]q, where n = N + 1,
κ = N + 1− 2

(∑t
i=0 nai

)
+ c, δ = at + 2 and c ≤ 1.

From this construction, we find 16 new EAQECCs over F2, which improve the table for
EAQECCs from [64].
In Paper E, we study the relative and Hermitian hull of projective Reed-Muller codes

over the projective plane. Since the dual of a projective Reed-Muller code is another
projective Reed-Muller code by Theorem 1.4 (if d ̸≡ 0 mod q − 1), to study the relative
hull we can study PRMd1(2) ∩ PRMd2(2) instead. A similar approach can be taken for
the Hermitian hull, but we focus on the relative hull now for simplicity. In Paper E, we
obtain the following result.

Corollary 4.5 [Cor. E.3.11]. Let 1 ≤ d1 < d2 ≤ 2(q−1). Let k1 = dimRMd1−1(2). If d1 ≡
d2 mod q − 1, then dim(PRMd1(2) ∩ PRMd2(2)) = dimPRMd1(2). If d1 ̸≡ d2 mod q − 1,
then

dim(PRMd1(2) ∩ PRMd2(2)) =


k1 if d2 ≤ q − 1,

k1 +min{d1, d2 − (q − 1)} if d1 ≤ q − 1 < d2,

k1 + d2 − q + 2 if q ≤ d1.

The techniques used to obtain this result are based on the results from Section 1. In
fact, in Paper E, we obtain a set of polynomials such that its image by the evaluation map
gives precisely the relative hull of the corresponding projective Reed-Muller codes. An
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interesting aspect we encountered is that the relative hull (and the Hermitian hull) is not
a monomial code in some cases, even though projective Reed-Muller codes are monomial
codes (in the sense that they can be generated by the evaluation of monomials). This
is specially relevant for the Hermitian case, and it makes the computation for that case
much more involved.
By obtaining the dimension of the relative and Hermitian hull, we find all the parameters

for the EAQECCs constructed with projective Reed-Muller codes over the projective plane.
We obtain the following results from the CSS construction.

Theorem 4.6 [Thm. E.4.4]. Let 1 ≤ d1 ≤ d2 < 2(q − 1), d1 + d2 ̸≡ 0 mod q − 1, d1 ̸=
q − 1 ̸= d2. Let k1 = dimRMd1−1(2) and k2 = dimRMd⊥2 −1(2), where d⊥2 = 2(q − 1)− d2.

Then we can construct an asymmetric EAQECC with parameters [[n, κ, δz/δx; c]]q, where
n = q2 + q + 1, κ = n − (dimPRMd1(2) + dimPRMd2(2)) + c, δz = wt(PRM⊥

d2
(2)),

δx = wt(PRM⊥
d1
(2)), and the value of c is the following:

1. If d1 + d2 < 2(q − 1):

c =

{
d1 + 1−min{d1, q − 1− d2} if d2 < q − 1,

d1 + 1 if q ≤ d2.

2. If d1 + d2 > 2(q − 1):

c =

{
k1 − k2 + d1 + 1 if d1 < q − 1,

k1 − k2 + q + 1−min{d⊥2 , d1 − (q − 1)} if q ≤ d1.

Moreover, this code is pure.

Since the use of entanglement provides both advantages (e.g., more rate) and disadvan-
tages (it can be costly to maintain entanglement), for each application one might require
different amounts of maximally entangled pairs. This gives rise to the study of families of
codes with flexibility regarding the parameter c. Such flexibility can be achieved by chang-
ing the dimension of the hull via monomially equivalent codes. For this purpose, we need
to introduce the following notation. The Schur product of two vectors x = (x1, . . . , xn)
and y = (y1, . . . , yn) in Fn

q is defined by

x ⋆ y := (x1y1, . . . , xnyn).

The Schur product of two codes C1, C2 ⊂ Fn
q , denoted by C1 ⋆ C2, is defined as the code

generated by the vectors
{c1 ⋆ c2 : ci ∈ Ci} ⊂ Fn

q .

The main result we use for the Euclidean case is the following theorem from [3].

Theorem 4.7. For i = 1, 2, let Ci be [n, ki]q codes with q > 2. For any ℓ with max{0, k1−
k2} ≤ ℓ ≤ maxwt((C1 ⋆C2)

⊥)−n+ k1, there exists a code C1,ℓ equivalent to C1 such that

dimHullC2(C1,ℓ) = ℓ.

In particular, if maxwt((C1 ⋆ C2)
⊥) = min{n, 2n − k1 − k2}, ℓ runs over all the possible

values of dimHullC2(C
′
1), where C ′

1 is a code equivalent to C1.
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For the Hermitian case, we obtain a similar result by combining the following results
from [31] and [91], respectively.

Theorem 4.8. Let C ⊂ Fq2 be a linear code. If there is a vector v ∈ ((C ⋆ Cq)⊥)q with
wt(v) = n, then ⟨v⟩ ⋆ C ⊂ (⟨v⟩ ⋆ C)⊥h, i.e., ⟨v⟩ ⋆ C is self-orthogonal with respect to the
Hermitian product.

Theorem 4.9. Let q > 2 and let C ⊂ Fn
q2 with dimHullH(C) = ℓ. Then there exists a

monomially equivalent code Cℓ′ with dimHullH(Cℓ′) = ℓ′, for each 0 ≤ ℓ′ ≤ ℓ.

In Paper F, we use these results to provide families of EAQECCs obtained with the
CSS and Hermitian constructions using projective Reed-Muller codes, as we show next.

Theorem 4.10 [Thm. F.3.7]. Let 1 ≤ d1 ≤ d2 < q − 2 such that d1 + d2 < q − 2.
Then we can construct a quantum code with parameters [[n, κ+ c, δz/δx; c]]q, for any 0 ≤
c ≤ dimPRMd1(m), where n = qm+1−1

q−1 , κ = n − (dimPRMd1(m) + dimPRMd2(m)),

δz ≥ wt(PRM⊥
d2
(m)) and δx ≥ wt(PRM⊥

d1
(m)).

Theorem 4.11 [Thm. F.4.6]. Let 1 ≤ d < q − 2. Then we can construct an EAQECC

with parameters [[n, κ+ c, δ; c]]q, for any 0 ≤ c ≤ dimPRMd(q
2,m), where n = q2(m+1)−1

q2−1
,

κ = n− 2(dimPRMd(q
2,m)) and δ ≥ wt(PRMd⊥(q

2,m)).

With these constructions, we obtain many codes surpassing the quantum Gilbert-
Varshamov bounds from [44, 98]. Moreover, we are also able to derive QECCs (without
entanglement assistance) with subfield subcodes of projective Reed-Muller codes, using
the results from Paper D.

4.2 Fault-tolerant quantum computing

For this subsection, we only consider the case q = 2, and we therefore write qubits instead
of qudits. To achieve fault-tolerant quantum computation, we can encode the physical
qubits using a QECC. By doing this, we obtain κ logical qubits which can be considered
resistant to errors. One of the main problems with this approach is obtaining QECCs
that implement the desired operations on the logical qubits. Particularly interesting are
implementations that only involve transversal gates on the physical qubits, since they split
into gates that act on individual physical qubits and they naturally mitigate the prolif-
eration of errors. However, due to Eastin–Knill theorem [41], it is not possible to find a
QECC that implements a universal gate set transversely. A common strategy to circum-
vent this limitation is to consider codes that implement the Clifford group transversely,
and then perform magic state distillation to apply a logical non-Clifford gate, usually the
T gate [20]. This is enough for implementing any gate, since adding a non-Clifford gate
to the Clifford group gives a universal gate set (this is well known for the binary case, and
for the general case it can be deduced from [103, Thm 6.5] and [104, Cor. 6.8.2]).
However, this requires a code implementing T transversely. In general, implementing

logical non-Clifford gates is more difficult than implementing logical Clifford gates, and
logical non-Clifford gates must be induced by a non-Clifford operation on the physical
gates [35, 63]. Moreover, Gottesman-Knill theorem [63] also implies that quantum com-
putation is only more powerful than classical computation when it uses gates outside the
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Clifford group. The previous discussion highlights the importance of finding transversal
implementations of non-Clifford gates. As we already mentioned before, the usual choice
for the non-Clifford gate to be implemented via the magic state distillation protocol is the
T gate due to its simplicity.

With this motivation, CSS-T were introduced in [111,112]. These are CSS codes which
support a transversal T gate, that is, applying T transversely on the physical qubits
gives a logical operation over the logical qubits. This is weaker than requiring the code
to implement T transversely on the logical qubits, but studying these codes gives good
candidates for codes that may implement logical non-Clifford operations.

Let C ⊂ Fn
2 and S ⊂ {1, . . . , n}. We denote by CS (resp. CS) the shortening (res.

puncturing) of C in the coordinates indexed by the elements in S. For x ∈ C, we denote
Z(x) := {1, . . . , n} \ supp(x), where supp(x) = {i | xi ̸= 0}. We introduce now the
definition of CSS-T codes as stated in [111].

Definition 4.12. Let C2 ⊂ C1 ⊂ Fn
2 . Then we say (C1, C2) is a CSS-T pair if C2 is

even-weighted and, for any x ∈ C2, the shortening (C⊥
1 )Z(x) contains a self-dual code.

Note that, given a CSS-T pair (D1, D2), the corresponding quantum code is obtained
from Theorem 4.1 by taking C1 = D2, C2 = D⊥

1 .

In general, using Definition 4.12 to check if a pair of codes is a CSS-T pair is not
efficient, since it would require to check a condition for every x ∈ C2. In Paper G, we
give an alternative definition by using the Schur product of codes, which we introduced
previously. We also define now the t-fold Schur product of C with itself: C⋆t := C ⋆ · · · ⋆ C︸ ︷︷ ︸

t

.

In Paper G we obtain the following result.

Theorem 4.13 [Thm. G.2.3]. Let C1 and C2 be binary codes of length n. The following
are equivalent.

(1) (C1, C2) is a CSS-T pair.

(2) C2 ⊂ C1, C2 is even-weighted, and for any x ∈ C2 the code C
Z(x)
1 is self-orthogonal.

(3) C2 ⊂ C1 ∩ (C⋆2
1 )⊥.

(4) C⊥
1 + C⋆2

1 ⊂ C⊥
2 .

Moreover, if (C1, C2) is a CSS-T pair then C2 is self-orthogonal.

The alternative condition (2) was already proved in [4], but it still requires to check
the self-orthogonality condition for every x ∈ C2, whereas (3) and (4) only depend on
global properties of the codes C1 and C2. With these alternative conditions, we define the
partially ordered set (poset) of CSS-T pairs. In Paper G, we study this poset and, as a
consequence, we obtain the following propagation rule for CSS-T pairs.

Corollary 4.14 [Cor. G.3.9]. Let (C1, C2) be a CSS-T pair such that the associated
[[n, k, d]] CSS-T code is nondegenerate. For any y ∈ C⊥

2 ∩ (C1 ⋆C2)
⊥ and y ̸∈ C1, the pair

(C1 + ⟨y⟩, C2) is a nondegenerate CSS-T pair with parameters

[[n, k + 1, d]].
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Using our characterization of CSS-T pairs, we determine the CSS-T pairs formed by
cyclic (and extended cyclic) codes. Take an integer s > 1 and consider the field extension
F2s/F2. We set n with n | 2s − 1. Let β ∈ F2s be a primitive n-th root of unity. For the
set Z/nZ, we will consider the representatives between 1 and n, i.e., Z/nZ = {1, 2, . . . , n}.

Definition 4.15. Let g ∈ F2[x] such that g divides xn − 1. The defining set is given by
J := {j ∈ Z/nZ : g(βj) = 0}, and the generating set by I := {i ∈ Z/nZ : g(βi) ̸= 0}.

We denote by C(I) the cyclic code generated by g. Note that cyclic codes can be
regarded as subfield subcodes of evaluation codes [13], and therefore some of the ideas
showed in Section 2 about cyclotomic sets and traces can be applied here. In Paper G, we
obtain the following characterization for the CSS-T pairs arising from cyclic codes.

Theorem 4.16 [Thm. G.4.8]. Let I1, I2 ⊂ Z/nZ be cyclotomic cosets. Then (C(I1), C(I2))
is a CSS-T pair if and only if:

(1) I2 ⊂ I1 and

(2) n ̸∈ (I1 + I1 + I2).

An analogous result holds for extended cyclic codes. The resulting CSS-T codes have
better parameters than the CSS-T codes in the current literature, namely the CSS-T
pairs arising from Reed-Muller codes [4], and triorthogonal codes [19, 70, 105]. Note that
triorthogonal codes not only support the transversal T gate, but they also induce the
logical T gate. Since this is a stronger condition than being CSS-T, it is natural that we
obtain better parameters.
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Abstract

We consider an homogeneous ideal I in the polynomial ring S = K[x1, . . . , xm] over a
finite field K = Fq and the finite set of projective rational points X that it defines in the
projective space Pm−1. We concern ourselves with the problem of computing the vanishing
ideal I(X). This is usually done by adding the equations of the projective space I(Pm−1)
to I and computing the radical. We give an alternative and more efficient way using the
saturation with respect to the homogeneous maximal ideal.
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Saturation and vanishing ideals

A.1 Introduction

The aim of this paper is to compute the vanishing ideal of a finite set of points in the
projective space. The motivation comes from Coding Theory, in which some projective
codes are defined using these type of ideals. In the affine case, the computation of the
vanishing ideal of a finite set of points is straightforward, but the projective case poses
some additional problems. It is known that the vanishing ideal can be obtained computing
the radical of a certain ideal, and we show that it can also be obtained computing the
saturation with respect to the homogeneous maximal ideal, which is more efficient.
Let K = Fq be a finite field, and let S = K[x1, . . . , xm] be the polynomial ring with

standard grading. Let I ⊂ S be an ideal. We denote by X = VFq(I) = {P1, . . . , Pn} ⊂ Am

the finite set of rational points in which all the polynomials of I vanish. Then we can
consider the vanishing ideal of X, I(X). With this notation we define the following
evaluation map:

evX : S/I(X) → Fn
q , f + I(X) 7→ (f(P1), . . . , f(Pn)) .

By the definition of I(X), this evaluation map is an isomorphism of Fq-vector spaces. If
we consider L a vector subspace of S/I(X), we can define the affine variety code C(I, L)
as the image of L under the evaluation map evX . That is:

C(I, L) = evX(L) = {evX(f + I(X)) | f + I(X) ∈ L}.

In the light of this definition one may wonder how to compute the ideal I(X). In this
affine setting, the answer is quite straightforward. The ideal Iq = I+⟨xq1−x1, . . . , x

q
m−xm⟩

satisfies
VFq

(Iq) = VFq(Iq) = VFq(I) = VFq(I(X)) = X.

By Seidenberg’s Lemma [13, Prop. 3.7.15], Iq is radical. Hence, in this case Iq = I(X)
and we obtain the vanishing ideal directly.
Following a similar idea, one can consider evaluation codes over the projective space

Pm−1. Let I ⊂ S be an homogeneous ideal. Again, we consider X = VPm−1(I) = {[P1], . . . ,
[Pn]} ⊂ Pm−1 the finite set of projective points defined by I with representatives Pi.
Denoting the vanishing ideal of X by I(X), we can define the following K-linear map for
each degree d:

evd : Sd → Kn, f 7→
(

f(P1)

f1(P1)
, . . . ,

f(Pn)

fn(Pn)

)
,

where fi ∈ Sd are fixed homogeneous polynomials verifying fi(Pi) ̸= 0. Then the image of
Sd under evd, denoted by CX(d), is called a projective Reed-Muller type code of degree d
on X. By definition, I(X)d = ker evd. Thus, Sd/I(X)d ∼= CX(d). It can easily be checked
that the basic parameters of the code (length, dimension and minimum distance) do not
depend on the choice of the polynomials fi. These codes have been studied in various
contexts [3–5,9, 17].
In order to compute I(X), as in the affine case, a natural idea would be to add the

equations of the projective space to the ideal I, and check whether the resulting ideal is
radical. These equations correspond to the generators of the vanishing ideal of the set of
all points in Pm−1 [15]:

I(Pm−1) = ⟨{xqixj − xix
q
j , 1 ≤ i < j ≤ m}⟩.
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We can define Iq = I + I(Pm−1) and, as before, if this ideal were radical, then it would
be equal to I(X). However, this ideal is not radical in general. In fact, we have observed
that this ideal is radical only in very specific cases. In general, computing the radical may
be computationally intensive. Thus, it is an interesting problem to find an easier way to
compute I(X).

In Theorem A.2.10, we prove that we can compute the vanishing ideal I(X) using the
saturation with respect to the homogeneous maximal ideal:

I(X) = (I + I(Pm−1)) : m∞).

We then ask ourselves if there are many cases in which there is no need to use the
saturation, i.e., I + I(Pm−1) = I(X). The answer is that this rarely happens, because it
is equivalent to the question of whether Iq is radical or not. Following this direction, in
Proposition A.2.15, we show that there are finite sets of points X ⊂ Pm−1 such that there
is no ideal I ⊂ S, besides I(X), such that I + I(Pm−1) = I(X).

A.2 Main result

Before providing the main result, we recall some well known results. The first one is often
referred as additivity of the degree.

Proposition A.2.1 [11, Lem. 5.3.11]. Let I ⊂ S be an homogeneous ideal and let I =
q1 ∩ · · · ∩ qm be its irredundant primary decomposition. Then

deg(S/I) =
∑

ht(qi)=ht(I)

deg(S/qi).

The vanishing ideal of a finite set of points satisfies many properties. We list some of
them below.

Lemma A.2.2 [14, Cor. 6.3.19]. Let [α] ∈ Pm−1, with α = (α1, . . . , αm), and let I[α] =
I({[α]}) its vanishing ideal. Then

I[α] = ({αixj − αjxi | 0 ≤ i < j ≤ m}) .

Remark A.2.3. In the previous lemma, at least one αk ̸= 0 for some k. Hence, we can
express I[α] in the following way:

I[α] = ({xi −
αi

αk
xk | i = 1, . . . , n, i ̸= k}).

Corollary A.2.4. The ideal I[α] is prime, deg(S/I[α]) = 1 and ht(I[α]) = m− 1.

Proof. All properties follow from the fact that S/I[α] ∼= K[xk] for some k, which is obvious
from the previous remark.

Remark A.2.5. If we have a finite subset X ⊂ Pm−1, then

I(X) =
⋂

[β]∈X

I[β].

Taking into account that each I[β] is prime, the previous expression is an irredundant
primary decomposition of I(X).
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Corollary A.2.6. Let X ⊂ Pm−1 be a finite subset. Then deg(S/I(X)) = |X|, ht(I(X)) =
m− 1, and S/I(X) is Cohen-Macaulay.

Proof. The first property follows from Proposition A.2.1 and the previous remark. The
second one follows from Corollary A.2.4 and the previous remark. The last one is deduced
from the fact that depth(I(X)) = 0 if and only if I(X) has an m-primary component, which
is not the case because of the previous remark, and the fact that dimS/I(X) = 1.

The following lemma is interesting because it relates the number of common zeros of a
set of polynomials to the degree of a certain ideal, which gives a relation between Coding
Theory and Commutative Algebra.

Lemma A.2.7 [9, Lem. 3.4]. Let X be a finite subset of Pm−1 over a field K, and let
I(X) ⊂ S be its vanishing ideal. If F = {f1, . . . , fr} is a set of homogeneous polynomials
of S \ {0}, then the number of points of VX(F ) (common zeroes of F which are in X) is
given by

|VX(F )| =

{
deg(S/(I(X), F )) if (I(X) : (F )) ̸= I(X),
0 if (I(X) : (F )) = I(X).

Lemma A.2.8 [8, Lem. 8]. Let I ⊂ J ⊂ S be unmixed homogeneous ideals with the same
height. If deg(S/I) = deg(S/J), then I = J .

The computation of the vanishing ideal only makes sense when X = VPm−1(I) ̸= ∅. One
can get X = ∅ in several ways, for example, if I is 0-dimensional, or if it has positive
dimension but no common zero of the homogeneous polynomials in I is in Pm−1 for the
corresponding field Fq. The following lemma gives an algebraic characterization of this
property.

Lemma A.2.9. Let I ⊂ S be an homogeneous ideal. Then X = VPm−1(I) = ∅ if and only
if (I(Pm−1) : I) = I(Pm−1).

Proof. We have X = VPm−1(I) = ∅ if and only if I ̸⊂ I[P ] for any [P ] ∈ Pm−1. We also
have that (I[P ] : I) = I[P ] if and only if I ̸⊂ I[P ] because I[P ] is prime. Therefore, I ̸⊂ I[P ]

for any [P ] ∈ Pm−1 if and only if (I(Pm−1) : I) = I(Pm−1) because

(I(Pm−1) : I) =
⋂

[P ]∈Pm−1

(I[P ] : I),

so the result is proved.

The natural way of computing I(X) from the point of view of Coding Theory is by taking
the radical of Iq = I + I(Pm−1), similarly to what is done in the affine case (although in
that case, Iq is always radical). For this, we have to prove that

I(X) =
√
I + I(Pm−1).

This can be seen as an application of Hilbert’s Nullstellensatz in the algebraic closure
of Fq, or can be proved directly as in [12, Thm. 3.13]. Inspired by the proof of the latter,
the following theorem shows a way to compute I(X) using the saturation with respect to
the homogeneous maximal ideal. This is also a natural way to compute I(X) from the
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point of view of Commutative Algebra, because we are getting rid of the 0-dimensional
components, which are meaningless in this projective setting. Note that saturation with
respect to a specific element has been used for similar purposes in [16, Cor. 4.4] for certain
projective binomial varieties.

Theorem A.2.10. Let I be an homogeneous ideal such that (I(Pm−1) : I) ̸= I(Pm−1).
Let X = VPm−1(I) and m = (x1, . . . , xm) the homogeneous maximal ideal. Then

I(X) = (I + I(Pm−1)) : m∞.

Proof. Again we denote Iq = I+I(Pm−1) and we are going to prove first that deg(S/Iq) =
deg(S/I(X)). We can apply Lemma A.2.7 to X = Pm−1 and a set of generators F of I.
We obtain:

|X| = |VPm−1(I)| = deg(S/Iq),

and because |X| = deg(S/I(X)) holds by Corollary A.2.6, we get the equality deg(S/Iq) =
deg(S/I(X)).
On the other hand, we have that

√
Iq = I(X). Thus, dim(S/Iq) = 1 and the primary

decomposition is

Iq = q1 ∩ · · · ∩ ql ∩Q,

where dim(S/qi) = 1, 1 ≤ i ≤ l, and Q is the whole ring S if Iq is equidimensional,
and an m-primary ideal otherwise. If we consider the irredundant primary decomposition
I(X) =

⋂
[Pi]∈X I[Pi], with |X| = n, then we get the equality

I[P1] ∩ · · · ∩ I[Pn] =
√
q1 ∩ · · · ∩

√
ql ∩

√
Q =

√
q1 ∩ · · · ∩

√
ql.

Reordering if necessary, we have that I[Pi] =
√
qi, 1 ≤ i ≤ n and l ≥ n. Tak-

ing into account that deg(S/Iq) = deg(S/I(X)), the additivity of the degree A.2.1 and
deg(S/I[Pi]) = 1 for all i, we get

|X| = n =
n∑

i=1

deg(S/I[Pi]) =
l∑

i=1

deg(S/qi) ≥ l.

As observed before, l ≥ n, which, together with the previous inequality, gives l = n.
Moreover, we deduce deg(S/qi) = 1 for all i, 1 ≤ i ≤ n. Therefore, using that I[Pi] =√
qi ⊃ qi, 1 ≤ i ≤ n and Lemma A.2.8 we have that qi = I[Pi], 1 ≤ i ≤ n. Finally, we

observe that

(Iq : m
∞) = (I[P1] : m

∞) ∩ · · · ∩ (I[Pn] : m
∞) ∩ (Q : m∞) = I[P1] ∩ · · · ∩ I[Pn] = I(X),

and the result holds.

Theorem A.2.10 gives a more efficient way of computing the vanishing ideal I(X) than
the usual way using the radical. For the computations we needed to choose between the dif-
ferent computer algebra systems, the main ones for Commutative Algebra are CoCoA [1],
Singular [6] and Macaulay2 [10]. We chose Macaulay2 for the examples on this occasion.
We have used a computer with 512GB of RAM and an AMD EPYC 7F52 processor.
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Example A.2.11. We consider the 3-dimensional rational normal scroll defined by the
equations given by the 2× 2 minors of the following matrix:

M =

(
x0 x1 x2 x3 x4 y0 y1 y2 y3 y4 z0 z1 z2 z3 z4
x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 z1 z2 z3 z4 z5

)
,

and let I be the homogeneous ideal defined by these equations. The number of rational
points of this variety on Fq is (q2 + q + 1)(q + 1) [4, Cor. 2.3]. We first consider the case
with q = 9. In this situation, |X| = 910, and the computation of the saturation with
Macaulay2 [10] takes 3.65 seconds. However, the computation of the radical of Iq takes
1108.15 seconds, which shows the big difference in efficiency between the two methods.

If we consider the case q = 11 instead, we have |X| = 1596. The saturation takes 5.08
seconds, and Macaulay2 [10] is not able to compute the radical of the ideal.

For this example, we have also considered Magma [2], which seems to have a well-
optimized algorithm to compute the radical over fields of positive characteristic. Although
the efficiency gap is reduced, the saturation is still more efficient than computing the
radical.

Remark A.2.12. It is always possible to obtain the vanishing ideal using the saturation
with respect to a single polynomial. Because of prime avoidance [7, Lemma 3.3] there is
a homogeneous polynomial f ∈ S such that f ̸∈ I[Pi], for every [Pi] ∈ X, i.e., f does not
vanish at any of the points of X. Then, following the proof of Theorem A.2.10, we get

(Iq : f
∞) =

 ⋂
[Pi]∈X

(I[Pi] : f
∞)

 ∩ (Q : f∞) =
⋂

[Pi]∈X

I[Pi] = I(X).

The problem is that finding such a polynomial f may not be easy. However, in some
specific examples, such as the following one, it can be done.

Example A.2.13. Let I be the homogeneous ideal of the rational normal curve defined
by the equations given by the 2× 2 minors of the matrix

N =

(
x0 x1 x2 x3 x4
x1 x2 x3 x4 x5

)
.

We work over the field F9, and we consider the polynomial f = x0 − x4 − x5. If we define
I9 = I + I(P5), then it is easy to check with Macaulay2 [10] that (I9 : f

∞) = (I9 : m
∞) =

I(X), and that f does not vanish at any of the points in X, i.e., (I(X) : f) = I(X).

Having seen how to compute the vanishing ideal I(X), one may wonder if there are many
cases in which Iq is saturated. If that were the case, we would not need to compute the
saturation and we would get the vanishing ideal directly. An equivalent question would
be to ask when the equality I + I(Pm−1) = I(X) holds. It is easy to see that if one takes
I = I(X), the vanishing ideal of a finite set of points X ⊂ Pm−1, then I(X) + I(Pm−1) =
I(X). Another trivial example would be to take an ideal I with VPm−1(I) = Pm−1. We
can also find some nontrivial examples, like the following one.
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Example A.2.14. Let K = F4 and X = [F2 × F2 × F4] ⊂ P2. We can compute the
vanishing ideal I(X) directly (intersecting the vanishing ideals of the points in X), but we
can also use [3, Prop. 2.11]. In any case, we obtain

I(X) = (x1x
2
2 + x21x2, x1x

4
3 + x41x3, x2x

4
3 + x42x3).

We consider the ideal I, obtained by replacing the primary component (x1, x2) of I(X) by
(x1, x2)

2. Clearly X = VP2(I). In this situation, it turns out that I + I(P2) = I(X). This
is easy to check by looking at the generators of these ideals:

I(P2) = (x1x
4
2 + x41x2, x1x

4
3 + x41x3, x2x

4
3 + x42x3),

I = (x1x
2
2 + x21x2, x1(x1x

4
3 + x41x3), x2(x1x

4
3 + x41x3), x2(x2x

4
3 + x42x3)),

I(X) = (x1x
2
2 + x21x2, x1x

4
3 + x41x3, x2x

4
3 + x42x3).

Similar examples can be constructed by considering X = Fpl ×Fpl ×Fpl′ , with l | l′, and
increasing the multiplicity of the component (x1, x2).

Even though we can construct several nontrivial examples, one can observe that in order
to do so we have not strayed away too much from I(Pm−1) and I(X) (we have just used an
ideal I(X) that shares some generators with I(Pm−1) and modified it a little). In fact, in
most cases we have encountered, Iq was not saturated. The next result shows that there
are some finite sets of points X such that there are no nontrivial homogeneous ideals I
with VPm−1(I) = X verifying I + I(Pm−1) = I(X).

Proposition A.2.15. Let X ⊂ Pm be a finite set of points such that the degree of the
elements of a minimal generating set of I(X) is lower than q+1. Then I + I(Pm) = I(X)
if and only if I = I(X).

Proof. Let I be an homogeneous ideal verifying I + I(Pm) = I(X). Obviously, I ⊂ I(X),
and we have to prove the other inclusion. The degree of the minimal generators of I(Pm)
is q + 1. Therefore, the minimal generators of I(X), of degree lower than q + 1, must all
be in I, which proves the result.

Example A.2.16. Let K = F4, and let X = [F2 × F2 × F2] ⊂ P2. The vanishing ideal
I(X) is the same as I(P2) in F2. Therefore, we have

I(X) = (x21x2 − x1x
2
2, x

2
1x3 − x1x

2
3, x

2
2x3 − x2x

2
3).

The generators of I(X) are of degree 3 < 5 = q+1. Consequently, we can use Proposition
A.2.15 to assert that there is no homogeneous ideal I, besides I(X), such that I+ I(P2) =
I(X).

In the proof of A.2.10 we showed that deg(S/Iq) = deg(S/I(X)). Also, taking into
account that dim(S/I(X)) = 1 and that

√
Iq = I(X), we get ht(Iq) = ht(I(X)). As

we have said, in most cases, Iq ̸= I(X). Consequently, we would have Iq ⊊ I(X), but
deg(S/Iq) = deg(S/I(X)). The following example illustrates this fact, which seems to
contradict [5, Lem. 2.10 (b)].
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Example A.2.17. We consider again the set X = [F2×F2×F4] ⊂ P2 from example A.2.14.
We can replace the primary component (x1, x3) by (x1, x3)

2 in the primary decomposition
of I(X), which gives the following ideal:

I = I(X)∩ (x1, x3)
2 = (x1(x1x

2
2+x21x2), x1(x1x2x3+x22x3), x1x

4
3+x41x3, x3(x2x

4
3+x42x3)).

We can define I4 = I + I(P2) and it is easy to check with Macaulay2 [10] that I4 ⊊ I(X),
ht(I4) = ht(I(X)) = 2 and deg(S/I4) = deg(S/I(X)), which contradicts [5, Lem. 2.10
(b)]. Increasing the multiplicity of any primary component of I(X), besides (x1, x2), we
get more examples of ideals I such that I4 = I + I(P2) is not saturated and has the same
degree and height as I(X). Note that this does not contradict Lemma A.2.8 since I4 is
not unmixed.
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B.1 Introduction

The subfield subcode of a linear code C ⊂ Fn
qs , with s ≥ 1, is the linear code C ∩ Fn

q .
Considering subfield subcodes is a standard technique for constructing long linear codes
over a small finite field. For instance, BCH codes are obtained in this way. They can be
regarded as subfield subcodes of Reed-Solomon codes and their duals [2]. In this work, we
study subfield subcodes of projective Reed-Solomon codes.

Reed-Solomon codes are constructed by evaluating one-variable polynomials at points
of the affine line. They have optimal parameters, although they cannot be defined over
a small finite field. Projective Reed-Solomon codes are constructed by evaluating two-
variable homogeneous polynomials at points of the projective line. When one evaluates at
all the points they are commonly called doubly extended Reed-Solomon codes. Subfield
subcodes of projective Reed-Solomon codes, when one evaluates at all the points of the
projective line, were studied in [3].

In this work we consider a more general setting: we may evaluate at fewer points to
define a projective Reed-Solomon code and then compute its subfield subcode. We provide
bases for both the subfield subcodes of projective Reed-Solomon codes and their duals and,
thus, a formula for their dimension. For the dual code, we use Delsarte’s Theorem B.4.1,
for which we need to study first the metric structure of the codes we are considering.
We also study the vanishing ideal of the points in which we evaluate, which allows us to
discuss linear independence between the traces that arise when using Delsarte’s Theorem.
Moreover, we estimate the minimum distance for both primary and dual codes. For the
primary code we simply use the bound given by the projective Reed-Solomon code, and
for the dual one we use a BCH-type bound.

Reed-Solomon and BCH codes have been extensively used to construct quantum codes
using the CSS construction, see for instance [4, 19, 27]. It is therefore natural to consider
subfield subcodes of projective Reed-Solomon for constructing quantum codes.

The construction of quantum computers has important consequences because of their
computing capabilities. Despite the fact that quantum mechanical systems are sensitive
to disturbances and arbitrary quantum states cannot be replicated, error correction is
possible. Quantum error-correcting codes are designed for protecting quantum information
from quantum noise and particularly decoherence. An important class of quantum error-
correcting codes are stabilizer codes; they can be derived from classical ones by using self-
orthogonal codes for the symplectic product [7]. One can also consider the Euclidean and
the Hermitian inner product, and we will call the resulting quantum error-correcting codes
QECCs. Entanglement-assisted quantum error-correcting codes (EAQECCs) constitute
an extension of quantum codes. EAQECCs make use of pre-existing entanglement between
transmitter and receiver to correct more errors [6, 15]. One virtue of this class of codes is
that one can get a quantum code from any linear code without any assumption on dual
containment. The main additional task for EAQECCs is to give formulae to obtain the
optimal number c of maximally entangled pairs of qudits needed.

Moreover, both for QECCs and EAQECCs one can consider the asymmetric case [16,25,
33]. Asymmetric quantum codes have a different error-correction capability for phase-shift
and qudit-flip errors. These two types of errors are not equally likely, and it is desirable
to construct quantum codes with a higher correction capability for phase-shift errors [25].

In this work, we provide EAQECCs with excellent parameters coming from different con-
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structions. In the Euclidean case, we are able to obtain both symmetric and asymmetric
EAQECCs with excellent parameters from subfield subcodes of projective Reed-Solomon
codes. A key fact for the construction of these codes and the computation of their parame-
ters is the knowledge of the parameters and structure of both the primary and dual codes.
We also obtain QECCs, i.e. EAQECCs without entanglement assistance, from subfield
subcodes of projective Reed-Solomon codes in some cases. By considering the Hermitian
inner product we are also able to obtain codes with excellent parameters. In fact, we
produce new parameters according to [21]. Furthermore, as we are giving several different
constructions using subfield subcodes of projective Reed-Solomon codes, this contributes
to expanding the known constellation of parameters for EAQECC.
Finally, we consider the codes in [18], Reed-Solomon, and BCH codes obtained by

evaluating at the roots of a trace function. We consider the projective version of the codes
in [18], that is, the subfield subcodes of projective Reed-Solomon codes evaluating at the
roots of a trace function and the point at infinity. This allows us to give classical linear
codes which are record in [21], and new EAQECCs.
Our results can be summarized as follows.
• We consider projective Reed-Solomon codes over the zero locus of xN − x (and the
point at infinity), where we evaluate an arbitrary set of monomials. We obtain bases
for the subfield subcodes of these codes in Theorem B.3.4.

• When p | N , bases for the duals of the subfield subcodes are obtained in Theorem
B.4.14.

• Considering sets of monomials whose exponents are a union of consecutive cyclo-
tomic sets and the next minimal element, we obtain EAQECCs with entanglement
parameter c ≤ 1 in Theorem B.5.5 and Theorem B.5.15. Some of the resulting codes
improve the table for EAQECCs from [21].

• Assuming p | N , by considering the sets of monomials {0, 1, . . . , di}, for some 1 ≤
d1, d2 ≤ N − 1, we obtain asymmetric EAQECCs with entanglement parameter
c = 1, which compare favorably with the current literature.

• By evaluating in the zeroes of the trace function, plus the point at infinity, and eval-
uating monomials whose exponents are a union of consecutive cyclotomic sets and
the next minimal element, we obtain linear codes with good parameters in Theorem
B.6.4, some of which improve the best known parameters in [21], see Example B.6.5.
Moreover, we obtain EAQECCs with good parameters and entanglement parameter
c ≤ 1 in Theorem B.6.6.

B.2 Preliminaries

We consider a finite field Fq of q elements with characteristic p, and its degree s extension
Fqs , with s ≥ 1. We consider the affine space A1 over Fqs and the polynomial ring
R = Fqs [x]. We choose a set of elements Y = {Q1, . . . , Qn} ⊂ A1 and its vanishing ideal
I(Y ) = ⟨

∏n
i=1(x −Qi)⟩, where we are regarding the points of A1 as elements in Fqs . We

define the following evaluation map

evY : R/I(Y ) → Fn
qs , f 7→ (f(Q1), . . . , f(Qn))Qi∈Y .

where we denote a polynomial and its class in the quotient ring R/I(Y ) in the same way.
Let ∆ be a subset of {0, 1, . . . , n− 1}. Then, the Reed-Solomon code associated to ∆ and
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Y , denoted by RS(Y,∆), is the code generated by

{evY (xi) | i ∈ ∆}.

The usual choices are ∆ = {0, 1 . . . , d} and Y = F∗
qs = Fqs \ {0}, which give a Reed-

Solomon code with parameters [qs − 1, d + 1, qs − d − 1]. This code can be extended by
evaluating at 0 as well, obtaining a code with parameters [qs, d+ 1, qs − d].

Let N > 1 be such that N − 1 | qs − 1. We can consider the set of points Y ∗
N =

{Q1, . . . , QN} given by the zero locus of I(Y ∗
N ) = ⟨xN−1 − 1⟩. In this case, Y ∗

N forms a
multiplicative subgroup of F∗

qs and it is already known how to obtain bases for its subfield
subcodes (see, for example, [22, 24]). Moreover, BCH codes can be defined as the duals
of the subfield subcodes of Reed-Solomon codes when we evaluate in a subgroup Y ∗

N [2].
Indeed, let α ∈ Fqs be a primitive (N − 1)th root of unity. C is a BCH code of designed
distance δ if it has as generator polynomial the least common multiple of the minimal
polynomials of the δ − 1 consecutive elements αb, αb+1, . . . , αb+δ−2, with b ≥ 1, which
implies that C is formed by the vectors over FN−1

q that are orthogonal to the rows of the
matrix

H =


1 αb α2b · · · α(N−2)b

1 αb+1 α2(b+1) · · · α(N−2)(b+1)

...
...

...
. . .

...

1 αb+δ−2 α2(b+δ−2) · · · α(N−2)(b+δ−2)

 . (B.2.1)

However, this is precisely the generator matrix of the Reed Solomon code over Fqs with
∆ = {b, b + 1, . . . , b + δ − 2} and Y = Y ∗

N . Furthermore, the vectors in FN−1
q that are

orthogonal to the rows of H are precisely the vectors of the subfield subcode of the dual
code of this Reed-Solomon code, which is therefore equal to the aforementioned BCH code.
In this situation, we say that H is a pseudo parity check-matrix for C.
Because of the previous discussion, throughout this work we will focus on evaluating

in subgroups of the form Y ∗
N unless stated otherwise. As before, we can also include the

evaluation of 0, which corresponds to considering instead the set YN , the zero locus of
I(YN ) = ⟨xN − x⟩. For the Reed-Solomon codes obtained by evaluating the associated
monomials to ∆ in YN we will use the notation RS(N,∆). The subfield subcode of the
code RS(N,∆) over Fq is denoted by RS(N,∆)q := RS(N,∆) ∩ FN

q . In this case, for the
sake of simplicity, we are also going to denote RN := R/I(YN ).
Now we are going to introduce some necessary definitions in order to obtain bases for

the codes RS(N,∆)q. We define ZN = {0} ∪Z/⟨N − 1⟩, where we represent the classes of
Z/⟨N − 1⟩ by {1, . . . , N}. A subset I of ZN is called a cyclotomic set with respect to q if
q · z ∈ I for any z ∈ I. I is said to be minimal (with respect to q) if it can be expressed
as I = {qi · z, i = 1, 2, . . . } for a fixed z ∈ I, and in that situation we will write Iz := I
and nz = |Iz|. We say z is a minimal representative of Iz if z is the least element in Iz,
and we will say it is a maximal representative of Iz if it is the biggest element. We will
denote by A the set of minimal representatives of the minimal cyclotomic cosets, and by
B the set of maximal representatives of the minimal cyclotomic cosets.

Example B.2.1. Consider the extension F9 ⊃ F3. We consider N = 9 and we have
ZN = {0} ∪ Z/⟨8⟩. We have the following minimal cyclotomic sets:

I0 = {0}, I1 = {1, 3}, I2 = {2, 6}, I4 = {4}, I5 = {5, 7}, I8 = {8}.

38



B.2. Preliminaries

The set of minimal representatives is A = {0, 1, 2, 4, 5, 8}, and the set of maximal repre-
sentatives is B = {0, 3, 4, 6, 7, 8}.

The dimension of the subfield subcodes of Reed-Solomon codes is already present in [22].
For the codes RS(N,∆)q it is possible to obtain a basis given by the evaluation of some
polynomials. For each a ∈ A, we define the following trace map:

Ta : RN → RN , f 7→ f + f q + · · ·+ f q(na−1)
,

and given ∆ ⊂ {0, 1, . . . , N − 1}, we denote ∆I :=
⋃

Ia⊂∆ Ia ⊂ ∆. The following result
gives a basis for the code RS(N,∆)q [13, Thm. 11].

Theorem B.2.2. Let ∆ be a subset of {0, 1, . . . , N − 1} and set ξa a primitive element of
the field Fqna . Then, a basis of the vector space RS(N,∆)q is given by the images under
the map evYN

of the set of classes in RN⋃
a∈A|Ia⊂∆

{Ta(ξraxa) | 0 ≤ r ≤ na − 1}.

As a consequence, we have that

dimRS(N,∆)q =
∑

Iz :Iz⊂∆

nz = |∆I|.

Having seen the affine setting, we are now going to introduce the codes we are going to
use throughout this work. We consider the projective line P1 over Fqs and the polynomial
ring S = Fqs [x0, x1]. Given a degree d ≥ 1, we denote by Sd the homogeneous polynomials
of degree d. We are going to fix representatives for the points of P1 in the following way:
for each point [P ] ∈ P1, we choose the representative whose first nonzero coordinate is
equal to 1. We will denote by P 1 this set of representatives, seen as points in the affine
space A2, and we will call them standard representatives. If we also consider a finite set
of points X = {Q1, . . . , Qn} ⊂ P 1, we can define the following evaluation map

evX : S/I(X) → Fn
qs , f 7→ (f(Q1), . . . , f(Qn))Qi∈X ,

where, as before, we denote a polynomial in S and its class in S/I(X) in the same way.
Given ∆ ⊂ {0, 1, . . . , n − 1}, we define d(∆) := max{i | i ∈ ∆}. The projective Reed-
Solomon code associated to ∆ and X is the code generated by

{evX(x
d(∆)−i
0 xi1) | i ∈ ∆},

which will be denoted by PRS(X,∆). We note that we are only evaluating monomials
of exactly degree d(∆), which means that their linear combinations are homogeneous
polynomials of degree d(∆). If 0 ̸∈ ∆, PRS(X,∆) is a degenerate code because all the
previous monomials would evaluate to 0 at the point [1 : 0]. Therefore, we are always
going to assume in what follows that 0 ∈ ∆. Some authors define these codes over the
projective space without fixing representatives, as in [30], but then they can only define
the code up to monomial equivalence. Monomially equivalent codes do not necessarily
have monomially equivalent subfield subcodes, for example in [23] the authors see that
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the dimension of the subfield subcode of a generalised Reed-Solomon code depends on the
twist vector chosen, and that is why we fix representatives from the beginning.
Given a degree 1 ≤ d ≤ qs, the most standard definition of projective Reed-Solomon

code in the literature is the code PRS(P 1,∆d), where ∆d := {0, 1, . . . , d}. The code
PRS(P 1,∆d) is also called doubly extended Reed-Solomon code and its parameters are
[qs + 1, d+ 1, qs − d+ 1].
In order to obtain bases for the subfield subcodes of the codes PRS(X,∆), we are

going to evaluate in subgroups similarly to the affine case. The natural ideal is to add
the point at infinity [0 : 1] to the points that we were considering in the affine case.
Therefore, given N such that N − 1 | qs − 1, we define X∗

N = [{1} × Y ∗
N ] ∪ [0 : 1] ⊂ P1

and XN = [{1} × YN ] ∪ [0 : 1] ⊂ P1, where we recall that Y ∗
N and YN are the zero locus

of ⟨xN−1 − 1⟩ and ⟨xN − x⟩, respectively. However, it is easy to see that another set of
representatives for X∗

N is [YN ×{1}]. Thus, the codes obtained when evaluating in this set
would be monomially equivalent to the ones obtained in the affine case when evaluating
in YN . As we said before, this does not mean that their subfield subcodes are monomially
equivalent. Nevertheless, our experiments show that the parameters that we obtain when
evaluating in the set X∗

N are strictly worse than the ones obtained in the affine case with
YN . Hence, in what follows we are going to focus on evaluating in the set XN , although
we note that the theory we are going to develop can be adapted for the set X∗

N as well.
We denote the standard representatives of XN by XN , and we also denote PRS(N,∆) :=

PRS(XN ,∆). With this notation, doubly extended Reed-Solomon codes are denoted by
PRS(qs,∆d). Similarly to the case of doubly extended Reed-Solomon codes, given 1 ≤
d ≤ N , the parameters of the code PRS(N,∆d) are [N + 1, d+ 1, N − d+ 1]. In general,
for the codes PRS(N,∆) we have the parameters [N + 1, |∆|,≥ N − d(∆) + 1], where the
bound for the minimum distance is given by the smallest doubly extended Reed-Solomon
code that contains PRS(N,∆).

B.3 Subfield subcodes of codes over the projective line

Let Fqs ⊃ Fq and N such that N − 1 | qs − 1. In this section we want to obtain bases
for the subfield subcodes of the codes PRS(N,∆) with respect to this extension, which we
will denote by PRS(N,∆)q := PRS(N,∆) ∩ Fq. Given f ∈ S, we say that f evaluates to
Fq in XN whenever f(Q) ∈ Fq for all Q ∈ XN (similarly for polynomials in R evaluating
in YN ). The following lemma gives the key idea in order to obtain bases for PRS(N,∆)q.

Lemma B.3.1. Let XN ⊂ P 1. Then f ∈ S evaluates to Fq in XN ⇐⇒ f(1, x1) evaluates
to Fq in YN and f(0, 1) is in Fq.

We will see now that we can take advantage of the knowledge from the affine case in
Theorem B.2.2 by homogenizing and using Lemma B.3.1. Given a degree d and a poly-
nomial f(x) ∈ R with deg(f) ≤ d, its homogenization up to degree d is the homogeneous
polynomial fh(x0, x1) := xd0f(x1/x0) ∈ Sd. Unless stated otherwise, when we consider the
code PRS(N,∆), we are always going to assume that we are homogenizing up to degree
d = d(∆).
For a polynomial f ∈ Fq[x1], we choose Ta(f) as the representative of the class in

Fqs [x1]/I(YN ) which has the exponents of each monomial reduced modulo qs − 1. Given

d ≥ 1, if the degree of Ta(f) is lower than d, then we define T h
a (f) := (Ta(f))h, which we
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call homogenized trace. If we consider one of the traces that appear in Theorem B.2.2,
its homogenized trace automatically satisfies that, when setting x0 = 1, the resulting
polynomial evaluates to Fq in YN , i.e., the first condition from Lemma B.3.1 is satisfied.
However, the second condition, which means that the coefficient of xd1 in the homogenized
trace must be in Fq, might not be satisfied. Because of this, the projective case is more
involved than the affine case, as we will see in the next example.

Example B.3.2. We continue with Example B.2.1. By Theorem B.2.2, the following
polynomial associated to I1 evaluates to F3:

T1(x) = x+ x3.

Let d = 3 (the degree up to which we homogenize). If we consider the polynomial f =
T h
1 (x1) = x20x1+x31, this is a homogeneous polynomial of degree 3 such that f(1, x1) takes

the same values as T1(x1) in F9, and f(0, 1) = 1 ∈ F3. By Lemma B.3.1, we know that f
evaluates to F3 when evaluating in P 1.

If ξ is a primitive element in F9, by Theorem B.2.2, the following polynomial also
evaluates to F3:

T1(ξx) = ξx+ ξ3x3.

However, if we consider g = T h
1 (ξx1) = ξx20x1 + ξ3x31, we see that g(0, 1) = ξ3 ̸∈ F3.

Therefore g does not evaluate to F3.

Remark B.3.3. If we have f ∈ Sd which evaluates to Fq, then x0f ∈ Sd+1 also evaluates
to Fq. Moreover, if f(1, x1) evaluates to Fq in YN , then g = x0f ∈ Sd+1 evaluates to
Fq in XN , even if f does not, because g(1, x1) = f(1, x1), which evaluates to Fq, and
g(0, 1) = 0 ∈ Fq. This already gives a hint about the fact that the sequence of dimensions
of the subfield subcodes is going to be non-decreasing.

With Lemma B.3.1, we can consider polynomials in one variable that evaluate to Fq in
order to obtain polynomials in Sd that evaluate to Fq in XN in some cases. One could
also consider the polynomials in two variables that evaluate to Fq when evaluating in the
points of A2. All of those polynomials are going to evaluate to Fq when evaluating in
points of P 1. However, there are bivariate polynomials that evaluate to Fq in P 1, but
not in A2. For example, in Example B.3.2 we consider f = x20x1 + x31, which evaluates to
F3 over P 1, but if we consider this polynomial over A2, then it is clear that it does not
evaluate to F3. For example, if ξ is a primitive element in F9, f(0, ξ) = ξ3 ̸∈ F3.
The following result shows how to use the previous ideas to obtain a basis for PRS(N,∆)q.

Theorem B.3.4. Let ∆ be a nonempty subset of {0, 1, . . . , N − 1} and let d = d(∆). Set
ξb a primitive element of the field Fqnb . A basis for PRS(N,∆)q is given by the image by
evXN

of the following polynomials.
If Id ⊂ ∆: ⋃

b∈B|Ib⊂∆,b<d

{T h
b (ξrbx

b
1) | 0 ≤ r ≤ nb − 1} ∪ {T h

d (xd1)}.

If Id ̸⊂ ∆: ⋃
b∈B|Ib⊂∆

{T h
b (ξrbx

b
1) | 0 ≤ r ≤ nb − 1}.
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Proof. If we consider ⋃
b∈B|Ib⊂∆,b<d

{T h
b (ξrbx

b
1) | 0 ≤ r ≤ nb − 1},

these are functions which have linearly independent evaluations, because when evaluating
in [{1}×XN ] they are linearly independent by Theorem B.2.2. These polynomials do not
have the monomial xd1 in their support. Therefore, by Lemma B.3.1, they evaluate to Fq

in XN .

If Id ̸⊂ ∆, we are going to see that the evaluation of these polynomials generates the
whole subfield subcode. Let Sd,∆ ⊂ Sd be the linear space generated by {xd−i

0 xi1 | i ∈ ∆},
and let f ∈ Sd,∆ be such that its evaluation is in PRS(N,∆)q. If f(0, 1) = 0, then, using
Theorem B.2.2, we know that we can generate the evaluation of f with these polynomials.
On the other hand, we claim that f(0, 1) ̸= 0 cannot happen in this case, which means that
the image by the evaluation map of the stated polynomials generate the whole subfield
subcode. If we had f(0, 1) ̸= 0, that would imply that f(1, x1) has the monomial xd1 in its
support. However, if Id ̸⊂ ∆, then we know that there is at least one a1 ∈ Id which is not
in ∆. Therefore, we cannot obtain the monomial xa11 in the support of f(1, x1) because
using Theorem B.2.2 in YN , once you have xd1 in the support of f(1, x1), you should have
xa1 in its support for all a ∈ Id because f(1, x1) should be a linear combination of traces.
Therefore, f(0, 1) ̸= 0 is not possible in this case, and the stated polynomials generate the
whole subfield subcode.

In the case Id ⊂ ∆ we have that d ∈ B, i.e., there is a minimal cyclotomic set whose
maximal representative is equal to d. By Lemma B.3.1, we have that T h

d (xd1) evaluates to
Fq, and it is linearly independent from the other polynomials that we consider because it
is the only one that takes a nonzero value at [0 : 1].

We are going to show now that the evaluation of the given set of polynomials generates
the whole code in this case. Let f ∈ Sd,∆ such that f evaluates to Fq. By Lemma
B.3.1, f(0, 1) is in Fq. Hence, we can subtract T h

d (xd1) multiplied by f(0, 1) ∈ Fq and
the evaluation would still be in Fq. Therefore, we can assume that f does not have the
monomial xd1 in its support, i.e., f(0, 1) = 0. Then we can use the affine case and argue
that if f(1, x1) evaluates to Fq, by Theorem B.2.2 it must be a linear combination of the
polynomials in ⋃

b∈B|Ib⊂∆,b<d

{Tb(ξrbxb1) | 0 ≤ r ≤ nb − 1}.

The homogenized polynomials that we consider have the same evaluation as these poly-
nomials in [{1} × YN ], which completes the proof.

Remark B.3.5. We note that we are obtaining a basis which is the image by the eval-
uation map of some homogeneous polynomials of degree d, which we already knew that
should be possible because PRS(N,∆)q ⊂ PRS(N,∆).

Example B.3.6. We continue with Examples B.2.1 and B.3.2. We consider N = 9 and
∆ = {0, 1, 2, 3}, which means that we have d(∆) = 3. Looking at the cyclotomic sets
from Example B.2.1, we see that I0 ∪ I1 ⊂ ∆ (and these are the only complete minimal
cyclotomic sets in ∆). By Theorem B.3.4, taking into account that in this case we have
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I3 = Id ⊂ ∆, we see that the evaluation of the following polynomials is a basis for
PRS(9,∆)3:

T h
0 (x01) = x30, T h

3 (x31) = x20x1 + x31.

We note that the second polynomial is precisely the polynomial f in Example B.3.2.
If we take ∆ = {0, 1, 2, 3, 4}, then we have d(∆) = 4 and I0 ∪I1 ∪I4 ⊂ ∆. By Theorem

B.3.4, the evaluation of the following polynomials is a basis for PRS(9,∆)3:

T h
0 (x01) = x40, T h

3 (x31) = x30x1 + x0x
3
1, T h

3 (ξx31) = ξ3x30x1 + ξx0x
3
1, T h

4 (x41) = x41.

Corollary B.3.7. The dimension of PRS(N,∆)q is the following:

dimPRS(N,∆)q =


∑

b∈B:Ib⊂∆

nb − (nd − 1) =
∑

b∈B:Ib⊂∆,b<d

nb + 1 if Id ⊂ ∆∑
b∈B:Ib⊂∆

nb otherwise

Remark B.3.8. Let d = d(∆). If Id ⊂ ∆, we have dimension 1 more than in the affine
case with ∆ \ {d}. On the other hand, if Id ̸⊂ ∆, we obtain a degenerate code with a 0
at the point [0 : 1]. Therefore, the interesting case is when Id ⊂ ∆, which is the one in
which we are going to mainly focus in what follows.

With respect to the minimum distance, if we denote by wt(C) the minimum dis-
tance of a code C ⊂ Fn

qs , we have wt(PRS(N,∆)) ≥ N − d(∆) + 1, which implies that
wt(PRS(N,∆)q) ≥ N − d(∆)+1 because PRS(N,∆)q ⊂ PRS(N,∆). For the case of sub-
field subcodes of doubly extended Reed-Solomon codes we obtain the following corollary.

Corollary B.3.9. Let d ∈ B. The parameters of PRS(qs,∆d)q are [qs+1,
∑

b∈B:b<d

nb+1,≥

qs − d + 1]. Moreover, the first nontrivial (dimension higher than 1) subfield subcode is
obtained when d = qs−1.

Proof. The parameters are a special case of the previous results and discussions. For the
last statement, it is clear that qs/q = qs−1 is the lowest possible element in B (besides 0),
and d = qs−1 is the first degree such that I1 = {1, q, q2, . . . , qs−1} ⊂ ∆d.

The bound used for the minimum distance of the subfield subcodes of doubly extended
Reed-Solomon codes is sharp in all cases we have checked with d ∈ B. The codes obtained
in this way have one more length and dimension than in the affine case, with the same
minimum distance.

Example B.3.10. If we look at the results from Example B.3.6, we see that we obtained
dimension 2 and 4 for PRS(9,∆3)3 and PRS(9,∆4)3. These are the values obtained with
Corollary B.3.9, because 2 = n0 + 1 and 4 = n0 + n3 + 1. We would obtain codes with
parameters [10, 2, 7] and [10, 4, 6] over F3.

B.4 Dual codes of the previous subfield subcodes

In order to compute the dual codes of the previous subfield subcodes, we are going to use
Delsarte’s Theorem [10].
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Theorem B.4.1. Let C ⊂ Fn
qs be a linear code.

(C ∩ Fn
q )

⊥ = Tr(C⊥),

where Tr : Fqs → Fq, which maps x to x + xq + · · · + xq
s−1

, is applied componentwise to
C⊥.

In order to use this result, we need to compute the dual of the codes PRS(N,∆). It is
well known that PRS(qs,∆d)

⊥ = PRS(qs,∆qs−1−d) (the dual of a doubly extended Reed-
Solomon code is another doubly extended Reed-Solomon code). However, computing the
dual of the codes PRS(N,∆) in general can be involved. Nevertheless, we can easily
compute the dual in some cases. In order to do so, we are going to state the metric
structure of these codes first. Part of the following result already appears in [17, Prop. 1]
and [28, Lem. 7.1].

Lemma B.4.2. Let γ be a non-negative integer, and N such that N − 1 | qs − 1. We
consider the monomial xγ ∈ Fqs [x]. We have the following:

∑
z∈YN

xγ(z) =


N if γ = 0,

0 if γ > 0 and γ ̸≡ 0 mod (N − 1),

N − 1 if γ > 0 and γ ≡ 0 mod (N − 1).

Proof. Let ξ ∈ Fqs be an element of order N − 1, which exists because N − 1 | qs − 1.
Then YN = {ξ0, ξ1, . . . , ξN−2} ∪ {0}. If γ = 0, xγ = 1, and the sum is equal to |YN | = N .
If γ > 0 and γ ≡ 0 mod (N − 1), then xγ(z) = 1 for all z ∈ YN \ {0}, and

∑
z∈YN

xγ(z) =
|YN | − 1 = N − 1. Finally, if γ > 0 and γ ̸≡ 0 mod (N − 1), we have

∑
z∈YN

xγ(z) =

N−2∑
i=0

(ξi)γ =
ξγ(N−1) − 1

ξγ − 1
= 0.

Proposition B.4.3. Let xα0
0 xα1

1 and xβ0
0 xβ1

1 be two monomials in Fqs [x0, x1] of degree dα
and dβ, respectively. Then we have the following for the product of the evaluations over
XN . If α1 + β1 = 0:

evXN
(xα0

0 xα1
1 ) · evXN

(xβ0
0 xβ1

1 ) =

{
N + 1 if α0 + β0 = 0,

N if α0 + β0 > 0.

If α1 + β1 > 0:

evXN
(xα0

0 xα1
1 ) · evXN

(xβ0
0 xβ1

1 ) =


N if α1 + β1 ≡ 0 mod (N − 1), α0 + β0 = 0,

N − 1 if α1 + β1 ≡ 0 mod (N − 1), α0 + β0 > 0,

1 if α1 + β1 ̸≡ 0 mod (N − 1), α0 + β0 = 0,

0 if α1 + β1 ̸≡ 0 mod (N − 1), α0 + β0 > 0.
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Proof. First, we expand the scalar product as a sum over XN = {[1 : z] | z ∈ YN} ∪ {[0 :
1]} ⊂ P 1:

evXN
(xα0

0 xα1
1 ) · evXN

(xβ0
0 xβ1

1 ) =
∑

P∈XN

xα0+β0
0 xα1+β1

1 (P ) =
∑
z∈YN

zα1+β1 + ϵ,

where ϵ is equal to 1 if α0 + β0 = 0 and equal to 0 if α0 + β0 > 0 (corresponding to the
evaluation at [0 : 1]). The result is obtained by using Lemma B.4.2.

If p does not divide N , we have that the evaluation of xα1
1 with α1 > 0 is not orthogonal

to the evaluation of xβ1
1 for any β1. This means that the dual code PRS(N,∆)⊥ does not

have a basis obtained by the evaluation of monomials unless wt(PRS(N,∆)) = 1. This
is because if we have wt(PRS(N,∆)) > 1, then PRS(N,∆)⊥ cannot be degenerate. In
particular, there must be a vector in PRS(N,∆)⊥ such that the coordinate associated to
the point [0 : 1] is nonzero, which is obtained by evaluating a polynomial with some power
of x1 in its support, but it cannot be just a single power of x1 because its evaluation would
not be orthogonal to the evaluation of xd1. Hence, the dual code is not generated by the
image by the evaluation map of monomials.

When p | N , as the next result shows, the previous result gets simplified, and in Propo-
sition B.4.10 we will see that in this case the dual code can be generated by the evaluation
of monomials.

Corollary B.4.4. If p | N , then:

evXN
(xα0

0 xα1
1 )·evXN

(xβ0
0 xβ1

1 ) =


1 if α1 + β1 = 0, α0 + β0 = 0 or

α1 + β1 ̸≡ 0 mod (N − 1), α0 + β0 = 0,

−1 if α1 + β1 ≡ 0 mod (N − 1), αi + βi > 0, i = 0, 1,

0 otherwise.

Remark B.4.5. One way to have p | N is to consider a subfield of Fqs , in which case we
are going to obtain a doubly extended Reed-Solomon code over that subfield. However,
we may also have p | N for different subgroups of F∗

qs . For example, if we consider
qs = 24 = 16, then 5 divides qs − 1. Therefore, we can take N = 6, which is divisible by
2, but Y6 is not a subfield of F16.

For obtaining a basis for the dual code we will need to work with non-homogeneous
polynomials. In order to understand linear independence in that situation we are going to
introduce now a universal Gröbner basis for the vanishing ideal I(XN ). Particular cases
of the following result were already present in [31].

Proposition B.4.6. A universal Gröbner basis for the ideal I(XN ) is:

I(XN ) = ⟨x20 − x0, x
N
1 − x1, (x0 − 1)(x1 − 1)⟩.

Therefore, in(I(XN )) = ⟨x20, xN1 , x0x1⟩ and {1, x0, x1, x21, . . . , x
N−1
1 } is a basis for the quo-

tient ring S/I(XN ).
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Proof. First, we are going to show that these polynomials generate the vanishing ideal
I(XN ). Given any point in XN , it is clear that it satisfies the equations. Reciprocally,
any point satisfying this equations, because of the generator x20 − x0, must have the first
coordinate equal to 0 or 1. If the first coordinate is equal to 0, because of the generator
(x0 − 1)(x1 − 1), the last coordinate must be 1, i.e., it must be the point [0 : 1] ∈ XN .
If the first coordinate is equal to 1, then, because of the generator xN1 − x1, the second
coordinate is in YN , which means that the point is in XN as well.

We have proved that the variety defined by this ideal is XN . It is clear that the variety
defined by this ideal over the algebraic closure Fqs is the same as the variety defined
over Fqs . By Seidenberg’s Lemma [26, Prop. 3.7.15], this ideal is radical. Therefore, by
Hilbert’s Nullstellensatz applied in the algebraic closure, we have that this ideal is the
vanishing ideal of the variety that it defines, i.e., is the vanishing ideal of XN .

In order to show that all the S-polynomials of the generators reduce to 0, we just need
to use that if the greatest common divisor of the initial monomials of two polynomials is 1,
then their S-polynomial reduces to 0 by [9, Prop. 4, Chapter 2, Section 9]. In particular,
if two polynomials depend on different variables, their S-polynomial reduces to 0. And if f
and g share a common factor w, then S(f, g) = wS(f/w, g/w). Using this, it is easy to see
that all the S-polynomials reduce to 0 in this case, for any monomial order. Thus, these
generators form a universal Gröbner basis. The initial ideal follows from this fact, and by
Macaulay’s classical result [12, Thm. 15.3] we obtain that the monomials not contained
in the initial ideal form a basis for the quotient ring.

Remark B.4.7. Because of the first generator of the previous ideal, any power of x0 is
equivalent to x0 in the quotient ring. Therefore, we have xα0

0 xα1
1 ≡ x0x

α1
1 mod I(XN ) if

α0 > 0. This is why we are going to assume α0 = 1 for any monomial divisible by x0 in
what follows, except when we want to remark that we can obtain a code by evaluating
homogeneous polynomials of a certain degree.

The following result allows us to express any polynomial in S/I(XN ) in terms of the
basis in Proposition B.4.6.

Lemma B.4.8. Let a0, a1 be integers, with a0 > 0. We have that

xa00 xa11 ≡ x0 + xa11 − 1 mod I(XN ).

Proof. It is easy to check that both polynomials have the same evaluation in XN , which
implies that they are in the same class modulo I(XN ).

Corollary B.4.9. The following monomials constitute a basis for the quotient S/I(XN ):

{xN1 , x0, x0x1, . . . , x0x
N−1
1 }.

Moreover, every set of the form {xd1, x0, x0x1, . . . , x0x
d−1
1 } with 1 ≤ d ≤ N is linearly

independent.

Proof. It is easy to check that these monomials are linearly independent by Lemma B.4.8
and Proposition B.4.6. The fact that for d = N this set is a basis follows from the
cardinality of the set and the dimension of the quotient ring.
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Now we have the tools necessary to deal with the dual as an evaluation code over the
projective line. In what follows we are going to assume that p | N . This is because, by
Corollary B.4.4, the metric structure is going to be similar to the one of doubly extended
Reed-Solomon codes, and in this case the dual code will be generated by the evaluation
of monomials. For the following result it will be useful to introduce the definition ∆⊥ =
{α ∈ {0, 1, . . . , N − 1} | α ̸= N − 1− h, h ∈ ∆}.

Proposition B.4.10. Let N be a non-negative integer such that N −1 | qs−1 and p | N .
Let ∆ ⊂ {0, 1, . . . , N − 1} and let d = d(∆). Then PRS(N,∆)⊥ has a basis obtained by
taking the image by evXN

of the following monomials:

{x0xα1 | α ∈ ∆⊥} ∪ {xN−1−d
1 }. (B.4.1)

Moreover, if N − 1 ̸∈ ∆, we can also obtain the same basis by taking the image by evXN

of the following monomials of degree 2(N − 1)− d (which allows us to get the dual code as
an evaluation code of homogeneous polynomials):

{x2(N−1)−d−α
0 xα1 | α ∈ ∆⊥} ∪ {x2(N−1)−d

1 }. (B.4.2)

If N − 1 ∈ ∆, then the following set of homogeneous polynomials of degree 2N − 1 give
the same image as the set in item (B.4.1):

{x2N−1−α
0 xα1 | α ∈ ∆⊥} ∪ {x2N−1

1 + x2N−1
0 − xN−1

0 xN1 }. (B.4.3)

Proof. Using Corollary B.4.4 it is easy to see that the evaluation of the monomials in
(B.4.1) is orthogonal to the vectors in PRS(N,∆). When N − 1 ̸∈ ∆, using Lemma B.4.8
it is easy to see that the evaluation of these monomials is linearly independent, and the
dimension of this subspace is the same as the dimension of the dual code. If N − 1 ∈ ∆,
then xN−1−d

1 = 1, and it is easy to see that the monomials that we obtain are linearly
independent and generate the dual code. When N − 1 ̸∈ ∆, the evaluation of the set
(B.4.2) is clearly the same. Finally, if N − 1 ∈ ∆, we have that

x2N−1
1 + x2N−1

0 − xN−1
0 xN1 ≡ x1 + x0 − x0x1 ≡ 1 mod I(P 1).

Therefore, the evaluation of the set (B.4.3) is the same as the one obtained with (B.4.1).

We have the next result for the case when p | N , which generalizes what we know about
the duality in the case of doubly extended Reed-Solomon codes. We note that, as we are
evaluating all the monomials of degree d in the next result, and the set of evaluation points
is a complete intersection, the theory from [11] and [20] could also be used to study the
codes PRS(N,∆d) and their duals.

Corollary B.4.11. Let ∆d = {0, 1, . . . , d} and ∆N−1−d = {0, 1, . . . , N − 1− d}. If p | N ,
then we have that PRS(N,∆d)

⊥ = PRS(N,∆N−1−d).

Proof. We can consider the monomials in (B.4.1), homogenizing up to degree N − 1 − d
with the variable x0. Taking into account that in this case ∆⊥ ∪ {N − 1− d} = ∆N−1−d

we obtain the result.
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With the evaluation map evXN
, if we consider the trace function T : S → S, defined

by f → f + f q + · · · + f qs−1
, then it is easy to verify that evXN

◦ T = Tr ◦ evXN
(Tr was

defined in Theorem B.4.1). Then we see that if PRS(N,∆)⊥ = evXN
(⟨{f1, f2, . . . , fl}⟩),

using Theorem B.4.1 and the previous observation we get that

(PRS(N,∆)q)
⊥ :=(PRS(N,∆)q)

⊥

=Tr(evXN
(⟨{f1, f2, . . . , fl}⟩)) = evXN

(T (⟨{f1, f2, . . . , fl}⟩)).

Remark B.4.12. Taking into account that T is linear, then it is clear that in this situation
(PRS(N,∆)q)

⊥ is spanned by the image by the evaluation of the polynomials T (γfi),
γ ∈ Fqs , i = 1, . . . , l.

Even if fi, for i = 1, . . . , l, are monomials, the dual code will be generated by traces of
those monomials by Remark B.4.12, which in general are going to be non-homogeneous
polynomials. We have introduced the vanishing ideal from Proposition B.4.6 precisely to
understand linear independence of sets of monomials of different degree over XN . In order
to state a basis for (PRS(N,∆)q)

⊥ we will need the following lemma.

Lemma B.4.13. Let ∆ ⊂ {0, 1, . . . , N − 1} and 0 < a ̸= N − 1. Then we have that
Ia ⊂ ∆ ⇐⇒

∣∣IN−1−a ∩∆⊥∣∣ = 0.

Proof. It is clear that we have a bijection between Ia and I−a, given by h 7→ −h. In ZN

we have that −h ≡ N − 1 − h mod N − 1 if h ̸= 0. Hence, we get a bijection between
Ia and IN−1−a given by h 7→ N − 1 − h. Because of the definition of ∆⊥, we see that if
h ∈ ∆, then N − 1 − h ̸∈ ∆⊥. Thus, it is clear that if Ia ⊂ ∆, then

∣∣IN−1−a ∩∆⊥∣∣ = 0,
and vice versa.

Theorem B.4.14. Let ∆ be a nonempty subset of {0, 1, . . . , N − 1} and let d = d(∆).
Set ξa a primitive element of the field Fqna with Ta(ξa) ̸= 0 (this can always be done [8]).
A basis for (PRS(N,∆)q)

⊥ is given by the image by evXN
of the following polynomials.

If Id ⊂ ∆:⋃
a∈A|Ia∩∆⊥ ̸=∅

{Ta(ξrax0xa1) | 0 ≤ r ≤ na−1}∪{TN−1−d(ξ
r
N−1−dx

N−1−d
1 ) | 0 ≤ r ≤ nN−1−d−1}.

If Id ̸⊂ ∆: ⋃
a∈A|Ia∩∆⊥ ̸=∅

{Ta(ξrax0xa1) | 0 ≤ r ≤ na − 1} ∪ {TN−1−d(ξN−1−dx
N−1−d
1 )}.

Proof. In Remark B.4.12 we saw that it is enough to consider the traces of multiples
of the monomials whose images span PRS(N,∆)⊥. Therefore, we have that the traces of
multiples of the monomials in (B.4.1) span Tr(PRS(N,∆)⊥) = (PRS(N,∆)q)

⊥. Moreover,
it is enough to consider the following traces for Ia with Ia ∩∆⊥ ̸= ∅

{Ta(ξrax0xa1), 0 ≤ r ≤ na − 1}

because they are linearly independent (a dependence relation would give a polynomial
relation on ξa of degree less than na) and there are na of them, which is the maximum

48



B.4. Dual codes of the previous subfield subcodes

dimension that we can get with na monomials. The same reasoning shows that it is enough
to consider the following traces for the monomial xN−1−d

1 :

{TN−1−d(ξ
r
N−1−dx

N−1−d
1 ), 0 ≤ r ≤ nN−1−d − 1}, (B.4.4)

which are linearly independent between them as well.

If Id ⊂ ∆, by Lemma B.4.13 we have that
∣∣IN−1−d ∩∆⊥∣∣ = ∅. Hence, when we con-

sider all of these sets of polynomials together, they are independent because between sets
corresponding to different cyclotomic sets Ia we have polynomials with disjoint support
(the monomials that we are considering are linearly independent in S/I(XN ) by Corollary
B.4.9).

On the other hand, when Id ̸⊂ ∆, by Lemma B.4.13 we know that there is at least one
element h ∈ IN−1−d ∩∆⊥. The argument for the previous case works in this case, except
when considering the traces of polynomials associated to IN−1−d and the polynomials in
(B.4.4), because by Lemma B.4.8 we will have the same powers of x1. However, if from
the later set of polynomials we only consider TN−1−d(ξN−1−dx

N−1−d
1 ), then the linear

independence is clear because this polynomial is equal to TN−1−d(ξN−1−d) ̸= 0 at [0 : 1]
(because of the choice of the primitive elements), while the rest of polynomials that we
are considering are 0 at [0 : 1]. Moreover, with these polynomials we can generate the rest
of the polynomials in (B.4.4) taking into account Lemma B.4.8:

Ta(ξrax0xa1) =ξra(x0 + xa1 − 1) + ξqra (x0 + xqa1 − 1) + · · ·+ ξq
na−1r

a (x0 + xq
na−1a

1 − 1) =

Ta(ξra)(x0 − 1) + Ta(ξraxa1).

With r = 1 we see that we can generate (x0−1) with the polynomials we are considering,
and with (x0 − 1) we can generate the rest of polynomials in (B.4.4) because Ta(ξra) ∈
Fq.

In the case Id(∆) ̸⊂ ∆ of the previous result, we have seen that we can generate (x0−1).
The evaluation of this polynomial on P 1 gives a codeword with Hamming weight 1, which
means that (PRS(N,∆)q)

⊥ has minimum distance 1. This is equivalent to having that
PRS(N,∆)q is a degenerate code (it has a common zero in the coordinate associated to
the point [0 : 1]). Once again, we see that the interesting case for us is when Id(∆) ⊂ ∆.

Example B.4.15. We continue with example B.3.2. Let ∆4 = {0, 1, 2, 3, 4}, which implies
d(∆4) = 4. We are going to obtain a set of polynomials such that its image by the
evaluation map is a basis for (PRS(9,∆4)3)

⊥. We have that ∆⊥
4 = {0, 1, 2, 3}. The

minimal cyclotomic sets Ia with Ia ∩ ∆⊥ ̸= ∅ are I0, I1 and I2. As in the previous
examples, if ξ is a primitive element of F9, by Theorem B.4.14, we obtain the following
set of polynomials:

T0(x0) = x0, T1(x0x1) = x0x1 + x30x
3
1, T1(ξx0x1) = ξx0x1 + ξx30x

3
1

T2(x0x21) = x0x
2
1 + x30x

6
1, T2(ξx0x21) = ξx0x

2
1 + ξ3x30x

6
1, T4(x41) = x41.

In all the previous expressions, we can reduce the exponent of x0 to 1 and the evaluation
would not change.
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As a consequence of Theorem B.4.14, we obtain directly an explicit formula for the di-
mension of (PRS(N,∆)q)

⊥ without using the dimension of the primary codes from Corol-
lary B.3.7.

Corollary B.4.16. Let ∆ ⊂ {0, 1, . . . , N − 1} and let d = d(∆). The dimension of
(PRS(N,∆)q)

⊥ is equal to:

dim (PRS(N,∆)q)
⊥ =


∑

a∈A|Ia∩∆⊥ ̸=∅

na + nd if Id ⊂ ∆∑
a∈A|Ia∩∆⊥ ̸=∅

na + 1 if Id ̸⊂ ∆

Now we are going to turn our attention to the minimum distance of the dual code
(PRS(N,∆)q)

⊥. In the affine case, a BCH-type bound has been used frequently for the
minimum distance of the duals of the subfield subcodes of Reed-Solomon codes. If one
considers the code RS(N,∆) with ∆ = Ia0 ∪Ia1 ∪· · ·∪Ial a union of cyclotomic sets, then
this code is Galois invariant in the sense of [2], i.e., RS(N,∆) = (RS(N,∆))q. By [2, Thm.
4], we have that Tr(RS(N,∆)) = RS(N,∆)q. We can write Theorem B.4.1 in the following

way: C⊥ ∩ Fn
q = Tr(C)⊥. Therefore, we have that (RS(N,∆)q)

⊥ =
(
RS(N,∆)⊥

)
q
. For

(RS(N,∆)⊥)q, it is easy to see that we have a BCH-type bound because we can consider the
generator matrix of RS(N,∆) as a pseudo-parity check matrix for the code (RS(N,∆)⊥)q
(as we did with the matrix in (B.2.1) for BCH codes). If we have t consecutive exponents
in ∆, we have a Vandermonde matrix as a submatrix of the generator matrix for RS(N,∆)
and we get that wt

(
(RS(N,∆)q)

⊥) ≥ t+ 1.
In the projective case, arguing in a similar way, we get that, if we have t consecutive

exponents in ∆, we have the BCH-type bound wt
(
(PRS(N,∆)⊥)q

)
≥ t+1. However, even

if ∆ is a union of cyclotomic sets, we will see in Remark B.4.23 and Example B.4.24 that
in the projective case we do not have in general that PRS(N,∆) is Galois invariant, and
thus we do not have the equality between (PRS(N,∆)⊥)q and (PRS(N,∆)q)

⊥ in general.
Nevertheless, we can still use the affine case in order to get a bound for the minimum
distance. If we have a code C ⊂ Fn

q , we are going to denote by (C, 0) := {(u1, . . . , un, 0) ∈
Fn+1
q | u = (u1, . . . , un) ∈ C}. In what follows, we are going to assume that the coordinate

associated to the point [0 : 1] is the last one. We recall that A (resp. B) is the set of
minimal representatives (resp. maximal representatives) of the minimal cyclotomic sets.
We are going to denote ∆′ := ∆ \ {d}, and (∆′)I =

⋃
b∈B,b<d|Ib⊂∆ Ib ⊂ ∆′ as before.

Proposition B.4.17. Let ∆ ⊂ {0, 1, . . . , N − 1}. We assume that d(∆) ∈ B with
Id(∆) ⊂ ∆. If t is the number of consecutive exponents in (∆′)I, then we have that

wt
(
(PRS(N,∆)q)

⊥) ≥ t+ 1.

Proof. We assume that the point [0 : 1] corresponds to the last coordinate. We have
PRS(N,∆)q ⊃ (RS(N,∆′)q, 0), which implies

(PRS(N,∆)q)
⊥ ⊂ (RS(N,∆′)q, 0)

⊥ = ((RS(N,∆′)q)
⊥, 0) + ⟨(0, . . . , 0, 1)⟩.

We know that (0, . . . , 0, 1) ̸∈ (PRS(N,∆)q)
⊥ because that would imply that PRS(N,∆)q

is degenerate, and that is not the case because of the assumptions that we have made.
Thus, any vector in (PRS(N,∆)q)

⊥ must belong to (RS(N,∆′)q)
⊥ after puncturing the

last coordinate, and therefore the weight of any vector in (PRS(N,∆)q)
⊥ must be at least

t+ 1 because of the BCH-type bound for (RS(N,∆′)q)
⊥.
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As a corollary, we have the following result about the duals of the subfield subcodes of
doubly extended Reed-Solomon codes.

Corollary B.4.18. Let ∆d = {0, 1, . . . , d} with d ∈ B. If t is the number of consecutive
exponents in (∆′

d)I, the parameters of (PRS(qs,∆d)q)
⊥ are [qs + 1,

∑
a∈A|Ia∩∆⊥ ̸=∅ na,≥

t+ 1].

This estimate would give codes with length 1 more than in the affine case, but same
dimension and same bound for the minimum distance. However, the bound for the mini-
mum distance is not sharp in general and we are able to improve upon the affine case in
many examples. For instance, in the next result we show that when |Id| = 1 we have a
better estimate for the minimum distance.

Proposition B.4.19. Let ∆ ⊂ {0, 1, . . . , N −1} such that
∣∣Id(∆)

∣∣ = 1. Then PRS(N,∆I)

is Galois invariant, we have that (PRS(N,∆I)
⊥)q = (PRS(N,∆I)q)

⊥ = (PRS(N,∆)q)
⊥,

and, if there are t consecutive exponents in ∆I, the parameters of (PRS(N,∆)q)
⊥ are

[N + 1,
∑

a∈A|Ia∩∆⊥
I ̸=∅ na + 1,≥ t+ 1].

Proof. Let d = d(∆). We have that PRS(N,∆I) is generated by the evaluation of mono-
mials. Because of the fact that ∆I is a union of cyclotomic sets, we can divide the
monomials into sets corresponding to different minimal cyclotomic sets. For a ̸= d we
have the monomials

{x0xα1 | α ∈ Ia ⊂ ∆}.

If we consider these monomials to the power of q, the set remains invariant in S/I(P 1)
because the exponents of x1 are in a cyclotomic set, and the exponent of x0 does not change

the evaluation. For Id we have that x
q(N−1−d)
1 ≡ xN−1−d

1 mod I(P 1) because |Id| = 1.
Therefore, the set of monomials is invariant under taking powers of q, which implies that
PRS(N,∆I) = (PRS(N,∆I))

q. Because of the previous discussion, we have that being
Galois invariant implies in this case that (PRS(N,∆I)

⊥)q = (PRS(N,∆I)q)
⊥. Taking into

account that PRS(N,∆I)q = PRS(N,∆)q because of Theorem B.3.4, the parameters are
clear from Theorem B.4.14 and the BCH-type bound.

In many situations, the previous result gives codes with higher length and dimension
than in the affine case. Assuming the hypotheses of the previous result, the affine code
with (RS(N,∆)q)

⊥ would have parameters [N,
∑

a∈A|Ia∩∆⊥
I ̸=∅ na,≥ t+ 1], meanwhile the

projective code (PRS(N,∆)q)
⊥ would have parameters [N + 1,

∑
a∈A|Ia∩∆⊥

I ̸=∅ na + 1,≥
t+ 1].

These codes can also be compared to (RS(N,∆′)q)
⊥, with ∆′ = ∆ \ {d(∆)}. Taking

into account that |Id| = 1, this code has parameters [N,
∑

a∈A|Ia∩∆⊥
I ̸=∅ na + 1,≥ t′ + 1],

where t′ is the number of consecutive exponents in ∆′. We see that this code has the same
dimension as (PRS(N,∆)q)

⊥. However, the bound for the minimum distance is worse
than the one for (PRS(N,∆)q)

⊥.

The following result shows many situations in which we can use Proposition B.4.19
besides the obvious case with ∆ = {0}.

Lemma B.4.20. Let q > 2. If dλ := λ(N − 1)/(q − 1) ∈ N, for some λ, 1 ≤ λ ≤ q − 1,
then |Idλ | = 1.

51



EAQECCs from subfield subcodes of projective Reed-Solomon codes

Proof. We only have to observe that

λ
N − 1

q − 1
q − λ

N − 1

q − 1
= λ(N − 1) ≡ 0 mod N − 1.

Remark B.4.21. If q−1 | N−1, then with the previous result we obtain q−1 cyclotomic
sets with cardinality one besides I0. For example, if N = qs, then we directly have
q − 1 | N − 1. However, that is not the only case. For example we can consider qs = 38

and N = 83. In that situation it can be checked that q − 1 = 2 | 82 = N − 1, and we
have that |I41| = 1. In this situation, when we have q − 1 | N − 1, the previous result is
actually a characterization of when we have |Id| = 1:

|Id| = 1 ⇐⇒ dq ≡ d mod N − 1 ⇐⇒ d(q − 1) = λ(N − 1) = λ(q − 1)
N − 1

q − 1

⇐⇒ d = λ
N − 1

q − 1
, for some 1 ≤ λ < q − 1.

Example B.4.22. We consider the field extension F16 ⊃ F4, which gives the following
minimal cyclotomic sets:

I0 = {0}, I1 = {1, 4},I2 = {2, 8}, I3 = {3, 12}, I5 = {5},
I6 = {6, 9}, I7 = {7, 13},I10 = {10}, I11 = {11, 14}, I15 = {15}.

We see that we have |I10| = 1. If we take ∆ = {0, 1, 4, 10} = I0 ∪ I1 ∪ I10, then
∆⊥ = {0, 1, . . . , N − 1} \ {I15 ∪ I11 ∪ I5} and we can use Corollary B.4.16 to compute the
dimension. All the cyclotomic sets, besides I5, I11 and I15, have nonzero intersection with
∆⊥, and we have Id(∆) = I10 ⊂ ∆. Hence, by Corollary B.4.16, dim (PRS(N,∆)q)

⊥ =
(n0 + n1 + n2 + n3 + n6 + n7 + n10) + n10 = 13. For the minimum distance, we have t = 2
consecutive elements in ∆I = ∆, which gives the following parameters for (PRS(N,∆)q)

⊥:
[17, 13,≥ 3].

We can do the same for ∆ = {0, 1, 2, 4, 8, 10} = I0 ∪ I1 ∪ I2 ∪ I10, and we obtain the
parameters [17, 11,≥ 4]. The true parameters are [17, 13, 3] and [17, 11, 4], which lengthen
the parameters of the affine case [16, 12, 3] and [16, 10, 4]. We see that the bound for the
minimum distance coincides with the real minimum distance in this case.

Remark B.4.23. If we do not assume in Proposition B.4.19 that |Id| = 1, then, if
d = d(∆) ∈ B and Id ⊂ ∆ (which is the interesting case in the projective setting), we
will have the evaluation of the monomial xd1 in PRS(N,∆), and also the evaluation of at
least one monomial xd−a

0 xa1 with a ∈ Id \ {d}. We know that d ≡ qra mod N − 1 for

some r > 0. Thus, we have the image of xd−qr−1a
0 xq

r−1a
1 in PRS(N,∆), but if we take

this monomial to the power of q, we get x
q(d−qr−1a)
0 xd1 ̸≡ xd1 mod I(P 1). It is not hard to

check that we do not have the image of this monomial in PRS(N,∆), which implies that
PRS(N,∆) is not Galois invariant. In the following example we show how this affects the
bound for the minimum distance.

Example B.4.24. We continue with Example B.4.22. We can consider ∆ = {0, 1, 2, 3, 4},
which gives ∆I = I0 ∪ I1. However, we do not have |I4| = 1 and Proposition B.4.19 does
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not hold in this case. For instance, there are t = 2 consecutive elements in ∆, but the
parameters of (PRS(N,∆)q)

⊥ are [17, 15, 2], and 2 < t + 1 = 3. On the other hand, we
have that (∆′)I = I0, which only has t = 1 consecutive elements, and Proposition B.4.17
would give the parameters [17, 15,≥ 2].

B.5 Applications to EAQECCs

This section is devoted to providing quantum codes from the linear codes developed in the
previous section. Namely, we will construct EAQECCs using the CSS construction [15,
Thm. 4] and the Hermitian construction [15, Thm. 3], as well as asymmetric EAQECCs
[16].

B.5.1 Euclidean EAQECCs

In this section we will be interested in obtaining EAQECCs using the CSS construction [15,
Thm. 4]. Given a nonempty set U ⊂ Fn

q , we denote by wt(U) the number min{wt(v) | v ∈
U \ {0}}, extending the notation that we have been using only for linear codes until now.

Theorem B.5.1 (CSS Construction). Let Ci ⊂ Fn
q be linear codes of dimension ki, for

i = 1, 2. Then, there is an EAQECC with parameters [[n, κ, δ; c]]q, where

c = k1 − dim(C1 ∩ C⊥
2 ), κ = n− (k1 + k2) + c, and

δ =min
{
wt
(
C⊥
1 \

(
C⊥
1 ∩ C2

))
,wt

(
C⊥
2 \

(
C⊥
2 ∩ C1

))}
.

We are going to introduce some new notation for the codes we are going to use. In what
follows, we are assuming that p | N .

Definition B.5.2. Let A = {a0 = 0 < a1 < · · · < aj}, the set of minimal representatives
of the minimal cyclotomic sets. We are going to consider a set ∆ =

⋃t−1
i=0 Iai∪{at}, i.e., the

union of consecutive minimal cyclotomic sets with minimal representatives a0, . . . , at−1,
and the minimal element at. For such a set ∆, we are going to consider the code D(N,∆)
defined as the linear code generated by {evXN

(x0x
α
1 ) | α ∈ ∆ \ {at}} ∪ {evXN

(xat1 )}.
Remark B.5.3. If we look at the basis for the dual codes from Proposition B.4.10, we see
that D(N,∆) = PRS(N,∆∗)⊥, with ∆∗ = {0, 1, . . . , N − 1} \

⋃t−1
i=0 IN−1−ai . In particular,

the codes we are considering are not degenerate.

Although the previous remark shows that we can use the notation PRS(N,∆∗)⊥ instead
of D(N,∆), in what follows we are going to use D(N,∆) because this will be the appro-
priate notation for Section B.6. This allows us to make reference to the following proofs
directly from Section B.6, which helps to avoid repetition.

Remark B.5.4. By the definitions, it is clear thatD(N,∆) = (RS(N,∆′), 0)+⟨evXN
(xat1 )⟩,

where ∆′ = ∆\{at}. This means that dimD(N,∆) = dimRS(N,∆′)+1 = dimRS(N,∆).
We also have that dim (D(N,∆)⊥)q = dimPRS(N,∆∗)q = N+1−

∑t
i=0 nai from Corollary

B.3.7. If GN,∆ is a generator matrix of RS(N,∆), then we have that GN,∆

0
...
0

evYN
(xat) 1


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is a generator matrix of D(N,∆). We see that this does not correspond to any standard
lengthening technique for linear codes. On the other hand, the BCH-type bound gives
wt((D(N,∆)⊥)q) ≥ wt(D(N,∆)⊥) ≥ at + 2.

Theorem B.5.5. Let A = {a0 = 0 < a1 < a2 < · · · < az} be the set of minimal
representatives of the cyclotomic sets Iai, 0 ≤ i ≤ z, of {0, 1, . . . , N − 1} with respect to
q. Let ∆ =

⋃t−1
i=0 Iai ∪ {at} such that RS(N,∆′′) ⊂ RS(N,∆′′)⊥, where ∆′′ =

⋃t
i=0 Iai.

Then we can construct an EAQECC with parameters [[n, κ,≥ δ; c]]q, where n = N + 1,
κ = N + 1− 2

(∑t
i=0 nai

)
+ c, δ = at + 2, and c ≤ 1.

Proof. We are going to consider the code C1 = C2 = ((D(N,∆)⊥)q)
⊥ for the CSS Con-

struction B.5.1. We have dim ((D(N,∆)⊥)q)
⊥ = N + 1 − dim (D(N,∆)⊥)q = N + 1 −

dimPRS(N,∆∗)q =
∑t

i=0 nai by Remark B.5.4. Remark B.5.4 also gives the lower bound
wt((D(N,∆)⊥)q) ≥ at + 2.

For the parameter c, we claim that

dim
(
(D(N,∆)⊥)q ∩ ((D(N,∆)⊥)q)

⊥
)
≥ dim(RS(N,∆′′)q, 0)− 1 =

t∑
i=0

nai − 1,

which gives c ≤ 1. Let ∆′ = ∆\{at}. By Remark B.5.4 we haveD(N,∆) = (RS(N,∆′), 0)+
⟨evXN

(xat1 )⟩.
We consider v ∈ (RS(N,∆)⊥, 0). Then v is orthogonal to (RS(N,∆′), 0) (taking

into account that RS(N,∆′) ⊂ RS(N,∆)), and it is also orthogonal to evXN
(xat1 ) be-

cause the last coordinate of v is 0, which means that v · evXN
(xat1 ) = v · evXN

(x0x
at
1 ),

and evXN
(x0x

at
1 ) ∈ (RS(N,∆), 0). Therefore, v ∈ D(N,∆)⊥. Taking into account

the dimension and the fact that the codes D(N,∆)⊥ are not degenerate, we can write
D(N,∆)⊥ = (RS(N,∆)⊥, 0) + ⟨w⟩, where w is a vector with a nonzero last entry.

We consider a basis for (D(N,∆)⊥)q now, and we can also assume that all the vec-
tors in the basis, besides one vector w′, have 0 as their last coordinate. Taking into
account that (D(N,∆)⊥)q is not degenerate, this means that we have (D(N,∆)⊥)q =
((RS(N,∆)⊥)q, 0) + ⟨w′⟩ for some vector w′ with nonzero last coordinate. In this case we
have (RS(N,∆)⊥)q = (RS(N,∆′′)⊥)q because ∆⊥ and ∆′′⊥ contain the same complete
minimal cyclotomic sets (which is what matters in order to compute the subfield subcode
of the dual, this can be seen using Theorem B.2.2 and [14, Prop. 3]). Moreover, we have
that RS(N,∆′′)q ⊂ (RS(N,∆′′)⊥)q = (RS(N,∆′′)q)

⊥ because this code is Galois invariant
by the reasoning after Corollary B.4.16.
Thus, we have seen that (D(N,∆)⊥)q ⊃ ((RS(N,∆′′)⊥)q, 0) ⊃ (RS(N,∆′′)q, 0). On the

other hand, we have

((D(N,∆)⊥)q)
⊥ =

(
(PRS(N,∆′′)q, 0) + ⟨(0, 0, . . . , 0, 1)⟩

)
∩ ⟨w′⟩⊥.

Note that (0, 0, . . . , 0, 1) ̸∈ ⟨w′⟩⊥ because w′ has a nonzero last coordinate. Hence, we
can consider a basis for ((D(N,∆)⊥)q)

⊥ formed by (dimRS(N,∆′′)q − 1) vectors ui ∈
(RS(N,∆′′)q, 0), and a vector w′′ such that its last coordinate is nonzero. Note that not
all vectors can have the last coordinate equal to 0 because that would mean that we have
the vector (0, 0, . . . , 0, 1) ∈ (D(N,∆)⊥)q, contradicting the bound given for the minimum
distance. Therefore, all the vectors ui are in (D(N,∆)⊥)q ∩ ((D(N,∆)⊥)q)

⊥, which gives
c ≤ 1.
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Remark B.5.6. In [17], there are conditions in order to have RS(N,∆′′) ⊂ RS(N,∆′′)⊥.
For example, for the type of set ∆′′ that we are considering in Theorem B.5.5, if, for every
cyclotomic set Ia ⊂ ∆′′, we have IN−1−a ̸⊂ ∆′′, then RS(N,∆′′) ⊂ RS(N,∆′′)⊥.

For the code RS(N,∆′′)⊥ we have the bound wt(RS(N,∆′′)⊥) ≥ at+1+1. However, we
have at+1 + 1 = at + 2 in many cases (this happens if and only if at + 1 ̸∈ ∆′′, because
in that case at+1 = at + 1). In that situation, we have the same bound for the minimum
distance for RS(N,∆′′)⊥ and for the corresponding EAQECC from Theorem B.5.5. In the
following discussion we will assume that at+1 + 1 = at + 2.

If we get a QECC with parameters [[n, κ, δ; 0]]q from the affine case using RS(N,∆′′)q,
then we would get an EAQECC with parameters [[n+1, κ+1+ c, δ; c]]q in the projective
case using Theorem B.5.5, where c ≤ 1. If we take into account the rate ρ := κ/n and the
net rate ρ := (κ− c)/n, we see that the code obtained with Theorem B.5.5 has better rate
and net rate than the one obtained in the affine case. Moreover, it can be checked that
the codes we obtain are not directly obtainable from the affine case using the propagation
rules from [29], which can be adapted for EAQECCs arising from Theorem B.5.1 (for
example, see [1]).
In the constructions from Theorem B.5.15 and Theorem B.6.6, the same argument shows

that, as long as at+1 + 1 = at + 2, we can obtain codes with better rates than the ones
from the affine case, which cannot be deduced from the propagation rules from [29].

Example B.5.7. We consider N = qs = 34 = 81, with q = 32 (s = 2). The first minimal
cyclotomic sets, ordered by their minimal element, are

I0 = {0}, I1 = {1, 9}, I2 = {2, 18}, I3 = {3, 27}, I4 = {4, 36}, I5 = {5, 45}.

With the notation that we have been using, we consider the minimal elements ai, for
i = 0, . . . , 5, and ∆ =

⋃4
i=0 Iai ∪ {5} (t = 5 with the previous notation). We have∑5

i=0 nai = 11, and we have at + 2 = 7. It is easy to check that IN−1−ai ̸⊂ ∆ for
i = 0, . . . , 5. By Remark B.5.6 we have RS(N,∆′′) ⊂ RS(N,∆′′)⊥ and we can apply
Theorem B.5.5 in order to obtain a quantum code with parameters [[82, 61, 7; 1]]9. If we
had used the affine code RS(N,∆′′) with ∆′′ =

⋃5
i=0 Iai , the bound for the minimum

distance would have been the same because at +1 = 8 ̸∈ ∆′′, and we would have obtained
the code [[81, 59, 7; 0]]9.

We can also get QECCs (EAQECCs with c = 0) directly under some assumptions, as
the following result shows.

Proposition B.5.8. Assume that p > 2. Let N be an odd integer such that N −1 | qs−1
and p | N . We consider a union of cyclotomic sets ∆ ⊂ {0, 1, . . . , N − 1} such that
d = d(∆) = (N − 1)/2. If t is the number of consecutive exponents in ∆, then we can
construct a QECC with parameters [[n, κ,≥ δ; 0]]q, where n = N + 1, κ = N + 1 − 2|∆|,
and δ = t+ 1.

Proof. By Proposition B.4.19, Lemma B.4.20 and Remark B.5.3, we have that PRS(N,∆)
is Galois invariant, and we have wt((PRS(N,∆)q)

⊥) ≥ t + 1. By Corollary B.4.11, if we
consider ∆d = {0, 1, . . . , (N − 1)/2}, we have that

PRS(N,∆) ⊂ PRS(N,∆d) = PRS(N,∆d)
⊥ ⊂ PRS(N,∆)⊥.
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Therefore, considering the intersection with Fn
q we obtain PRS(N,∆)q ⊂ (PRS(N,∆)q)

⊥.
If we consider C1 = C2 = PRS(N,∆)q in the CSS Construction B.5.1, we have already
obtained the length, the bound for the minimum distance, and c = 0, for the param-
eters of the corresponding quantum error-correcting code. For the dimension, we have
dimPRS(N,∆)q = |∆| by Corollary B.3.7, taking into account that |Id| = 1 in this case
by Lemma B.4.20.

Example B.5.9. We consider qs = 33, q = 3 and N = 33 = 27. Let ∆ = I0 ∪ I1 ∪
I4 ∪ I13 (note that 13 = (N − 1)/2). We are not considering consecutive cyclotomic sets,
which means that the BCH-type bound for the minimum distance might not be accurate.
Hence, we have computed it directly with Magma [5]. The code (PRS(N,∆)q)

⊥ has
parameters [28, 20, 6], which gives a QECC with parameters [[28, 12, 6; 0]]3 by Proposition
B.5.8, which are the best known parameters for a quantum code over F3 with that length
and dimension according to [21]. With RS(N,∆) and RS(N,∆′) (where ∆′ = ∆ \ {(N −
1)/2}), we obtain the parameters [27, 19, 6] and [27, 20, 5] for the dual codes of their subfield
subcodes, respectively. These codes would give QECCs with parameters [[27, 11, 6; 0]]3 and
[[27, 13, 5; 0]]3, respectively, applying the CSS Construction B.5.1.

B.5.2 Asymmetric EAQECCs

As we said in the introduction, phase-shift and qudit-flip errors are not equally likely
to occur. It is therefore desirable to obtain EAQECCs with different error correction
capabilities for each of these types of errors. In order to construct asymmetric EAQECCs,
we can use the following result from [16].

Theorem B.5.10. Let Ci ⊂ Fn
q be linear codes of dimension ki, for i = 1, 2. Then, there

is an asymmetric EAQECC with parameters [[n, κ, δz/δx; c]]q, where

c = k1 − dim(C1 ∩ C⊥
2 ), κ = n− (k1 + k2) + c,

δz = wt
(
C⊥
1 \

(
C⊥
1 ∩ C2

))
and δx = wt

(
C⊥
2 \

(
C⊥
2 ∩ C1

))
.

The two minimum distances δz and δx give the error correction capability of the corre-
sponding asymmetric EAQECC, which can correct up to ⌊(δz − 1)/2⌋ phase-shift errors
and ⌊(δx − 1)/2⌋ qudit-flip errors.

In sections B.3 and B.4 we obtained bases for both the primary codes PRS(N,∆)q and
their duals (PRS(N,∆)q)

⊥. This is the key for the proof of the following result, which
allows us to construct asymmetric EAQECCs from subfield subcodes of projective Reed-
Solomon codes. We recall that, for ∆ ⊂ {0, 1, . . . , N − 1}, we denote ∆I =

⋃
Ia⊂∆ Ia, and

we also recall that B is the set of maximal representatives of the minimal cyclotomic sets.

Theorem B.5.11. Let 1 ≤ d1, d2 ≤ N − 1, such that di ∈ B, for i = 1, 2, and p | N .
We consider ∆di = {0, 1, . . . , di} and we denote ∆′

di
:= ∆di \ {di}, for i = 1, 2. If

((∆′
d1
)I)

⊥ ⊂ (∆′
d2
)I, then we can construct an asymmetric EAQECC with parameters

[[N + 1,
∑

b∈B,b<d1

nb +
∑

b∈B,b<d2

nb + 2−N, δz/δx; 1]]q,

where δz ≥ N − d1 + 1, δx ≥ N − d2 + 1.
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Proof. We are going to consider Ci = (PRS(N,∆di)q)
⊥, for i = 1, 2, and we are going to

use Theorem B.5.10. The bounds for δz and δx are clear, and we obtain the dimension
using Corollary B.3.7 if we assume c = 1. For the parameter c = dim(PRS(N,∆d1)q)

⊥ −
dim((PRS(N,∆d1)q)

⊥ ∩ PRS(N,∆d2)q), we are going to study dim((PRS(N,∆d1)q)
⊥ ∩

PRS(N,∆d2)q). For (PRS(N,∆d1)q)
⊥ we have the basis given by the evaluation of the

following set from Theorem B.4.14:⋃
a∈A|Ia∩∆⊥

d1
̸=∅

{Ta(ξrax0xa1) | 0 ≤ r ≤ na−1}∪{TN−1−d1(ξ
r
N−1−d1x

N−1−d1
1 ) | 0 ≤ r ≤ nd1−1}.

(B.5.1)
From Theorem B.3.4 it is easy to obtain that the evaluation of the following set gives a
basis for PRS(N,∆d2)q:⋃

a∈A|Ia⊂∆′
d2

{Ta(ξrax0xa1) | 0 ≤ r ≤ na − 1} ∪ {T h
d2(x

d2
1 )}. (B.5.2)

It is also clear that the a ∈ A such that Ia ∩∆⊥
d1

̸= ∅ are precisely the a ∈ A such that

Ia ⊂ ((∆d1)I)
⊥. We also have that ((∆′

d1
)I)

⊥ = ((∆d1)I)
⊥ ∪ IN−1−d1 . Therefore, taking

into account the assumption ((∆′
d1
)I)

⊥ ⊂ (∆′
d2
)I ⊂ ∆′

d2
, we have that all the traces of

monomials of the type x0x
a
1, with a ∈ A, in the set from (B.5.1), are contained in the set

from (B.5.2). This implies that the evaluation of the set⋃
a∈A|Ia∩∆⊥

d1
̸=∅

{Ta(ξrax0xa1) | 0 ≤ r ≤ na − 1} (B.5.3)

is in (PRS(N,∆d1)q)
⊥ ∩ PRS(N,∆d2)q.

Now we are going to study which polynomials from the set generated by

{TN−1−d1(ξ
r
N−1−d1x

N−1−d1
1 ) | 0 ≤ r ≤ nd1 − 1}

have their evaluation in (PRS(N,∆d1)q)
⊥ ∩ PRS(N,∆d2)q. As in Theorem B.4.14, we

assume that ξN−1−d1 is a primitive element of Fq
nd1 (note that nd1 = nN−1−d1) such that

TN−1−d1(ξN−1−d1) ̸= 0. For ease of notation, we are going to denote now d′1 = N − 1−d1.
For 0 ≤ r ≤ nd1 − 1, r ̸= 1, we have

Td′1(ξd′1)Td′1(ξ
r
d′1
x0x

d′1
1 )− Td′1(ξ

r
d′1
)Td′1(ξd′1x0x

d′1
1 )

≡ Td′1(ξd′1)Td′1(ξ
r
d′1
x
d′1
1 )− Td′1(ξ

r
d′1
)Td′1(ξd′1x

d′1
1 ) mod I(XN ).

(B.5.4)
This is easy to see because when we set x0 = 1, we obtain the same polynomials at each
side, which means that they have the same evaluation in [{1}×YN ], and both polynomials
evaluate to 0 in [0 : 1]. Therefore, they have the same evaluation in XN . Because of the
assumption ((∆′

d1
)I)

⊥ = ((∆d1)I)
⊥∪Id′1 ⊂ (∆′

d2
)I, we obtain Id′1 ⊂ ∆′

d2
and it is clear that

we have the evaluation of the polynomial in the left-hand side of (B.5.4) in PRS(N,∆d2)q
if we consider the basis from (B.5.2). The evaluation of the polynomial in the right-hand
side is clearly in (PRS(N,∆d1)q)

⊥ (see (B.5.1)). Thus, we have proved that the image by
the evaluation map of the polynomials in the set

{Td′1(ξd′1)Td′1(ξ
r
d′1
x0x

d′1
1 )− Td′1(ξ

r
d′1
)Td′1(ξd′1x0x

d′1
1 ) | 0 ≤ r ≤ nd1 − 1, r ̸= 1} (B.5.5)
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is in (PRS(N,∆d1)q)
⊥ ∩ PRS(N,∆d2)q.

Hence, the evaluation of the union of the sets from (B.5.3) and (B.5.5) is in

(PRS(N,∆d1)q)
⊥ ∩ PRS(N,∆d2)q,

and it is easy to see that the evaluation of this union is linearly independent. Taking into
account the basis from (B.5.1), we obtain that dim((PRS(N,∆d1)q)

⊥ ∩ PRS(N,∆d2)q) ≥
dim((PRS(N,∆d1)q)

⊥)− 1, i.e., c ≤ 1.

On the other hand, having c = 0 means that (PRS(N,∆d1)q)
⊥ ⊂ PRS(N,∆d2)q. This

implies that the evaluation of all the traces appearing in (B.5.4) are in PRS(N,∆d2)q.

However, the evaluations of Td′1(ξd′1x0x
d′1
1 ) and Td′1(ξd′1x

d′1
1 ) differ only at the coordinate as-

sociated to the point [0 : 1]. This would imply that the minimum distance of PRS(N,∆d2)q
is 1, a contradiction. Therefore, c = 1.

Remark B.5.12. We note that in the previous result we have that (∆′
d)I =

⋃
b∈B|b<d Ib.

As we said in the introduction, it is desirable to obtain asymmetric quantum codes with
higher error-correction capability for phase-shift errors, i.e. with δz > δx. For the codes
obtained using Theorem B.5.11, this corresponds to choosing d1 < d2.

In the next example we show that we are able to obtain codes which are better than
the ones available in the current literature.

Example B.5.13. We consider the extension F16 ⊃ F4, which is the setting from Ex-
ample B.4.22. We choose d1 = 14, d2 = 15, and apply Theorem B.5.11, which gives the
parameters [[17, 14, 3/2; 1]]4. In [16], we can find a code with parameters [[15, 12, 3/2; 1]]4
using BCH codes. We see that the code we have obtained has better rate κ/n, and also
better net rate (κ− c)/n.

If we consider the extension F25 ⊃ F5 instead, and choose d1 = 22, d2 = 23, we obtain a
code with parameters [[26, 19, 4/3; 1]]5 using Theorem B.5.11. It is possible to adapt the
propagation rules from [29] to asymmetric EAQECCs arising from Theorem B.5.10. For
example, we can reduce the length by using extra entanglement, provided that c ≤ n−κ−2:

[[n, κ, δz/δx; c]]q → [[n− 1, κ, δz/δx; c+ 1]]q. (B.5.6)

In [16] a code with parameters [[24, 19, 4/3; 3]]5 is presented, which can be obtained from
our code with parameters [[26, 19, 4/3; 1]]5 by applying (B.5.6) two times. In this sense,
we can say that the parameters [[24, 19, 4/3; 3]]5 appearing in [16] are a consequence of the
parameters [[26, 19, 4/3; 1]]5 that we obtain with Theorem B.5.11.

Finally, if we consider the extension F64 ⊃ F8, for d1 = 60 and d2 = 63, we obtain
the parameters [[65, 58, 5/2; 1]]8, which give a better rate and net rate than the code with
parameters [[63, 56, 5/2; 1]]8 from [16]. If we choose d1 = 58 and d2 = 62 instead, we
obtain the parameters [[65, 52, 7/3; 1]]8, which, after using the propagation rule (B.5.6) as
before, give the parameters [[63, 52, 7/3; 3]]8 that appear in [16].

If we do not assume ((∆′
d1
)I)

⊥ ⊂ (∆′
d2
)I in Theorem B.5.11, then we would obtain

instead the parameters [[N + 1,
∑

b∈B,b<d1
nb +

∑
b∈B,b<d2

nb + 1 + c − N, δz/δx; c]]q, for

c = dim(PRS(N,∆d1)q)
⊥ − dim((PRS(N,∆d1)q)

⊥ ∩ PRS(N,∆d2)q).
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B.5.3 Hermitian EAQECCs

In the Hermitian case, we have to work with three different fields. Hence, we are going to
change the notation from the previous sections. We consider the field extension Fq2ℓ ⊃ Fq2 ,

where q2ℓ = p2r, q = ps, for some r, s > 0, and r = ℓs. Thus, in what follows we are going
to obtain codes of length n = N + 1, where N > 1 is an integer such that N − 1 | q2ℓ − 1.

As before, we are going to consider the set ZN = {0} ∪ {1, 2, . . . , N − 1}, where
{1, 2, . . . , N − 1} is regarded as the set of representatives of the ring Z/(N − 1)Z. We
consider the cyclotomic sets with respect to q2 over {0, 1, . . . , N − 1}. We call A the set
of minimal elements of the different cyclotomic sets. We introduce now the Hermitian
construction [15, Thm. 3] that we are going to use.

Theorem B.5.14 (Hermitian construction). Let C ⊂ Fn
q2 be a linear code of dimension

k and C⊥h its Hermitian dual. Then, there is an EAQECC with parameters [[n, κ, δ; c]]q,
where

c = k − dim(C ∩ C⊥h), κ = n− 2k + c, and δ = wt(C⊥h \ (C ∩ C⊥h)).

We are only going to consider the Hermitian product over Fq2 . Therefore, for a, b ∈ Fn
q2

we have

a ·h b :=
n∑

i=0

aib
q
i .

In what follows, when considering a power of a code or a vector, we will be considering
the component-wise power, i.e., Cq := {cq := (cq1, . . . , c

q
n) | c = (c1, . . . , cn) ∈ C}. It is

easy to check that, for codes over Fq2 , we have that C
⊥ = (C⊥h)q, where C⊥h denotes the

Hermitian dual.

Theorem B.5.15. Let A = {a0 = 0 < a1 < a2 < · · · < az} be the set of minimal
representatives of the cyclotomic sets Iai, 0 ≤ i ≤ z, of {0, 1, . . . , N−1} with respect to q2.
Let ∆ =

⋃t−1
i=0 Iai ∪{at} such that RS(N,∆′′)q2 ⊂ (RS(N,∆′′)q2)

⊥h, where ∆′′ =
⋃t

i=0 Iai.
Then we can construct an EAQECC with parameters [[n, κ,≥ δ; c]]q, where n = N + 1,
κ = N + 1− 2

(∑t
i=0 nai

)
+ c, δ = at + 2 and c ≤ 1.

Proof. We are going to consider the code C = ((D(N,∆)⊥)q2)
⊥h for the Hermitian con-

struction B.5.14. Using what we obtained in Theorem B.5.5, the only thing left to prove
is the statement about the parameter c.

Following the proof of Theorem B.5.5, we have (D(N,∆)⊥)q2 = ((RS(N,∆′′)⊥)q2 , 0) +
⟨w′⟩ for some vector w′ with nonzero last coordinate. Therefore, dim ((D(N,∆)⊥)q2)

⊥h =
dimRS(N,∆′′)q2 = dim((RS(N,∆′′)⊥)q2)

⊥h . Moreover, we have

((RS(N,∆′′)⊥)q2)
⊥h = ((RS(N,∆′′)q2)

⊥)⊥h = (((RS(N,∆′′)q2)
⊥)⊥)q =

(
RS(N,∆′′)q2

)q
.

Thus, we obtain

((D(N,∆)⊥)q2)
⊥h = (((PRS(N,∆′′)q2)

q, 0) + ⟨(0, 0, . . . , 0, 1)⟩) ∩ ⟨(w′)⟩⊥h .

Note that (0, 0, . . . , 0, 1) ̸∈ ⟨(w′)⟩⊥h because w′ has a nonzero last coordinate. We can
consider a basis for ((D(N,∆)⊥)q2)

⊥h formed by (dimRS(N,∆′′)q2 − 1) vectors ui ∈
((RS(N,∆′′)q2)

q, 0), and a vector w such that its last coordinate is nonzero (not all vectors

59



EAQECCs from subfield subcodes of projective Reed-Solomon codes

can have the last coordinate equal to 0 because that would mean that we have the vector
(0, 0, . . . , 0, 1) ∈ (D(N,∆)⊥)q2 , contradicting the bound given for the minimum distance).

By our hypothesis, we have RS(N,∆′′)q2 ⊂ (RS(N,∆′′)q2)
⊥h . Thus,

(
RS(N,∆′′)q2

)q ⊂(
(RS(N,∆′′)q2)

⊥h
)q

= (RS(N,∆′′)q2)
⊥ = (RS(N,∆′′)⊥)q2 . Taking into account that

(D(N,∆)⊥)q2 ⊃ ((RS(N,∆′′)⊥)q2 , 0) ⊃ ((RS(N,∆′′)q2)
q, 0), we see that the vectors ui

are in (D(N,∆)⊥)q2 as well, and we obtain the desired inequality for the dimension of the
intersection.

Remark B.5.16. From [17, Prop. 3] we can obtain conditions to have RS(N,∆′′)q2 ⊂
(RS(N,∆′′)q2)

⊥h , like the one we show next. Let ∆′′ =
⋃t

i=0 Iai , and we denote by a′i the
minimal element in A such that Ia′i = I−qai . Assuming d(∆) < N − 1, if ∆′′ ⊂ (∆′′)⊥h :=

{0, 1, . . . , N − 1} \
⋃t

i=0 Ia′i , then we have RS(N,∆′′)q2 ⊂ (RS(N,∆′′)q2)
⊥h .

Example B.5.17. We continue with the setting from Example B.5.7. It is easy to check
that the set ∆ in Example B.5.7 satisfies ∆ ⊂ ∆⊥h , and by Remark B.5.16 and Theorem
B.5.15 we obtain a quantum code with parameters [[82, 67, 7; 1]]3.

With the construction from Theorem B.5.15 we can obtain several quantum codes over
F2 whose parameters do not appear in the table of EAQECCs from [21], and therefore we
improve the table. With the extension F24 ⊃ F22 , we can obtain a code with parameters
[[17, 12, 3; 1]]2, which is not in the table from [21]. We can consider now the following
propagation rule from [29]: let C be an EAQECC with parameters [[n, κ, δ; c]]q obtained
from Theorem B.5.14 (for example, the codes from Theorem B.5.15). If c ≤ n − κ − 2,
then we can reduce the length by using extra entanglement:

[[n, κ, δ; c]]q → [[n− 1, κ, δ; c+ 1]]q. (B.5.7)

Iterating this rule, it is easy to check that, from an EAQECC with parameters [[n, κ, δ; c]]q,
one can obtain EAQECCs with parameters [[n− s, κ, δ; c+ s]]q, s = 1, . . . , (n− κ− c)/2.
Note that the maximum value for c is k = dimC, where C is the classical code used for
Theorem B.5.14, and for the maximum value of s that we have stated we have precisely
that c+ s = k:

c+ s = c+
n− κ− c

2
= c+

2k − 2c

2
= k.

Applying the propagation rule (B.5.7) to the parameters [[17, 12, 3; 1]]2, we obtain
[[16, 12, 3; 2]]2 and [[15, 12, 3; 3]]2, which are also missing in the table [21].

For the extension F26 ⊃ F22 , we obtain codes with length 65, which is greater than
the current maximum length in [21] for EAQECCs over F2. Nevertheless, we can reduce
the length with the propagation rule (B.5.7) and check if the corresponding parameters
are in the table. A code with parameters [[64, 58, 3; 2]]2, whose parameters are missing
in [21], is obtained from the code with parameters [[65, 58, 3; 1]]2 derived from Theorem
B.5.15 using (B.5.7). Moreover, by applying the propagation rule (B.5.7) to the code with
parameters [[65, 40, 7; 1]]2 deduced from Theorem B.5.15, we obtain codes with parameters
[[65− i, 40, 7; 1 + i]]2, for i = 1, 2, . . . , 12, whose parameters are also missing in [21].

In total, we obtain in this way 16 EAQECCs over F2 whose parameters are missing
in [21].
The table of EAQECCs from [21] also covers codes over F3. However, the smaller length

that we can achieve with Theorem B.5.15 over F3 would be 34+1 = 82, much higher than
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the current maximum length in the table from [21] for this case. For example, we obtain
codes with parameters [[82, 77, 3; 1]]3, [[82, 73, 4; 1]]3, [[82, 69, 5; 1]]3 and [[82, 65, 6; 1]]3.

B.6 Evaluating at the trace roots

In this section, following the ideas from [18], we are going to consider evaluation codes
over the roots of a suitable trace polynomial. In [18], the authors considered the trace
polynomial over Fq2ℓ with respect to Fq defined as

Trs2r(x) = x+ xq + xq
2
+ · · ·+ xq

2ℓ−1
.

Let YTrℓ = {α ∈ Fq2ℓ | Trs2r(α) = 0}. It is well known that |YTrℓ | = q2ℓ−1. In [18],

evaluation codes over the roots of the trace are defined, obtaining codes with length q2ℓ−1,
and bounds for the dimension and minimum distance of these codes are found. In this
section we are going to do a similar thing over the projective space, obtaining codes of
length q2ℓ−1 + 1.
Firstly, we need to define the finite set of projective points in which we are going to

evaluate. In order to do this, we are simply going to add the point at infinity to the set
of roots of the trace, i.e., we are going to consider the following set of points:

XTrs2r
= {[1 : α] | Trs2r(α) = 0} ∪ {[0 : 1]}.

It is clear from the definition that
∣∣XTrs2r

∣∣ = q2ℓ−1 + 1. Moreover, we can give this set
as the zeroes of a square-free homogeneous polynomial. In the rest of this section, when
we consider the homogenization fh of a polynomial f , we are considering the standard
homogenization (up to degree deg(f)).

Proposition B.6.1. The vanishing ideal of XTrs2r
is I(XTrs2r

) = ⟨x0(Trs2r(x1))h⟩.

Proof. The generator of the ideal is a homogeneous polynomial. Therefore, we can just
look at the set of representatives P 1 to check the zeroes of the ideal. It is clear that
[0 : 1] ∈ V (⟨x0(Trs2r(x1))h⟩). And it is also clear that if [1 : α] is a zero of x0(Tr

s
2r(x1))

h,
then α must be a root of Trs2r(x). Thus, we have that V (⟨x0(Trs2r(x1))h⟩) = XTrs2r

.
On the other hand, we have the decomposition

Trs2r(x) =
∏

α∈F
q2ℓ

|Trs2r(α)=0

(x− α).

Homogenizing and multiplying by x0 we get

x0(Tr
s
2r(x1))

h = x0
∏

α∈F
q2ℓ

|Trs2r(α)=0

(x1 − αx0).

Therefore, x0(Tr
s
2r(x1))

h is a square-free polynomial and ⟨x0(Trs2r(x1))h⟩ is a radical ideal
by [9, Prop. 9, Chapter 4, Section 2], which means that it is equal to I(XTrs2r

).

If we consider the set of standard representatives XTrs2r
of XTrs2r

, we obtain the following
vanishing ideal.
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Proposition B.6.2. The vanishing ideal of XTrs2r
is

I(XTrs2r
) = ⟨x20 − x0, x

q2ℓ

1 − x1, (x0 − 1)(x1 − 1), x0Tr(x1)⟩.

Proof. It is clear that any point of XTrs2r
satisfies the equations. On the other hand, any

point that satisfies this equations must have the first coordinate equal to 0 or 1 because
of the first equation. If it is 0, then by the equation (x0 − 1)(x1 − 1) ≡ 0 mod I(XTrs2r

)
we have that the last coordinate is equal to 1. If the first coordinate is 1, then the last
equation implies that the last coordinate must be a zero of Tr(x). Therefore, V (I(XTrs2r

)) =
XTrs2r

. We obtain the result applying Seidenberg’s Lemma [26, Prop. 3.7.15] and Hilbert’s
Nullstellensatz over the algebraic closure of Fq2ℓ .

We are going to define the evaluation map that we are going to use in order to construct
these new codes (we have n = q2ℓ−1 + 1):

evTrs2r : Fq2ℓ [x0, x1]/I(XTrs2r
) → Fn

q2ℓ , f 7→ (f(P1), . . . , f(Pn))Pi∈XTrs2r

.

Definition B.6.3. Let A = {a0 = 0 < a1 < · · · < az}. We are going to consider a set
∆ =

⋃t−1
i=0 Iai ∪ {at} as before. For such a set ∆, we consider the code D(Trs2r,∆) defined

as the linear code generated by {evTrs2r(x0x
α
1 ) | α ∈ ∆ \ {at}} ∪ {evTrs2r(x

at
1 )}.

In what follows we are going to need to use the codes RS(Trs2r,∆) := RS(YTrs2r ,∆)
that appear in [18], which are the puncturing of the codes D(Trs2r,∆) at the coordinate
associated to the point [0 : 1]. When ∆ is a union of consecutive cyclotomic sets, we
have that (RS(Trs2r,∆)q2)

⊥ = (RS(Trs2r,∆)⊥)q2 . We are going to be interested in the code
(D(Trs2r,∆)⊥)q2 , for which we have the following result.

Theorem B.6.4. Let a0 = 0 < a1 < a2 < · · · < at−1 < at < q2ℓ − 1 be a sequence of
consecutive elements of A. Let ∆ =

⋃t−1
i=0 Iai ∪ {at} and let ∆′′ = ∆∪ Iat. Assuming that

(D(Trs2r,∆)⊥)q2 is not degenerate, we have the following inequalities:

dim (D(Trs2r,∆)⊥)q2 = dim(RS(Trs2r,∆
′′)⊥)q2 + 1 ≥ n−

t∑
i=0

nai ,

wt((D(Trs2r,∆)⊥)q2) ≥ at + 2.

Proof. By the definitions, it is clear that D(Trs2r,∆) = (RS(Trs2r,∆
′), 0) + ⟨evTrs2r(x

at
1 )⟩,

where ∆′ = ∆ \ {at}. Hence, dimD(Trs2r,∆) = dimRS(Trs2r,∆
′) + 1 = dimRS(Trs2r,∆),

because if we have dimRS(Trs2r,∆
′) = dimRS(Trs2r,∆), this means that evTrs2r(x0x

at
1 ) is

in (RS(Trs2r,∆
′), 0), which implies that evTrs2r(x0x

at
1 − xat1 ) is in D(Trs2r,∆), but this is a

vector of weight 1, which is a contradiction because (D(Trs2r,∆)⊥)q2 (and D(Trs2r,∆)⊥) is
not degenerate. Therefore, we have that dimD(Trs2r,∆)⊥ = dimRS(Trs2r,∆)⊥ + 1.

Arguing as in the proof of Theorem B.5.5, we have D(Trs2r,∆)⊥ = (RS(Trs2r,∆)⊥, 0) +
⟨w⟩, where w is a vector with a nonzero last entry, and we also obtain (D(Trs2r,∆)⊥)q2 =
((RS(Trs2r,∆)⊥)q2 , 0) + ⟨w′⟩ for some vector w′ with nonzero last coordinate. Moreover,
a basis for ((RS(Trs2r,∆)⊥)q2 , 0) would give us dim(RS(Trs2r,∆)⊥)q2 linearly indepen-
dent vectors with last coordinate equal to 0, which means that dim (D(Trs2r,∆)⊥)q2 =
dim(RS(Trs2r,∆)⊥)q2 + 1.
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We obtain dim (D(Trs2r,∆)⊥)q2 = dim(RS(Trs2r,∆
′′)⊥)q2+1 because (RS(Trs2r,∆)⊥)q2 =

(RS(Trs2r,∆
′′)⊥)q2 , which is what we are going to see next. When evaluating in all the

points of Fq2ℓ , we have (RS(q2ℓ,∆)⊥)q2 = (RS(q2ℓ,∆′′)⊥)q2 . The code RS(Trs2r,∆) (resp.

RS(Trs2r,∆
′′)) corresponds to a puncturing of RS(q2ℓ,∆) (resp. RS(q2ℓ,∆′′)) because we

only evaluate in the zeroes of Trs2r(x). The dual of a punctured code is equal to the
shortening of the dual code at the same positions [32, Prop. 2.1.17]. Given a code C,
if we denote by S the positions where we are puncturing (resp. shortening), by CS the
punctured code and by CS the shortened code, we obtain

((CS)
⊥)q2 = ((C⊥)S)q2 = ((C⊥)q2)

S ,

because shortening a code commutes with considering its subfield subcode. Let S be the
positions where we puncture in order to obtain RS(Trs2r,∆) from RS(q2ℓ,∆). Using the
previous expression and the fact that (RS(q2ℓ,∆)⊥)q2 = (RS(q2ℓ,∆′′)⊥)q2 we get

(RS(Trs2r,∆)⊥)q2 = ((RS(q2ℓ,∆)S)
⊥)q2 = ((RS(q2ℓ,∆)⊥)q2)

S = ((RS(q2ℓ,∆′′)⊥)q2)
S

= ((RS(q2ℓ,∆′′)S)
⊥)q2 = (RS(Trs2r,∆

′′)⊥)q2 .

The bound for the dimension given in the statement is obtained by using [18, Thm. 13].
On the other hand, for the minimum distance, we have the BCH-type bound for

D(Trs2r,∆)⊥, which gives wt(D(Trs2r,∆)⊥) ≥ at+2, and it is inherited by (D(Trs2r,∆)⊥)q2 .

The previous result shows that, if at+1 + 1 = at + 2, then the code (D(Trs2r,∆)⊥)q2 has
1 more length and dimension than the code (RS(Trs2r,∆

′′)⊥)q2 . In the next example we
obtain some codes (D(Trs2r,∆)⊥)q2 with record parameters according to [21].

Example B.6.5. We consider the field extension F28 ⊃ F22 , i.e., we have q = 2 and ℓ = 4.
Therefore, we will get codes with length N = 129. Let ∆ = I0 ∪ I1 ∪ · · · Iat−1 ∪ {at}.
Hence, we have wt

(
(D(Trs2r,∆)⊥)q2

)
≥ at + 2. The dimension of these codes can be

easily computed using Magma [5]. In this case, we obtain a lot of codes whose parameters
achieve the best known values in [21], and in many cases we are obtaining codes with higher
length and dimension, but same minimum distance as in the affine case. Moreover, we
obtain the parameters [129, 90, 15]4, [129, 86, 16]4 and [129, 41, 44]4, for at equal to 13, 14
and 42, respectively. In [21], a construction of a code with parameters [129, 86, 16]4 is
currently missing, and we are able to obtain one. The codes with parameters [129, 90, 15]4
and [129, 41, 44]4 exceed the best known values in [21]. Furthermore, by shortening and
puncturing these codes we are able to obtain more codes with record parameters or missing
constructions in [21]. For instance, from the code with parameters [129, 41, 44]4, we obtain
the parameters [129 − i − j, 41 − i, 44 − j]4, for 0 ≤ i ≤ 4, 0 ≤ j ≤ 3, which are either
records or the construction of a code with those parameters is missing in [21].

The next result shows that we can construct quantum codes over Fq using Theorem
B.6.4 together with the Hermitian construction B.5.14.

Theorem B.6.6. Let A = {a0 = 0 < a1 < a2 < · · · < az} be the set of minimal
representatives of the cyclotomic sets Iai, 0 ≤ i ≤ z, of {0, 1, . . . , q2l − 1} with respect to
q2. Let t ≤ z be an index such that

at ≤ qℓ −
⌊
(q − 1)

2

⌋
qℓ−1 − · · · −

⌊
(q − 1)

2

⌋
q − 1.
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Then, for ∆ =
⋃t−1

i=0 Iai ∪{at} as before, assuming that (D(Trs2r,∆)⊥)q2 is not degenerate,
we have that:

dim
(
((D(Trs2r,∆)⊥)q2)

⊥h ∩ (D(Trs2r,∆)⊥)q2
)
≥ dim ((D(Trs2r,∆)⊥)q2)

⊥h − 1.

As a consequence, we can construct an EAQECC with parameters

[[n,≥ n− 2

t∑
i=0

nai + c,≥ at + 2; c]]q,

where n = q2ℓ−1 + 1 and c ≤ 1.

Proof. Similarly to the proof of Theorem B.5.15, we are going to consider the code C =
((D(Trs2r,∆)⊥)q2)

⊥h for the Hermitian construction B.5.14. By Theorem B.6.4 we obtain
the bound for the minimum distance, and we also obtain that dim ((D(Trs2r,∆)⊥)q2)

⊥h ≤∑t
i=0 nai , which explains the dimension of the quantum code. The only thing left to prove

is the claim about the intersection of (D(Trs2r,∆)⊥)q2 with its hermitian dual.

Under our assumptions, in [18, Thm. 15] it is proved that we have RS(Trs2r,∆
′′)q2 ⊂

(RS(Trs2r,∆
′′)q2)

⊥h for ∆′′ =
⋃t

i=0 Iai . The reasoning from the proof of Theorem B.5.15
finishes the proof.

Example B.6.7. We continue with Example B.6.5. For at = 10, we have at + 2 = 12,
and, computing the dimension with Magma [5], we obtain a quantum code with param-
eters [[129, 67, 12; 1]]2 using Theorem B.6.6. In the affine case from [18], the parameters
[[128, 65, 12; 0]]2 are obtained. Therefore, we have increased the length by 1 and the di-
mension by 2, at the expense of increasing the parameter c by 1. Moreover, the codes
[[129, 73, 11; 1]]2, [[129, 67, 12; 1]]2 and [[129, 59, 13; 1]]2 that we can obtain in this way (by
changing at) cannot be deduced using the propagation rules from [29] with the codes in
the table of QECCs from [21].

In [18], the authors consider what they call complementary codes, which are obtained
in an analogous way, but evaluating in precisely all the points in Fq2ℓ besides the zeroes
of Trs2r(x). For the projective case, it is easy to see that including the point at infinity in
this set corresponds to considering the zero set of

x0x
q2ℓ

1 − xq
2ℓ

0 x1
Trs2r(x1)

h
.

All the results we have given in this section apply to these types of codes as well, but with
length q2ℓ − q2ℓ−1 + 1 (instead of q2ℓ−1 + 1).

Declarations

Conflict of interest

The authors declare that they have no conflict of interest.

64



Bibliography

Bibliography

[1] S. E. Anderson, E. Camps-Moreno, H. H. López, G. L. Matthews, D. Ruano, and I. So-
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constructions, bounds and performance. Proc. R. Soc. Lond. Ser. A Math. Phys.
Eng. Sci., 465(2105):1645–1672, 2009.

67





Paper C

Subfield subcodes of projective
Reed-Muller codes

Philippe Gimenez, Diego Ruano, Rodrigo San-José
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C.1 Introduction

The subfield subcode of a linear code C ⊂ Fn
qs , with s ≥ 1, is the linear code C ∩ Fn

q .
This is a standard procedure that may be used to construct long linear codes over a small
finite field. For instance, BCH codes can be seen as subfield subcodes of Reed-Solomon
codes. In the multivariate case, the subfield subcodes of J-affine variety codes are well
known [9] (in particular, the subfield subcodes of Reed-Muller codes) and have been used
for several applications [8, 10]. The main problem that arises when working with subfield
subcodes is the computation of a basis for the code, which also gives the dimension. In
this paper, we compute bases for the subfield subcodes of projective Reed-Muller codes
over the projective plane P2 and for their duals, and we also give tools to study the general
case of projective Reed-Muller codes over the projective space Pm.

Projective Reed-Muller codes are evaluation codes obtained by evaluating multivariate
homogeneous polynomials in the projective space. Arguing as in [17], when one considers
the sum of the rate and the relative minimum distance as a measure of how good the
parameters of a code are, we obtain that projective Reed-Muller codes outperform Reed-
Muller codes. It is therefore natural to pose the problem of studying the subfield subcodes
of projective Reed-Muller codes, in particular, the problem of obtaining bases for the
subfield subcode and its dual. As we stated previously, this has been done for different
families of evaluation codes over the affine space [9, 14], but for evaluation codes over the
projective space this has only been studied for evaluation codes over certain subsets of the
projective line [12]. In particular, the subfield subcodes of J-affine variety codes have been
used for constructing quantum codes with good parameters [7,9], and one can expect that
the subfield subcodes of projective Reed-Muller will also perform well in that setting.

In Section C.3, we study the subfield subcode of a projective Reed-Muller code over
the projective plane P2 and its dual. Comparing with projective Reed-Muller codes over
Pm, with m > 2, the case m = 2 is usually the most interesting one because it can give
rise to long codes with competitive parameters, which is similar to what happens in the
affine case with Reed-Muller codes. For the case m = 2, we provide explicit bases for both
the subfield subcode of a projective Reed-Muller code over the projective plane P2 and its
dual. In order to construct the basis for the dual, we consider Delsarte’s Theorem C.2.7,
which shows that we can generate the dual of the subfield subcode of a projective Reed-
Muller code of degree d by considering the evaluation of the traces of monomials of degree
d. Then we can obtain a basis for the code by extracting a maximal linearly independent
set of vectors, and we do this by using the vanishing ideal of the projective plane from
Lemma C.3.3 and the division by a Gröbner basis of this ideal. For the primary code, we
study some polynomials obtained by combining traces of monomials and such that they
can be regarded as homogeneous polynomials of degree d. We show that the set formed
by their evaluations is linearly independent, and we conclude that this set is a basis for
the code by a dimension argument, as we already have a basis of the dual code.

We generalize some of the previous ideas to the general setting of the projective space
Pm in Section C.4. When we consider a larger m, we usually increase the length at the
cost of having worse relative parameters, and also the analysis gets more complicated.
Nevertheless, we are able to deal with this case as well. We give the vanishing ideal of
a certain set of representatives of the points of Pm. We prove that the set of generators
that we give is a universal Gröbner basis of the ideal by using Buchberger’s criterion [4, §9
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Thm. 3, Chapter 2] and showing that all the S-polynomials of the generators reduce to
0, for any monomial order. From this result, we obtain the initial ideal and a basis for
the quotient ring. Moreover, we provide a way to obtain the remainder of the division
algorithm by this Gröbner basis for any monomial. This can be proved by checking that
the remainder that we state is equivalent in the quotient ring to the original monomial, i.e.,
both have the same evaluation, and then checking that all the monomials in the support
of the remainder are part of the basis given for the quotient ring. Particular cases of these
ideas have been used previously for the projective line and the projective plane [12, 19],
and we showcase them in full generality. With these tools, it is possible to deal with the
general case of computing bases for the subfield subcodes of projective Reed-Muller codes
over Pm and their duals, although getting explicit results as in the case m = 2 seems out
of reach as it gets too technical.

In Section C.5, we provide some examples of subfield subcodes of projective Reed-Muller
codes. We compare their parameters with the codes from [13], and we see that some of
the codes that we obtain have the best known parameters for the binary and ternary
case. When considering longer codes, it is thus expected to also achieve good parameters,
although the absence of tables for long codes makes comparisons difficult. One way to
see that some of the longer codes also have good parameters is to consider the Gilbert-
Varshamov bound [15, Thm. 2.8.1]. We provide a table with several of the codes that we
obtain that exceed it.

C.2 Preliminaries

We consider a finite field Fq of q elements with characteristic p, and its degree s extension
Fqs , with s > 1. We consider the projective space Pm over Fqs and the polynomial ring
S = Fqs [x0, . . . , xm]. Throughout this work, we will fix representatives for the points of
Pm: for each point in Pm, we choose the representative whose first nonzero coordinate is
equal to 1, starting from the left. We will denote by Pm the set of representatives that
we have chosen (seen as points in the affine space Am+1) and we will call them standard

representatives. Let n = |Pm| = qs(m+1)−1
qs−1 . We consider the following evaluation map:

evd : Sd → Fn
qs , f 7→ (f(Q1), . . . , f(Qn))Qi∈Pm ,

where Sd denotes the homogeneous polynomials of degree d. If m = 1, the image of
this evaluation map is the projective Reed-Solomon code of degree d (also called doubly
extended Reed-Solomon code), and we will denote it by PRSd. The parameters of these
codes are [qs + 1, d + 1, qs − d + 1]. If m > 1, then the image of the previous evaluation
map is the projective Reed-Muller code of degree d, which we will denote by PRMd(m).
This is another well known family of codes [17,20].

Given a code C ⊂ Fn
qs , its subfield subcode with respect to the extension Fqs ⊃ Fq is

defined as Cσ := C ∩ Fn
q . Subfield subcodes of projective Reed-Solomon codes, denoted

by PRSσd , were studied in [12], and in this paper we are interested in studying the subfield
subcodes of projective Reed-Muller codes and their dual codes, denoted by PRMσ

d(m) and

PRMσ,⊥
d (m), respectively. Before studying the projective case, let us show what happens

in the affine case.
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C.2.1 Subfield subcodes of affine Reed-Muller codes

The subfield subcodes of affine Reed-Muller, and, more generally, J-affine variety codes,
are well known [8, 10]. We introduce now some of the basic techniques that are used to
study the subfield subcodes of Reed-Muller codes, which we will denote by RMσ

d(m).
Let m ≥ 1 be an integer. We consider the ideal Iqs in the ring R = Fqs [x1, . . . , xm]

generated by xq
s

j − xj . It is clear that the finite set of points defined by Iqs is precisely
the whole affine space Am over Fqs .

Let n = qsm. Consider the quotient ring Rqs = R/Iqs and the evaluation map evAm :
Rqs → Fn

qs given by

evAm(f) = (f(Q1), f(Q2), . . . , f(Qn))Qi∈Am .

This map is well defined and is clearly an isomorphism of vector spaces because Iqs is the
vanishing ideal of Am. When working over quotient rings, we will use the same letter f to
denote the equivalence class and any polynomial representing it.

For m = 1, the image by the evaluation map of R≤d, the polynomials of degree less
than or equal to d, is the Reed-Solomon code of degree d (sometimes called extended
Reed-Solomon code), which we denote by RSd. For m ≥ 2, the image by the evaluation
map of R≤d is the Reed-Muller code of degree d.

We introduce now multivariate cyclotomic sets, which are useful for computing the
subfield subcodes of Reed-Muller codes. We consider Z/⟨qs − 1⟩, where we represent the
classes of Z/⟨qs − 1⟩ by {1, 2, . . . , qs − 1}, and we define Zqs = {0} ∪Z/⟨qs − 1⟩, where we
represent its classes by {0, 1, . . . , qs − 1}. We will call a subset I of the Cartesian product
Zm
qs :=

∏m
i=1 Zqs a cyclotomic set with respect to q if q · c ∈ I for any c ∈ I. Furthermore,

I is said to be minimal (with respect to q) if it can be expressed as I = {qi ·c, i = 1, 2, . . . }
for a fixed c ∈ I, and in that situation we will write Ic := I and nc = |Ic|.

Now we define the following lexicographic order in the Cartesian product Zm
qs : a =

(a1, . . . , am) < (b1, . . . , bm) = b if and only if the rightmost entry of b − a, viewing this
vector in Zm, is positive. We say that a ∈ Ic is a minimal representative of Ic if a is
the least element in Ic according to the order that we have given, and we will say that
b ∈ Ic it is a maximal representative of Ic if it is the biggest element. We will denote by
A the set of minimal representatives of the minimal cyclotomic sets, and by B the set of
maximal representatives of the minimal cyclotomic sets.
We can introduce a notion of degree for the elements in Zm

qs . Given an integer d ≥ 1, we
define ∆d = {c = (c1, c2, . . . , cm) ∈ Zm

qs |
∑m

i=1 ci = d}, ∆<d = {c = (c1, c2, . . . , cm) ∈ Zm
qs |∑m

i=1 ci < d} and ∆≤d = {c = (c1, c2, . . . , cm) ∈ Zm
qs |

∑m
i=1 ci ≤ d}. We will also denote

by A<d and A≤d the elements a ∈ A such that Ia ⊂ ∆<d and Ia ⊂ ∆≤d, respectively.

Example C.2.1. Consider the extension F4 ⊃ F2 with m = 2. We have q = 2 and
qs = 22 = 4. Therefore, Z4 = {0}∪Z/⟨3⟩. We have the following minimal cyclotomic sets:

I(0,0) = {(0, 0)}, I(1,0) = {(1, 0), (2, 0)}, I(0,1) = {(0, 1), (0, 2)}, I(1,1) = {(1, 1), (2, 2)},

I(3,0) = {(3, 0)}, I(0,3) = {(0, 3)}, I(3,3) = {(3, 3)}, I(2,1) = {(2, 1), (1, 2)},
I(1,3) = {(1, 3), (2, 3)}, I(3,1) = {(3, 1), (3, 2)}.

The set of minimal representatives is

A = {(0, 0), (1, 0), (0, 1), (1, 1), (3, 0), (0, 3), (3, 3), (2, 1), (1, 3), (3, 1)},
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and the set of maximal representatives is:

B = {(0, 0), (2, 0), (0, 2), (2, 2), (3, 0), (0, 3), (3, 3), (1, 2), (2, 3), (3, 2)}.

For each a ∈ A, we define the following trace map:

Ta : Rqs → Rqs , f 7→ f + f q + · · ·+ f q(na−1)
,

where we fix representatives in Rqs as follows: we will choose the representative of f (and
Ta(f)) such that the monomials xγ11 · · ·xγmm in its support have their exponents reduced
modulo qs − 1, i.e., 0 ≤ γi ≤ qs − 1, 1 ≤ i ≤ m. We will represent elements of Rqs and
R in the same way (simply as polynomials). Therefore, sometimes we consider Ta(f) as
a polynomial in R (the representative that we have chosen), which can be seen in other
quotient spaces (such as the one we will define for the projective case).

Example C.2.2. Continuing with Example C.2.1, let us consider a = (2, 1) and compute
Ta(x21x2). We have na = 2 and, since x41 = x1 in R4 = F4[x1, x2]/⟨x41 − x1, x

4
2 − x2⟩, then

Ta(x21x2) = x21x2+x1x
2
2 which is the representative of x21x2+x41x

2
2 in R4 with its exponents

reduced modulo qs − 1 = 3.

The following result gives a basis for the subfield subcodes of Reed-Muller codes (and
also Reed-Solomon codes) [8, Thm. 11], which we will denote by RMσ

d(m).

Theorem C.2.3. Set ξa a primitive element of the field Fqna . A basis for the vector space
RMσ

d(m) is obtained by considering the images under the map evAm of the set⋃
a∈A≤d

{Ta(ξraxa) | 0 ≤ r ≤ na − 1}.

As a consequence, we have that

dimRMσ
d(m) =

∑
a∈A≤d

na.

Remark C.2.4. Theorem C.2.3 implies that, for different cyclotomic sets Ia ̸= Ib, the
evaluation of the polynomials in the sets {Ta(ξraxa) | 0 ≤ r ≤ na − 1} and {Tb(ξrbxb) | 0 ≤
r ≤ nb−1} are linearly independent. Moreover, if we have Ia = Ib, then the previous sets
generate the same vector space.

C.2.2 Subfield subcodes of projective Reed-Muller codes

Now we introduce the techniques that we will use to compute subfield subcodes of evalua-
tion codes over the projective space. We had previously defined the usual evaluation map
evd over the projective space, which can be generalized to the evaluation map ev : S → Fn

qs

given by
ev(f) = (f(Q1), f(Q2), . . . , f(Qn))Qi∈Pm .

It is clear that the kernel of the evaluation map is precisely the vanishing ideal of Pm,
denoted by I(Pm). If we consider ev(Sd) (corresponds to projective Reed-Solomon codes or
projective Reed-Muller codes), the resulting code will be isomorphic to Sd/(I(P

m)∩Sd) ∼=
(Sd+I(Pm))/I(Pm). As we will see throughout this work, the vanishing ideal I(Pm) gives
plenty of information about these codes.
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Remark C.2.5. Throughout the rest of the paper, given a set of polynomials B, we will
refer to the set {ev(f) | f ∈ B} ⊂ Fn

qs as the evaluation of the set B.

We will say that f ∈ S evaluates to Fq in Pm if ev(f) ∈ Fn
q . The following result gives

us conditions for a polynomial to evaluate to Fq in Pm.

Lemma C.2.6. One has that f ∈ k[x0, . . . , xm] evaluates to Fq in Pm if and only
if f(1, x1, . . . , xm), f(0, 1, x2, . . . , xm), f(0, 0, 1, x3, . . . , xm),. . . , and f(0, 0, . . . , 0, 1, xm)
evaluate to Fq in Am,Am−1,Am−2, . . . ,A, respectively, and f(0, . . . , 0, 1) ∈ Fq.

Proof. We can decompose Pm as the following union of affine spaces: Pm =
⋃m

i=0Ai,
where Ai = {Q = [Q0 : · · · : Qm] ∈ Pm | Q0 = · · · = Qi−1 = 0, Qi = 1} if 1 ≤ i ≤ m, and
A0 = {Q = [Q0 : · · · : Qm] ∈ Pm | Q0 = 1}. Therefore, f evaluates to Fq in Pm if and
only if f evaluates to Fq in each set Ai, 0 ≤ i ≤ m. The evaluation of Fq at each of the
points of the set Ai is the same as the evaluation of f(0, . . . , 0, 1, xi+1, . . . , xm), and the
evaluation of this polynomial at the points of Ai is the same as its evaluation in Am−i.

In order to construct polynomials that evaluate to Fq in Pm we consider homogenizations
of traces of polynomials. Given a polynomial f ∈ R = Fqs [x1, . . . , xm], and a degree
d ≥ deg(f), we define the homogenization of f up to degree d as

fh = xd0f(x1/x0, x2/x0, . . . , xm/x0) ∈ Sd = Fqs [x0, . . . , xm]d.

In what follows, we will always consider some fixed degree d, and, unless stated otherwise,
we will assume that we homogenize up to degree d.

Let d ≥ 1 and let a ∈ A≤d. We are interested in homogenizing the polynomials from
the basis from Theorem C.2.3. The condition a ∈ A≤d ensures that, with the fixed
representatives that we have chosen for Ta(f) (the exponents of the monomials are reduced
modulo qs−1), we have deg(Ta(f)) ≤ d. Now we can define the following homogenization:

T h
a : R → S/I(Pm), f 7→ (Ta(f))h, (C.2.1)

where we homogenize up to degree d, and we consider that Ta(f) ∈ R is the representative
that we have chosen in Rqs . Note that the homogenization is not well defined in general
for a class in Rqs , which is why we had to fix a representative for Ta(f).
These homogenized traces have already been used to obtain bases for the subfield sub-

code of a projective Reed-Solomon code and its dual in [12]. With respect to the dual
code of a subfield subcode, we have the following result by Delsarte [5]:

Theorem C.2.7. Let C ⊂ Fn
qs be a linear code.

(C ∩ Fn
q )

⊥ = Tr(C⊥),

where Tr : Fqs → Fq maps x to x+ xq + · · ·+ xq
s−1

and is applied componentwise to C⊥.

In [12], a basis for the dual of the subfield subcode of a projective Reed-Solomon code
was obtained by using the previous result. In the following sections we will generalize
these ideas to deal with the case Pm, with m > 1.
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C.3 Codes over the projective plane

In this section, we focus on the case X = P 2, where we can give precise results, although it
gets much more technical than the case m = 1 from [12]. The goal is to compute bases for

PRMσ,⊥
d (2) and PRMσ

d(2) and, in particular, their dimensions. We set S = Fqs [x0, x1, x2],
and consider cyclotomic sets in two coordinates. Here, A will be the set of minimal
representatives of cyclotomic sets in two coordinates, and we will usually use the letters a
and c to denote elements (a1, a2) and (c1, c2) of some cyclotomic sets Ia or Ic. We will also
use the univariate cyclotomic sets in this context, and we define A1 := {a2 | (a1, a2) ∈ A}.
Because of the choice of the ordering of the elements in Z2

qs , a = (a1, a2) ∈ A verifies that
a2 is a minimal representative of the cyclotomic set Ia2 in one coordinate. Therefore, A1

is also the set of minimal representatives of cyclotomic sets in one coordinate. We will use
letters a2 or c2 (or a letter that clearly corresponds to an integer) to denote the elements
of the cyclotomic sets Ia2 in one coordinate.
The next result summarizes the main consequences of the results of this section. The

definitions of d and Y can be found in Definition C.3.5 and (C.3.11), respectively.

Theorem C.3.1. Let 1 ≤ d ≤ 2(qs − 1). Then the subfield subcode of the projective

Reed-Muller code, PRMσ
d(2), is a code with length n = |Pm| = qm+1−1

q−1 , and dimension

dim(PRMσ
d(2)) =

∑
a∈A<d

na +
∑
a2∈Y

na2 + ϵ,

where, if we consider b2 ∈ A1 with Ib2 = Id, then ϵ = nd + 1 if I(qs−1,d) ⊂ ∆≤d; ϵ = 1 if

I(qs−1,d) ̸⊂ ∆≤d and
⋃

c2∈Ib2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ ∆≤d; and ϵ = 0 otherwise. Moreover,

the minimum distance is bounded by

wt(PRMσ
d(2)) ≥ wt(PRMd(2)) = (qs − t)qs(1−r),

where d− 1 = r(qs − 1) + t, with 0 ≤ t < qs − 1.

The formula for the dimension in the previous result can be found in Corollary C.3.42.
The dimension of PRMσ,⊥

d (2) can be derived from the previous result, but we also provide
another formula in Corollary C.3.13. Moreover, in Theorem C.3.39 and Theorem C.3.12
we provide bases for PRMσ

d(2) and PRMσ,⊥
d (2), respectively.

C.3.1 Dual codes of the subfield subcodes of projective Reed-Muller
codes

We start by computing a basis for the dual of the subfield subcode of a projective Reed-
Muller code since it is slightly easier due to the nature of Delsarte’s Theorem, Theorem
C.2.7. For this we need the following result from [20] about the dual of a projective
Reed-Muller code.

Theorem C.3.2. Let m ≥ 2, 1 ≤ d ≤ m(qs − 1) and d⊥ = m(qs − 1)− d. Then

PRM⊥
d (m) = PRMd⊥(m) for d ̸≡ 0 mod (qs − 1),

PRM⊥
d (m) = PRMd⊥(m) + ⟨(1, . . . , 1)⟩ for d ≡ 0 mod (qs − 1).
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Setting m = 2 now, in order to use Delsarte’s Theorem C.2.7, it is useful to introduce
the following trace map

T : S/I(P 2) → S/I(P 2), f 7→ f + f q + · · ·+ f qs−1
.

With this definition, it is clear that ev ◦T = Tr ◦ ev. Hence, the trace code Tr(PRM⊥
d (m))

can be seen as the code generated by the evaluation of some traces in this case. In
particular, we can consider T (Sd⊥) (if d ≡ 0 mod qs−1, we also consider T (λ ·1), λ ∈ Fqs).
The image by the evaluation map of T (Sd⊥) is a system of generators of Tr(PRM⊥

d (m)) if
d ̸≡ 0 mod qs − 1. If we extract a maximal linearly independent set of polynomials from
T (Sd⊥), then its image by ev will be a basis for the dual of the subfield subcode.
As we said before, the kernel of the evaluation map is precisely I(P 2), and we have an

isomorphism of the primary code with S/I(P 2). The ideal I(P 2) will play a crucial role
in understanding linear independence of the polynomials in T (Sd). Hence, it is helpful to
obtain a Gröbner basis for this ideal and a basis for the quotient S/I(P 2). The following
result is a consequence of Theorem C.4.1 and Lemma C.4.3, which will be proven in Section
C.4.

Lemma C.3.3. The following polynomials form a universal Gröbner basis of I(P 2):

I(P 2) = ⟨x20 − x0, x
qs

1 − x1, x
qs

2 − x2, (x0 − 1)(x21 − x1), (x0 − 1)(x1 − 1)(x2 − 1)⟩.

Moreover, the set of monomials {xa11 xa22 , x0x
a2
2 , x0x1 | 0 ≤ ai ≤ qs−1, 1 ≤ i ≤ 2} is a basis

for S/I(P 2).

Remark C.3.4. Because of the generator x20−x0 of the previous ideal, any positive power
of x0 is equivalent to x0 in the quotient ring. Therefore, any monomial xa00 xa11 xa22 with
a0 > 0 is equivalent to x0x

a1
1 xa22 in S/I(P 2).

In what follows, we assume d ̸≡ 0 mod qs−1 to avoid making exceptions due to Theorem
C.3.2 (we will recover this case later). By Theorem C.2.7 and Theorem C.3.2, we have

that PRMσ,⊥
d (2) can be generated by the image by the evaluation map of traces (using

the map T ) of multiples of the monomials of degree d⊥. We show next that, to obtain a
basis for the dual code, it is enough to consider the trace maps Ta instead of T , which we
extend from Rqs to S/I(P 2) in the following way:

Ta : S/I(P 2) → S/I(P 2), f 7→ f + f q + · · ·+ f q(na−1)
,

for a certain a ∈ A.
We consider the trace map from Fqs to Fql , TrFqs/Fql

(with l | s): TrFqs/Fql
(x) = x +

xq
l
+ · · · + xq

l( s
l
−1)

. By Theorem C.2.7, Theorem C.3.2, and the previous discussion, we
have that Tr(PRM⊥

d (2)) is generated by the evaluation of T (Sd⊥), which is generated by
the set {T (λxγ), λ ∈ F∗

qs , x
γ ∈ Sd⊥}. Let λ ∈ F∗

qs , γ = (γ0, γ1, γ2) and γ̂ = (γ1, γ2). We
consider the cyclotomic set Iγ̂ , and we have that

T (λxγ) ≡λxγ + λqxqγ + · · ·+ λq
nγ̂−1

xq
nγ̂−1

γ

+ λq
nγ̂
xγ + λq

nγ̂+1

xqγ + · · ·+ λq
2nγ̂−1

xq
nγ̂−1

γ + · · ·
≡TrFqs/Fq

nγ̂
(λ)xγ + (TrFqs/Fq

nγ̂
(λ))qxqγ + · · ·

≡Tγ̂
(
TrFqs/Fq

nγ̂
(λ)xγ

)
mod I(P 2),

(C.3.1)
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where, if γ0 > 0, we can reduce the exponent of x0 in each monomial to 1 (see Remark
C.3.4), and we are using that (xγ11 xγ22 )q

nγ̂ ≡ xγ11 xγ22 mod S/I(P 2). Equation (C.3.1) shows
that, for each monomial xγ , it is enough to consider the traces

{Tγ̂(ξrγ̂xγ) | 0 ≤ r ≤ nγ̂ − 1}. (C.3.2)

This is because the trace function is surjective, which means that every element of Fq
nγ̂ is

obtained as TrFqs/Fq
nγ̂
(λ) for some λ ∈ Fqs . Taking into account the linearity of the trace

function, and the fact that {1, ξγ̂ , . . . , ξ
nγ̂−1
γ̂ } constitutes a basis for Fq

nγ̂ , we obtain what
we stated.
Thus, for computing a basis for PRMσ,⊥

d (2), we just need to consider the union of the
sets in (C.3.2), and extract a maximal linearly independent set. In principle, we will not
see the dual code as the image by the evaluation map of a set of homogeneous polynomials.
This makes Lemma C.3.3 specially valuable in order to argue about linear independence
when we consider polynomials of different degree (for homogeneous polynomials, the ho-
mogeneous ideal I(Pm) from [18] can be used to discuss linear independence).

We note that, for d > 2(q − 1), PRMd(2) is the whole space. Hence, we will always
assume that d ≤ 2(q− 1) in what follows. We introduce now the following sets which play
a crucial role in grouping the polynomials in Sd with linearly dependent traces.

Definition C.3.5. Let 1 ≤ d ≤ 2(q − 1). For 0 ≤ b ≤ 2(q − 1), we define b as the
representative of b mod (qs − 1) between 1 and qs − 1 if b ̸= 0, and 0 otherwise. For
a = (a1, a2) ∈ A, we define

Ma(d) = ⟨xb00 xb11 xb22 | (b1, b2) ∈ Ia, b0 + b1 + b2 = d⟩ ⊂ Sd.

It is clear that the union of these sets contains all the monomials of Sd, which implies
that Sd = ⟨

⋃
a∈AMa(d)⟩. Therefore, we have that T (Sd) = ⟨

⋃
a∈A T (⟨Ma(d)⟩)⟩, where

we have used the linearity of T . Thus, in order to obtain a set of polynomials such that
its image by the evaluation map is a basis for PRMσ,⊥

d (2), we are going to obtain a basis
for T (Ma(d)), for each a ∈ A, and then consider the union of these bases which, by the
previous argument, will generate T (Sd). We will then extract a basis from this union.

To achieve that, we first introduce the following definition that we use throughout this
section.

Definition C.3.6. Let 1 ≤ d ≤ 2(qs − 1). We will say that Ma(d) contains monomials of
the two types if there are monomials m1,m2 ∈ Ma(d) such that x0 | m1 and x0 ∤ m2.

Using all the previous notation, we have the following result which translates some
conditions on cyclotomic sets into conditions on the sets Ma(d).

Lemma C.3.7. Let 1 ≤ d ≤ 2(qs − 1). We have the following:

1. Ma(d) is not empty if and only if Ia ∩∆≤d ̸= ∅.

2. x0 divides some monomial in Ma(d) if and only if Ia ∩∆<d ̸= ∅.

3. x0 does not divide all the monomials in Ma(d) if and only if Ia ∩ (∆d ∪∆d) ̸= ∅.

4. Ma(d) contains monomials of the two types if and only if Ia ∩ ∆<d ̸= ∅ and Ia ∩
(∆d ∪∆d) ̸= ∅.
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5. x0 does not divide any monomial in Ma(d) ̸= ∅ if and only if Ia ∩∆≤d ⊂ ∆d.

Proof. The first one is clear from the definitions. We prove (4) first. If Ma(d) contains
monomials of the two types, then Ma(d) is not empty, and there is a monomial xb11 xb22 ∈
Ma(d). This means that (b1, b2) ∈ Ia, and we have b1 + b2 ≡ d mod (qs − 1). Hence,
(b1, b2) ∈ Ia ∩ (∆d ∪∆d) ̸= ∅. There is also a monomial xc00 xc11 xc22 ∈ Ma(d) with c0 > 0,
which implies that c1 + c2 < d and (c1, c2) ∈ Ia ∩∆<d.

Conversely, if we have c ∈ Ia such that c1+c2 ≡ d mod (qs−1), this means that, if c1 > 0,

x
c1+λ(qs−1)
1 xc22 has degree d for some λ ∈ {0, 1}, which means that this monomial would

be in Ma(d). If c1 = 0, the same reasoning proves that the monomial x
c2+λ(qs−1)
2 would

be in Ma(d) for some λ ∈ {0, 1}. Taking into account the condition Ia ∩∆<d ̸= ∅, there
is an element u ∈ Ia such that xu1

1 xu2
2 is of degree less than d. Thus, xu0

0 xu1
1 xu2

2 ∈ Ma(d),
where u0 = d− u1 − u2. This proves (4).

By adapting the previous argument, it is easy to prove (2) and (3), and (5) is the
negation of (2), taking (1) into account.

Example C.3.8. We can consider the extension F16 ⊃ F2 (q = 2, s = 4), and the
cyclotomic set I(0,3) = ⟨(0, 3), (0, 6), (0, 9), (0, 12)⟩. For 1 ≤ d ≤ 2 we have that M(0,3)(d) =
∅ since I(0,3) ∩ ∆≤2 = ∅. For d = 3, we have M(0,3)(3) = ⟨x32⟩, i.e., x0 does not divide
any monomial in M(0,3)(3) (due to the fact that I(0,3) ∩∆≤3 = {(0, 3)} ⊂ ∆3). For d = 5
(similarly for d = 4), we have that M(0,3)(5) = ⟨x20x32⟩, i.e., x0 divides all the monomials
in M(0,3)(5) (precisely because I(0,3) ∩∆5 = ∅). For d = 6 we have M(0,3)(6) = ⟨x30x32, x62⟩,
i.e., M(0,3)(6) contains monomials of the two types, since we have (0, 3) ∈ I(0,3)∩∆<6 and
(0, 6) ∈ Ia ∩∆6. Lastly, if we consider a degree higher than qs = 16, we have to take into
account d. For example, for d = 18, we have M(0,3)(18) = ⟨x150 x32, x

18
2 , x120 x62, x

9
0x

9
2, x

6
0x

12
2 ⟩.

We see that M(0,3)(18) contains monomials of the two types, as we have that d = 3 and
(0, 3) ∈ I(0,3) ∩∆3, which means that we can consider the monomial x182 ≡ x3 mod I(P 2),
which does not have x0 in its support.

The following result is a consequence of Lemma C.4.4, which is proved in Section C.4.
It will allow us to obtain a basis for T (Ma(d)), for each a ∈ A, and it can be understood as
the remainder after using the multivariate division algorithm of a monomial with respect
to the Gröbner basis from Lemma C.3.3.

Lemma C.3.9. Let a0, a1, a2 be integers, with a0, a1 > 0. We have that

xa00 xa11 xa22 ≡ xa11 xa22 + x0x
a2
2 − xa22 + x0x1 − x0 − x1 + 1 mod I(P 2)

≡ xa11 xa22 + (x0 − 1)(xa22 + x1 − 1) mod I(P 2).

We recall that the kernel of ev is I(P 2). This implies that a set of classes (polynomials)
in S/I(P 2) is linearly independent if and only if the evaluation of this set is linearly
independent. This is why, in the following, we may argue about linear independence both
from the point of view of polynomials in S/I(P 2) and vectors in Fn

qs .

Lemma C.3.10. Let a = (a1, a2) ∈ A, let ξa be a primitive element of Fqna and let ξa2 be
a primitive element of Fqna2 . Then the following polynomials constitute a basis in S/I(P 2)

for T (Ma(d)) = ⟨T (λxb00 xb11 xb22 ), λ ∈ Fqs , x
b0
0 xb11 xb22 ∈ Ma(d)⟩:
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1. If x0 divides all the monomials in Ma(d) ̸= ∅:

{Ta(ξrax0x
a1
1 xa22 ) | 0 ≤ r ≤ na − 1}.

2. If x0 does not divide any monomial in Ma(d) ̸= ∅:

{Ta(ξrax
a1
1 xa22 ) | 0 ≤ r ≤ na − 1}.

3. If Ma(d) contains monomials of the two types, and a1 = 0:

{Ta(ξrax
a2
2 ) | 0 ≤ r ≤ na − 1} ∪ {Ta(ξrax0x

a2
2 ) | 0 ≤ r ≤ na − 1}.

4. If Ma(d) contains monomials of the two types, and a1 > 0:

{Ta(ξrax
a1
1 xa22 ) | 0 ≤ r ≤ na−1}∪{(x0−1)(Ta2(ξra2x

a2
2 )+Ta2(ξra2)(x1−1)) | 0 ≤ r ≤ na2−1}.

Proof. The fact that the polynomials of each set {Ta(ξrax
a0
0 xa11 xa22 ), 0 ≤ r ≤ na} are linearly

independent can easily be seen since the evaluation of each set {Ta(ξrax
a0
0 xa11 xa22 ), 0 ≤ r ≤

na} in [{1} × F2
qs ] is the same as the evaluation of {Ta(ξrax

a1
1 xa22 ), 0 ≤ r ≤ na} in F2

qs ,
and we know that the evaluation of this set in F2

qs is linearly independent it is part of the

basis given in Theorem C.2.3 for the affine case. For each monomial xb00 xb11 xb22 ∈ Ma(d),
because of the discussion that led to (C.3.2), we know that, instead of considering the set
{T (λxb00 xb11 xb22 ), λ ∈ Fqs}, it is enough to consider the set {Ta(ξrax

b0
0 xb11 xb22 ), 0 ≤ r ≤ na}.

Therefore, if we consider xb00 xb11 xb22 , xc00 xc11 xc22 ∈ Ma(d), with b0, c0 > 0, we know that it is
sufficient to consider the traces {Ta(ξrax

b0
0 xb11 xb22 ), 0 ≤ r ≤ na−1} and {Tb(ξrbx

c0
0 xc11 xc22 ), 0 ≤

r ≤ na − 1} for each monomial, respectively. However, the evaluations of these sets of
traces generate the same space in [{1} × F2

qs ] due to Theorem C.2.3 and Remark C.2.4,
and in the rest of the points both sets of polynomials evaluate to 0. For the case with
b0 = c0 = 0, we just need to observe that the evaluation of any polynomial f(x1, x2) in P 2

is fixed by its evaluation in [{1} × F2
qs ]. By the same argument as before, the evaluations

of the two sets of polynomials we are considering in [{1} × F2
qs ] generate the same space,

and by the previous observation this implies that their evaluations over P 2 generate the
same vector space.

Hence, if we consider the traces of the monomials in Ma(d), it is enough to consider the
traces of a monomial divisible by x0 (if any) and the traces of a monomial not divisible
by x0 (if any). In fact, we can assume that we are considering the monomials x0x

a1
1 xa22

and xa11 xa22 , as any other choice for a monomial that is divisible by x0 and a monomial
that is not divisible by x0, respectively, would span the same space when considering the
space generated by the traces. In the case where Ma(d) only has monomials of one of
those types, we know that those traces are linearly independent and we obtain the cases
(1) and (2). Another easy case is when a1 = 0, in which, if Ma(d) contains monomials of
the two types, we just obtain the polynomials

{Ta(ξrax
a2
2 ) | 0 ≤ r ≤ na − 1} ∪ {Ta(ξrax0x

a2
2 ) | 0 ≤ r ≤ na − 1}.

We have seen that both of these sets are linearly independent, and when we consider the
union we still keep the linear independence since the monomials of each of these traces are
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part of the basis in Lemma C.3.3 and both sets have disjoint support for their polynomials.
This corresponds to the case (3).
The case where a1 > 0 and Ma(d) contains monomials of the two types is more in-

volved. By the previous discussion, it is enough to consider the sets of polynomials
{Ta(ξrax0x

a1
1 xa22 ), 0 ≤ r ≤ na − 1} and {Ta(ξrax

a1
1 xa22 ), 0 ≤ r ≤ na − 1} for generat-

ing T (Ma(d)), and we are interested in knowing how many linearly independent poly-
nomials in S/I(P 2) there are in the union of those sets. In order to construct a ba-
sis for the space generated by all these polynomials, we start with the polynomials in
{Ta(ξrax

a1
1 xa22 ), 0 ≤ r ≤ na}, and we will check which polynomials from the other set can

be included without losing linear independence. First, by Lemma C.3.9, we have that

xq
la0

0 xq
la1

1 xq
la2

2 ≡ xq
la1

1 xq
la2

2 + (x0 − 1)(xq
la2

2 + x1 − 1) mod I(P 2).

Thus, for a = (a1, a2) with a1 > 0, we consider Ia and ξa a primitive element of Fqna , and
we obtain

Ta(ξrax
a0
0 xa11 xa22 ) ≡ Ta(ξrax

a1
1 xa22 ) + (x0 − 1)

na−1∑
l=0

ξq
lr

a (xq
la2

2 + x1 − 1) mod I(P 2)

≡ Ta(ξrax
a1
1 xa22 ) + (x0 − 1)(Ta(ξrax

a2
2 ) + Ta(ξra)(x1 − 1)) mod I(P 2).

(C.3.3)

By (C.3.3), we obtain that we have to see which polynomials of the type

(x0 − 1)(Ta(ξrax
a2
2 )+ Ta(ξra)(x1 − 1)) = (x0 − 1)Ta(ξrax

a2
2 )+ (x0 − 1)(x1 − 1)Ta(ξra) (C.3.4)

can be included in the basis that we are constructing without losing linear independence.
We note that the exponents of x2 in these polynomials are precisely the elements of Ia2 .
In fact, these polynomials are closely related to the corresponding traces of Ia2 . Arguing
as we did to get (C.3.1), we obtain that

Ta(ξrax
a2
2 ) = Ta2

(
TrFqna /Fq

na2
(ξra)x

a2
2

)
. (C.3.5)

By the argument we used to get (C.3.2), we see that the set {Ta2(ξra2x
a2
2 ) | 0 ≤ r ≤ na2−1},

where ξa2 is a primitive element of Fqna2 , generates the same vector space as {Ta(ξrax
a2
2 ) |

0 ≤ r ≤ na − 1}. This implies that the set of polynomials

{(x0 − 1)(Ta(ξrax
a2
2 ) + Ta(ξra)(x1 − 1)) | 0 ≤ r ≤ na}

generates the same space as the set

{(x0 − 1)(Ta2(ξra2x
a2
2 ) + Ta2(ξra2)(x1 − 1)) | 0 ≤ r ≤ na2}.

This is because the same linear combination that expresses Ta(ξrax
a2
2 ) in terms of the traces

Ta2(ξra2x
a2
2 ) also gives Ta(ξra) in terms of the traces Ta2(ξra2) (we just evaluate x2 = 1), and

vice versa. Thus, when considering the polynomials from (C.3.4) that we have to include,
is is enough to consider

{(x0 − 1)(Ta2(ξra2x
a2
2 ) + Ta2(ξra2)(x1 − 1)) | 0 ≤ r ≤ na2 − 1}, (C.3.6)
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which are linearly independent since they coincide with the univariate affine case from
Theorem C.2.3 when we evaluate in the points of [{0} × {1} × Fqs ]. Finally, when we
consider the union of those polynomials with the set {Ta(ξrax

a1
1 xa22 ), 0 ≤ r ≤ na}, we see

that they are linearly independent because the polynomials from (C.3.6) evaluate to the
zero vector in [{1} × F2

qs ], while the polynomials from the set {Ta(ξrax
a1
1 xa22 ), 0 ≤ r ≤ na}

give linearly independent vectors when evaluating in [{1} × F2
qs ].

By Lemma C.3.10, if x0 divides all the monomials from Ma(d), or does not divide any
of the monomials in Ma(d), we only have to consider na polynomials for each a ∈ A to
construct a basis for T (Ma(d)). However, if Ma(d) contains monomials of the two types
we have to consider na + na2 polynomials (note that for a1 = 0 we have a = (0, a2) and
2na = 2na2 = na + na2).

Remark C.3.11. We note that if a1 = 0 and Ma(d) contains monomials of the two types,
this means that xd2 ∈ Ma(d), which implies that d ∈ Ia2 . Therefore, the case (3) in Lemma
C.3.10 applies only to (0, d) ∈ A, and only when M(0,d) contains monomials of the two
types.

Let d⊥ = 2(q − 1)− d. We introduce the following notation to state the main result of
this section. For each a ∈ A such that Ma(d

⊥) ̸= ∅, let ξa be a primitive element in Fqna ,
and consider the following set:

(a) If x0 divides all the monomials from Ma(d
⊥), we set

Ta = {Ta(ξrax0x
a1
1 xa22 ) | 0 ≤ r ≤ na − 1}.

(b) We set
Ta = {Ta(ξrax

a1
1 xa22 ) | 0 ≤ r ≤ na − 1}

otherwise.

The reasoning behind Ta is that for any a ∈ A such that Ma(d
⊥) ̸= ∅, from Lemma

C.3.10 we obtain that Ta is a set of linearly independent polynomials in T (Ma(d
⊥)). We

define U = {a ∈ A | Ma(d
⊥) ̸= ∅}, and we consider the union of the previous sets:

D1 =
⋃
a∈U

Ta.

This is one of the sets that we will consider for constructing a basis for PRMσ,⊥
d (2).

If Ma(d
⊥) contains monomials of the two types, then, besides Ta, Lemma C.3.10 states

that there are more linearly independent polynomials in T (Ma(d
⊥)). Thus, we turn our

attention now to the case (4) from Lemma C.3.10. For each a2 ∈ A1, let ξa2 be a primitive
element in Fqna2 , and we consider the set

Ta2 = {(x0 − 1)(Ta2(ξra2x
a2
2 ) + Ta2(ξra2)(x1 − 1)) | 0 ≤ r ≤ na2 − 1}.

Let V = {a2 ∈ A1 | Ia2 ̸= I
d⊥

and ∃ c ∈ A with c2 = a2 and Mc(d
⊥) contains monomials

of the two types}, and we consider the set

D2 =
⋃

a2∈V
Ta2 .
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If we want to generate all the polynomials in
⋃

a∈A T (Ma(d
⊥)), from Lemma C.3.10 we see

that we still have to consider the polynomials corresponding to a ∈ A such that Ia2 = Id.
Let us define a set D3 that will contain the polynomials corresponding to this case and
that we will consider for constructing a basis for PRMσ,⊥

d (2). Let a2 ∈ A1 such that
Ia2 = I

d⊥
, and ξa2 a primitive element in Fqna2 .

(a) If M
(0,d⊥)

(d⊥) = M(0,a2)(d
⊥) contains monomials of the two types:

(a.1) If there is an element c ∈ A such that c2 = a2, Ic ̸= I
(0,d⊥)

, and Mc(d
⊥)

contains monomials of the two types, we set

D3 = {Ta2(ξra2x0x
a2
2 ) | 0 ≤ r ≤ na2 − 1} ∪ {(x0 − 1)(x1 − 1)}.

(a.2) We set
D3 = {Ta2(ξra2x0x

a2
2 ) | 0 ≤ r ≤ na2 − 1}.

otherwise.

(b) We set
D3 = ∅

otherwise.

We note that the case (b) happens if and only if x0 does not divide any monomial in
M

(0,d⊥)
(d⊥). The precise reason why we define D3 in this way will be clear in the proof of

Theorem C.3.12, which we will state after defining one last set, which we are considering
just to cover the case in which d ≡ 0 mod qs− 1. In that case, we also have the evaluation
of 1 in the dual code of PRMd(2) by Theorem C.3.2. If d = qs − 1, we define D4 = {1},
and D4 = ∅ otherwise.

Theorem C.3.12. Let d ≥ 1 and d⊥ = 2(qs−1)−d. For each a ∈ A, let ξa be a primitive
element in Fqna such that Ta(ξa) ̸= 0, and for each a2 ∈ A1, let ξa2 be a primitive element
in Fqna2 such that Ta2(ξa2) ̸= 0 (one can always assume this [3]). Using the previous
definitions, we consider the set

D = D1 ∪D2 ∪D3 ∪D4.

Then we have that the image by the evaluation map of D forms a basis for PRMσ,⊥
d (2).

Proof. Firstly, by Theorem C.3.2 we know that PRM⊥
d (2) is equal to PRMd⊥(2), except

when d ≡ 0 mod (qs − 1), in which case we also have to consider the evaluation of the

constant 1. If d ̸≡ 0 mod (qs − 1), by Delsarte’s Theorem, Theorem C.2.7, PRMσ,⊥
d (2) =

Tr(PRMd⊥(2)), and due to the fact that we have Tr ◦ ev = ev ◦T , we see that if we consider

T (Sd⊥) (and possibly the constant 1), we obtain a system of generators for PRMσ,⊥
d (2).

Therefore, in order to obtain a basis, we just need to study linear independence between
these polynomials. In fact, we have Sd⊥ = ⟨

⋃
a∈AMa(d

⊥)⟩, which means that we can
consider the union of the bases given for each T (Ma(d

⊥)) from Lemma C.3.10, and we

can obtain obtain a basis for PRMσ,⊥
d (2) by extracting a maximal linearly independent

set. We focus first on computing a basis for T (Sd⊥), and we will consider the cases where
d ≡ 0 mod qs − 1 later.
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In what follows, for each a ∈ A we consider ξa a primitive element in Fqna , and for each
a2 ∈ A1 we consider ξa2 a primitive element in Fqna2 . By construction, it is clear that we
have D1 ∪ D2 ⊂ T (Sd⊥). We show now that also D3 is contained in T (Sd⊥), and D4 is
contained in T (Sd⊥ + ⟨1⟩) when D4 ̸= ∅.

Let a2 ∈ A1 such that Ia2 = I
d⊥

. For D3, we have to justify that, if M
(0,d⊥)

(d⊥)

contains monomials of the two types and there is an element c ∈ A such that c2 = a2,
Ic ̸= I

(0,d⊥)
and Mc(d

⊥) contains monomials of the two types, then (x0 − 1)(x1 − 1) is in

T (Sd⊥). Under these assumptions, by Lemma C.3.10 we have that the following sets are
in T (Sd⊥):

{T(0,a2)(ξ
r
(0,a2)

xa22 ) | 0 ≤ r ≤ n(0,a2) − 1} ∪ {T(0,a2)(ξ
r
(0,a2)

x0x
a2
2 ) | 0 ≤ r ≤ n(0,a2) − 1},

{Tc(ξrax
c1
1 xc22 ) | 0 ≤ r ≤ nc − 1}

∪ {(x0 − 1)(Tc2(ξrc2x
c2
2 ) + Tc2(ξrc2)(x1 − 1)) | 0 ≤ r ≤ nc2 − 1}.

(C.3.7)
Taking into account that c2 = a2, if we assume that ξ(0,a2) = ξa2 (note that na2 =
n(0,a2)), then T(0,a2)(ξr(0,a2)x

a2
2 ) = Tc2(ξrc2x

c2
2 ) and T(0,a2)(ξr(0,a2)x0x

a2
2 ) = x0Tc2(ξrc2x

c2
2 ). By

assumption, we have that Tc2(ξc2) ̸= 0. Hence, taking into account that we can generate
the polynomial (1− x0)Tc2(ξc2x

c2
2 ) with the first union of sets in (C.3.7), we see that with

the first union of sets and the last set from (C.3.7) we can generate (x0−1)(x1−1). Thus,
D1 ∪D2 ∪D3 ⊂ T (Sd⊥). On the other hand, if d = qs − 1, we have D4 = {1}, and it is
clear that D4 ⊂ T (Sd⊥ + ⟨1⟩). Therefore, we have seen that the image by the evaluation

map of D is always in PRMσ,⊥
d (2).

Now we justify that the evaluation of the polynomials in D is linearly independent. If
we consider the monomials xa00 xa11 xa22 , xb00 xb11 xb22 , of degree d⊥, with Ia ̸= Ib (for a =
(a1, a2), b = (b1, b2)), then we have that the sets {Ta(ξrax

a0
0 xa11 xa22 ), 0 ≤ r ≤ na − 1} and

{Tb(ξrbx
b0
0 xb11 xb22 ), 0 ≤ r ≤ nb − 1} are linearly independent since in [{1} × F2

qs ] they are
linearly independent by the affine case from Theorem C.2.3 in two variables. Using Lemma
C.3.10 we see that the polynomials in D1 are linearly independent.

Each polynomial (x0 − 1)(Ta2(ξra2x
a2
2 ) + Ta2(ξra2)(x1 − 1)), with 0 ≤ r ≤ na2 − 1, has the

same evaluation in [{0} × {1} × Fqs ] as −Ta2(ξra2x
a2
2 ) in Fqs . Hence, the evaluation of the

polynomials in D2 is linearly independent by Theorem C.2.3 in one variable. Moreover,
these polynomials evaluate to 0 in [{1}×F2

qs ], while the polynomials from D1 have linearly
independent evaluation in [{1}× F2

qs ], which means that the evaluation of D1 ∪D2 is also
linearly independent.
We show now that a similar reasoning proves that the evaluation of D1 ∪ D2 ∪ D3 is

also linearly independent. Looking at the definition of D3, if we are in the case (a.1), the
evaluation of the polynomial (x0−1)(x1−1) is linearly independent from the evaluation of
the rest of polynomials in D1∪D2∪D3 as it is the only one that evaluates to 0 in [{1}×F2

qs ]
and [{0} × {1} × Fqs ], and the rest of polynomials have linearly independent evaluations
in those sets. Let a2 ∈ A1 such that Ia2 = I

d⊥
. The evaluation of Ta2(ξra2x0x

a2
2 ), for some

0 ≤ r ≤ na2 − 1, is linearly independent from the evaluation of any polynomial in D1,
besides Ta2(ξra2x

a2
2 ), due to the argument we used to discuss linear independence between

elements in D1. But its evaluation is also linearly independent from the evaluation of
Ta2(ξra2x

a2
2 ) by Lemma C.3.10 (3). The same argument that we used to prove that the

evaluation of the polynomials in D1∪D2 is linearly independent proves that the evaluation
of Ta2(ξra2x0x

a2
2 ) is linearly independent from the evaluation of the polynomials in D2.
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Thus, in this case, the evaluation of D1 ∪ D2 ∪ D3 is linearly independent. The same
arguments prove that D1 ∪D2 ∪D3 is linearly independent in the other cases that appear
in the definition of D3.
We study now the cases in which we have D4 ̸= ∅, i.e., the case where d = qs − 1.

The evaluation of the constant 1 is linearly independent from the evaluation of the rest
of polynomials in this case since, if we look at the evaluation in [{0} × {1} × Fqs ], the
constant 1 is linearly independent from the evaluation of the rest of univariate traces by
Theorem C.2.3. Hence if we had a linear combination of polynomials from D1 ∪D2 ∪D3

with the same evaluation as 1 in P 2, when setting x0 = 0, x1 = 1, the result would be
the constant 1. If we look at the polynomials that we have in D1 ∪ D2 ∪ D3, the only
polynomial that would have a constant in its support after setting x0 = 0, x1 = 1, would
be the only polynomial in T0: (x0 − 1)(1 + (x1 − 1)) = (x0 − 1)x1. However, we only
consider this polynomial in D2 if there is some b ∈ A such that Ib2 = I0 = {0} and if
Mb(d

⊥) = Mb(q
s−1) contains monomials of the two types. Therefore, b2 = 0, and we must

have b1 = qs−1 if we want to have some monomial that is not divided by x0 in Mb(q
s−1)

by Lemma C.3.7. However, M(qs−1,0)(q
s − 1) = {xq

s−1
1 } does not have monomials of the

two types. Thus, the polynomial (x0 − 1)x1 is not in D1 ∪D2 ∪D3 in this case and the
evaluation of D = D1 ∪D2 ∪D3 ∪D4 is linearly independent.

The only thing left to prove for asserting that D is a basis is that this set is a maximal
linearly independent set, or, equivalently, that D generates T (Sd⊥) if d ̸≡ 0 mod qs − 1,
and D generates T (Sd⊥ + ⟨1⟩) otherwise. To see that D generates T (Sd⊥) when d ̸≡
0 mod qs − 1, we have seen that it is enough to check that we can generate all the bases
for the sets T (Ma(d

⊥)) from Lemma C.3.10. Let a ∈ A such that Ma(d
⊥) ̸= ∅. If Ma(d

⊥)
does not have monomials of the two types, then we see that the basis for T (Ma(d

⊥)) from
Lemma C.3.10 is contained in D1. If Ma(d

⊥) contains monomials of the two types, then
we are in case (3) or case (4) from Lemma C.3.10.
Due to the ordering of the elements in Z2

qs , a ∈ A implies that a2 ∈ A1. We consider
now the case (4) and we assume first that Ia2 ̸= I

d⊥
. In this situation, it is clear by the

definitions that the basis for T (Ma(d)) from Lemma C.3.10 is contained in D1 ∪D2.
Now we study the case (3) from Lemma C.3.10, and also the case (4) when Ia2 = I

d⊥
,

which are the only cases left. By Remark C.3.11, in both situations we have that Ia2 = I
d⊥

.

Instead of studying the sets T (Mc(d
⊥)), with c ∈ A and c2 = a2, one by one, we consider

them together in this case, and we will see that we can generate
⋃

c∈A|c2=a2
T (Mc(d

⊥)).

For each c ∈ A with c2 = a2 and Mc(d
⊥) ̸= ∅, if Mc(d

⊥) does not have monomials of
the two types, we have already seen that the basis for T (Mc(d

⊥)) from Lemma C.3.10 is
contained in D1. And if Mc(d

⊥) contains monomials of the two types, then it is also clear
that the first set of polynomials that appears in cases (3) and (4) from Lemma C.3.10 is
contained in D1. Thus, we focus on the second set of polynomials from those cases in
Lemma C.3.10.
If M

(0,d⊥)
(d⊥) = M(0,a2)(d

⊥) contains monomials of the two types, by the definition of

D3 we have that the basis for T (M(0,a2)(d
⊥)) from Lemma C.3.10 is contained in D1∪D3.

If we also have some c ∈ A, Ic ̸= I(0,a2), with c2 = a2, and such that Mc(d
⊥) contains

monomials of the two types, then we have that (x0−1)(x1−1) ∈ D3, and by the reasoning
that we did after (C.3.7) it is clear that we can generate the basis of T (Mc(d

⊥)) given in
Lemma C.3.10 with the polynomials in D1 ∪D2 ∪D3.

If M(0,a2)(d
⊥) does not have monomials of the two types, we clearly have the basis from
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Lemma C.3.10 for T (M(0,a2)(d
⊥)) contained in D1 ∪ D3. We also note that, by Lemma

C.3.7, M(0,a2)(d
⊥) does not have monomials of the two types if and only if d⊥ = a2, i.e.,

d⊥ is the minimal element in Id⊥ . Hence, for any c ∈ A with c2 = a2 = d⊥, Ic ̸= I(0,d⊥),

we obtain that, for each γ ∈ Ic, we have γ1 ̸= 0 and γ1 + γ2 > c2 = d⊥, which means that
Mc(d

⊥) = ∅.
Finally, we have to consider the cases where d ≡ 0 mod qs− 1. If d = qs− 1, we already

have 1 ∈ D4. For the case d = 2(qs − 1), we have T(0,0)(x01x02) = 1 in D1, which means
that we also have the evaluation of the constant 1 when evaluating the polynomials in
D. Therefore, we have proved that the image by the evaluation map of D is a basis for
PRMσ,⊥

d (2).

Corollary C.3.13. Let d ≥ 1 and d⊥ = 2(qs−1)−d. Let U = {a ∈ A | Ma(d
⊥) ̸= ∅} and

V = {a2 ∈ A1 | Ia2 ̸= I
d⊥

and ∃ c ∈ A with c2 = a2 and Mc(d
⊥) contains monomials

of the two types} as before. The dimension of PRMσ,⊥
d (2) is

dim(PRMσ,⊥
d (2)) = |D| = |D1|+ |D2|+ |D3|+ |D4| =

∑
a∈U

na +
∑
a2∈V

na2 + ϵ3 + ϵ4,

where ϵ3 = n
d⊥

+ 1 if M
(0,d⊥)

(d⊥) contains monomials of the two types and there is

Ic ̸= I
(0,d⊥)

with c2 ∈ Id such that Mc(d
⊥) contains monomials of the two types; ϵ3 = n

d⊥

if M
(0,d⊥)

(d⊥) contains monomials of the two types but there is no Ic ̸= I
(0,d⊥)

as before;

and ϵ3 = 0 otherwise. Finally, ϵ4 = |D4|, i.e., ϵ4 = 1 if d = qs − 1, and ϵ4 = 0 otherwise.

Example C.3.14. Consider the extension F4 ⊃ F2 and let us compute the set D for d = 4.
We have d⊥ = 2 and, from Example C.2.1, the set of minimal representatives is A =
{(0, 0), (1, 0), (0, 1), (1, 1), (3, 0), (0, 3), (3, 3), (2, 1), (1, 3), (3, 1)}. We start by constructing
the set D1. We consider the minimal representatives a such that Ma(d

⊥) ̸= ∅, which
by Lemma C.3.7 is equivalent to having Ia ∩ ∆≤d⊥ ̸= ∅. The only cyclotomic sets that
satisfy that condition in this case are I(0,0), I(1,0), I(0,1) and I(1,1). Therefore, we have
U = {(0, 0), (1, 0), (0, 1), (1, 1)} and D1 =

⋃
a∈U Ta. For example, assuming ξ(1,0) is a

primitive element of F4, for a = (1, 0) we have

T(1,0) = {T(1,0)(ξr(1,0)x1) | 0 ≤ r ≤ 1} = {ξr(1,0)x1 + ξ2rx21 | 0 ≤ r ≤ 1}.

We also have |D1| =
∑

a∈U na = 7. For |D2|, we consider A1 = {0, 1, 3}. The only
a ∈ A such that Ma(d

⊥) contains monomials of the two types are the ones such that
Ia ∩∆<d⊥ ̸= ∅ and Ia ∩ (∆d⊥ ∪∆

d⊥
) ̸= ∅, according to Lemma C.3.7. This is a subset of

U , and from the elements of U , the ones that satisfy this condition are (1, 0) and (0, 1).
For example, I(1,0) ∩∆<2 = (1, 0) and I(1,0) ∩∆2 = (2, 0). Hence, looking at the second
coordinate of (1, 0) and (0, 1), we have V = {0, 1}, and D2 =

⋃
a2∈V Ta2 . For example, if

we consider ξ1 = ξ(1,0) a primitive element of F4, for a2 = 1 we have

T1 ={(x0 − 1)(T1(ξr1x2) + T1(ξr1)(x1 − 1)) | 0 ≤ r ≤ 1}
={(x0 − 1)(ξr1x2 + ξ2r1 x22 + (ξr1 + ξ2r1 )(x1 − 1)) | 0 ≤ r ≤ 1}.

We have |D2| =
∑

a2∈V na2 = 3. One can check that D3 = D4 = ∅ in this case. Thus, the

evaluation of the set D1 ∪D2 is a basis for PRMσ,⊥
4 (2), and dimPRMσ,⊥

4 (2) = 10.
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C.3.2 Subfield subcodes of projective Reed-Muller codes

In this section we compute a basis for PRMσ
d(2). The discussion gets more technical than

in the previous case, but we can obtain explicit results as well. We start by considering
some sets of polynomials that we use to construct a basis for the subfield subcode. We
recall the notation A≤d = {a ∈ A | Ia ⊂ ∆≤d} and A<d = {a ∈ A | Ia ⊂ ∆<d}. We also
consider A1

≤d = {a2 ∈ A1 | ∀c2 ∈ Ia2 , c2 ≤ d} for the univariate case. It is also important
to recall the definition of homogenized trace from (C.2.1).

Lemma C.3.15. Let 1 ≤ d ≤ 2(qs − 1) and let ξa be a primitive element in Fqna . The
image by the evaluation map of the polynomials in the set

B1 =
⋃

a∈A<d

{x0Ta(ξrax
a1
1 xa22 ) | 0 ≤ r ≤ na − 1},

is in PRMσ
d(2). Moreover, the evaluation of the polynomials in B1 is linearly independent.

Proof. The evaluation of these polynomials in [{1} × F2
qs ] is the same as the evaluation of

the polynomials of the set ⋃
a∈A<d

{Ta(ξrax
a1
1 xa22 ) | 0 ≤ r ≤ na − 1}

in F2
qs . This set of polynomials evaluates to Fq by Theorem C.2.3, which means that the

polynomials in B1 evaluate to Fq in [{1} × F2
qs ], and they clearly evaluate to 0 in the

rest of the points in P 2. By Lemma C.2.6, each of these polynomials evaluates to Fq.
We have to see that these polynomials are equivalent modulo S/I(P 2) to some homoge-
neous polynomials of degree d, because in that case these polynomials would have the
same evaluation as some homogeneous polynomials of degree d, which means that their
evaluation is in PRMσ

d(2). Let a ∈ A<d. For 0 ≤ r ≤ na − 1, we consider the polynomial
T h
a (ξrax

a1
1 xa22 ), where we homogenize up to degree d. Having a ∈ A<d means that, after

reducing the exponents modulo qs − 1, the monomials xc11 xc22 that appear in the support
of Ta(ξrax

a1
1 xa22 ) satisfy that c1 + c2 < d (these exponents are precisely the elements of

Ia ⊂ ∆<d). Therefore, after homogenizing up to degree d, x0 divides all the monomials in
the support of T h

a (ξrax
a1
1 xa22 ). Taking into account the equation x20 − x0 from I(P 2), this

means that T h
a (ξrax

a1
1 xa22 ) ≡ x0Ta(ξrax

a1
1 xa22 ) mod I(P 2) in this case. Hence, the evaluation

of the polynomials in B1 is in PRMσ
d(2).

We finish the proof by noting that their evaluation is linearly independent precisely
since their evaluation in [{1} × F2

qs ] is linearly independent by Theorem C.2.3.

Example C.3.16. We consider an extension F16 ⊃ F2 (i.e., q = 2, s = 4), and the
goal of the examples in this section is to compute a basis for PRMσ

21(2). We start by
computing the set B1, which is a set of linearly independent polynomials that evalu-
ate to Fq by the previous discussion. First of all, we need to consider all the cyclo-
tomic sets Ia such that Ia ⊂ ∆<21. For each of those cyclotomic sets, we consider the
corresponding set of traces from B1. For example, we can consider the cyclotomic set
I(1,1) = {(1, 1), (2, 2), (4, 4), (8, 8)}, which gives us the following n(1,1) = 4 polynomials (ξ
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is a primitive element in F24):

T h
(1,1)(x1x2) = x190 x1x2 + x170 x21x

2
2 + x130 x41x

4
2 + x50x

8
1x

8
2,

T h
(1,1)(ξx1x2) = ξx190 x1x2 + ξ2x170 x21x

2
2 + ξ4x130 x41x

4
2 + ξ8x50x

8
1x

8
2,

T h
(1,1)(ξ

2x1x2) = ξ2x190 x1x2 + ξ4x170 x21x
2
2 + ξ8x130 x41x

4
2 + ξx50x

8
1x

8
2,

T h
(1,1)(ξ

3x1x2) = ξ3x190 x1x2 + ξ6x170 x21x
2
2 + ξ12x130 x41x

4
2 + ξ9x50x

8
1x

8
2,

where we see that we are homogenizing up to degree d = 21. As we have said in the
previous discussion, these polynomials are linearly independent because in [{1} × F2

qs ]
they have the same evaluation as the traces T(1,1)(ξrx1x2), 0 ≤ r ≤ n(1,1) − 1, that would
appear in the affine case from Theorem C.2.3. And they clearly evaluate to Fq, as they
evaluate to 0 in the rest of the points of P 2. We can continue doing this for all the
other cyclotomic sets such that Ia ⊂ ∆<21, and we obtain

∑
a∈A<21

na = 127 linearly
independent polynomials that form B1.

We consider now another set of homogeneous polynomials that will be linearly indepen-
dent from B1 and whose polynomials evaluate to Fq. We start with the case d ≤ qs − 1,
which is easier. Let us focus first on the cyclotomic sets Ia with a ∈ A≤d \ A<d.
Having Ia ∩ ∆d ̸= ∅ implies that the corresponding homogeneous traces T h

a (ξrax
a1
1 xa22 ),

0 ≤ r ≤ na − 1, with ξa a primitive element in Fqna , have at least one monomial which is
not divisible by x0. Hence, although the evaluation of these traces in [{1} × F2

qs ] is going
to be equal to the evaluation of Ta(ξrax

a1
1 xa22 ) in F2

qs , which has coordinates in Fq, the
evaluation in [{0} × {1} × Fqs ] and [0 : 0 : 1] does not necessarily have its coordinates in
Fq, and, by Lemma C.2.6, these polynomials might not evaluate to Fq. By Lemma C.2.6
and Theorem C.2.3 in one variable, if a polynomial f(x0, x1, x2) evaluates to Fq in P 2,
f(0, 1, x2) must be a linear combination of traces in the variable x2. A natural idea is to
consider linear combinations of homogenized traces such that, when setting x0 = 0, x1 = 1,
we obtain that the evaluation of f(0, 1, x2) in Fqs is the same as some trace in the variable
x2. To do that, we introduce the following definition.

Definition C.3.17. For each a2 ∈ A1
≤d, we define the set

Ya2 := {a ∈ A≤d | Ia = I(d−c2,c2)
for some c2 ∈ Ia2}.

Remark C.3.18. Recall that, with the order chosen for the cyclotomic sets, we have that
c ∈ A implies c2 ∈ A1. Therefore, in this case c ∈ Ya2 implies c2 = a2.

Example C.3.19. Let us continue with the setting of Example C.3.16. We have d = 21
and d = 6, and we will compute Ya2 for a2 = 0, 1. To do so, we consider first the univariate
cyclotomic sets:

I0 = {0}, I1 = {1, 2, 4, 8}, I3 = {3, 6, 9, 12}, I5 = {5, 10}, I7 = {7, 11, 13, 14}, I15 = {15}.

For a2 = 0, we just have Y0 = {(3, 0)} because I(3,0) = I(6,0) = I(d−0,0). For a2 = 1,
we need to obtain the minimal elements of the cyclotomic sets I(21−1,1), I(21−2,2), I(21−4,4)
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and I(21−8,8). We have

I(5,1) = {(5, 1), (10, 2), (5, 4), (10, 8)},
I(4,2) = {(2, 1), (4, 2), (8, 4), (1, 8)},
I(2,4) = {(8, 1), (1, 2), (2, 4), (4, 8)},
I(13,8) = {(11, 1), (7, 2), (14, 4), (13, 8)}.

Hence, Y1 = {(2, 1), (5, 1), (8, 1), (11, 1)}.

The idea behind the definition of Ya2 is the following: if we consider c ∈ Ya2 and the
polynomial T h

c (ξrcx
c1
1 xc22 ), then, if d− c2 = d − c2, we have the monomial xd−c2

1 xc22 in
the support of this homogenized trace (if d− c2 < d − c2, we would have the monomial

xq
s−1

0 xd−c2
1 xc22 instead), and when setting x0 = 0 and x1 = 1, we obtain the monomial xc22 ,

with c2 ∈ Ia2 , in the support of f(0, 1, x2). We have

d− c2 = d− c2 ⇐⇒ d− c2 ≤ qs − 1 ⇐⇒ d− (qs − 1) ≤ c2. (C.3.8)

In fact, it is clear that all the monomials that we obtain from this homogenized trace
when setting x0 = 0, x1 = 1, are monomials xc22 with c2 ∈ Ia2 . Thus, the traces associated
to c ∈ Ya2 give monomials xc22 with c2 ∈ Ia2 when setting x0 = 0, x1 = 1.

The case with Ia2 = Id is slightly more complicated, since in this case we have two

monomials, xq
s−1

1 xd2 and xd2 (if d ≥ qs), of degree d with different evaluation in P 2 which

give the same monomial xd2 when setting x0 = 0, x1 = 1. This means that two different

homogenized traces from different cyclotomic sets can have xd2 in its support. We will
exclude this case in what follows now as we will study this case separately later. Hence,
for a given a2 ∈ A1

≤d with Ia2 ̸= Id and ξa2 a primitive element in Fqna2 , we can consider
the sum

f r
a2 =

∑
c∈Ya2

T h
c (ξra2x

c1
1 xc22 ),

for 0 ≤ r ≤ na2 , and, due to the previous discussion, we obtain that in the support of
f r
a2(0, 1, x2) there are only monomials of the form xγ22 with γ2 ∈ Ia2 . Each monomial xγ22
can only come from one of the homogenized traces since, if γ2 ̸= d, this monomial can
only come from the monomial xd−γ2

1 xγ22 in the support of f r
a2 , with γ2 ≥ d− (qs − 1) due

to (C.3.8). Moreover, the coefficient of each of these monomials xγ22 is the same that this
monomial would have in Ta2(ξra2x

a2
2 ) because we saw in Remark C.3.18 that c2 = a2 for

every c ∈ Ya2 . If d ≤ qs − 1, the condition from Equation (C.3.8) is always satisfied for
any γ2 ∈ Ia2 . In this case, if we have⋃

c2∈Ia2

I(d−c2,c2) ⊂ ∆≤d,

then Ya2 contains all the minimal elements γ ∈ A such that Iγ = I(d−γ2,γ2). Therefore,

we have all the monomials xd−γ2
1 xγ22 , for γ2 ∈ Ia2 , in the support of f r

a2 , and we obtain
f r
a2(0, 1, x2) = Ta2(ξra2x

a2
2 ). The polynomials f r

a2 are homogeneous of degree d and, by
Lemma C.2.6, they evaluate to Fq. Thus, their evaluation is in PRMσ

d(2).
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For d ≥ qs, we can consider instead the condition⋃
c2∈Ia2 ,c2>d−(qs−1)

I(d−c2,c2) ⊂ ∆≤d. (C.3.9)

We avoid the case c2 = d − (qs − 1) = d as we will study it later, and we consider only
c2 > d− (qs−1) in order to satisfy Equation (C.3.8). Reasoning as in the previous case, if
the previous condition is satisfied, then f r

a2(0, 1, x2) has in its support all the terms from

Ta2(ξra2x
a2
2 ) with degree greater than d− (qs − 1) = d. We claim that, in this situation, it

is always possible to construct a polynomial gra2 whose evaluation is in PRMσ
d(2) and such

that gra2(1, x1, x2) = f r
a2(1, x1, x2), g

r
a2(0, 1, x2) = Ta2(ξra2x

a2
2 ), and gra2(0, 0, 1) = 0.

We first note that, in this situation, we can homogenize the equations of the field and
obtain homogeneous polynomials of degree d. By this, what we mean is that we can
consider a multiple of xq

s

i − xi, for i = 1, 2, and homogenize it up to degree d. If this
multiple has degree less than d, then that homogenized polynomial evaluates to the 0
vector in P 2. However, when the degree of this multiple is exactly equal to d ≥ qs, we
can obtain the following polynomials by multiplying the field equations by monomials and
then homogenizing:(

xc11 xc2−1
2 (xq

s

2 − x2)
)h

=
(
xc11 xc2+qs−1

2 − xc11 xc22

)h
= xc11 xc2+qs−1

2 − xq
s−1

0 xc11 xc22 ,

where we are assuming that c1+c2+qs−1 = d and c2 > 0. We note that we only consider
d ≤ 2(qs − 1) (for a higher degree PRMd(2) is the whole space). Thus, c1 + c2 = d. Using
the other field equation, we can get(

xc1−1
1 xc22 (xq

s

1 − x1)
)h

=
(
xc1+qs−1
1 xc22 − xc11 xc22

)h
= xc1+qs−1

1 xc22 − xq
s−1

0 xc11 xc22 ,

All of these polynomials are equivalent to xc11 xc22 (1 − x0) in S/I(P 2), which is a more
compact way of writing them, and we will refer to them as homogenized field equations.
Although this last expression is not homogeneous, it has the same evaluation in P 2 as a
homogeneous polynomial of degree d, which implies that its evaluation is also in PRMd(2).

With this in mind, we have that, for any 0 ≤ c2 ≤ d− 1, the polynomial xd−c2
1 xc22 (1− x0)

can be seen as a homogeneous polynomial of degree d, and its evaluation in [{1} × F2
qs ] is

the zero vector, in [{0} × {1} × Fqs ] it is the same as the evaluation of xc22 , and it is 0 in
[0 : 0 : 1]. Moreover, the polynomial x1x

c2
2 (1 − x0) has the same evaluation. For c2 = d,

we have the polynomial xd2(1 − x0), but in this case the evaluation at [0 : 0 : 1] of this
polynomial is equal to 1. This polynomial will only be considered later when we study the
case with Ia2 = Id.

As a consequence, if we add to f r
a2 a homogenized field equation, the evaluation of the

resulting polynomial in [{1} × F2
qs ] does not change, and when setting x0 = 0, x1 = 1, we

obtain f r
a2(0, 1, x2) + xc22 , for some 0 ≤ c2 ≤ d − 1. Hence, if Ia2 ̸= Id, and if we have

the condition
⋃

c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ ∆≤d (we recall that, under this assumption,

f r
a2(0, 1, x2) has in its support all the terms from Ta2(ξra2x

a2
2 ) with degree greater than

d), then, adding adequate multiples of the homogenized field equations, we can obtain
a polynomial gra2 such that gra2(1, x1, x2) = f r

a2(1, x1, x2), g
r
a2(0, 1, x2) = Ta2(ξra2x

a2
2 ), and

gra2(0, 0, 1) = 0. Therefore, the polynomial gra2 is defined as the polynomial obtained
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by adding the necessary multiples of the homogenized field equations to f r
a2 to obtain

gra2(0, 1, x2) = Ta2(ξra2x
a2
2 ). Because of all the previous discussion, it is clear that the

evaluation of gra2 is in PRMσ
d(2).

Moreover, we see that the polynomial

hra2 = x0

∑
c∈Ya2

Tc(ξra2x
c1
1 xc22 )

+ (1− x0)x1Ta2(ξra2x
a2
2 )

has the same evaluation as the polynomial gra2 , which means that its evaluation is also in
PRMσ

d(2).
Furthermore, avoiding the case in which Ia2 = Id, we can express both the case with

d ≥ qs and d ≤ qs − 1 using the same polynomials and conditions. To see this, we first
introduce the following notation:

Y =

a2 ∈ A1
≤d | Ia2 ̸= Id such that

⋃
c2∈Ia2 ,c2>d−(qs−1)

I(d−c2,c2) ⊂ ∆≤d

 .

The elements of Y are just the a2 ∈ A1
≤d such that we can construct a polynomial in

PRMσ
d(2) whose evaluation in [{0} × {1} × Fqs ] is equal to some trace of xa22 with the

previous ideas. In the case d ≤ qs− 1, the condition in the set Y is the same that we were
considering before. Note that for a2 = 0 and d = qs − 1, the condition that we had for
d ≤ qs − 1 was ⋃

c2∈Ia2

I(d−c2,c2) = I(qs−1,0) = {(qs − 1, 0)} ⊂ ∆≤qs−1,

which is always satisfied. The condition that we have used for Y when a2 = 0 and d = qs−1
would be ⋃

c2∈Ia2 ,c2>d−(qs−1)

I(d−c2,c2) = ∅ ⊂ ∆≤d,

which is always satisfied as well. The following result summarizes the previous discussion.

Lemma C.3.20. Let 1 ≤ d ≤ 2(qs − 1), and let ξa2 be a primitive element in Fqna2 . The
evaluation of the polynomials in the set

B2 =
⋃

a2∈Y

x0

∑
c∈Ya2

Tc(ξra2x
c1
1 xc22 )

+ (1− x0)x1Ta2(ξra2x
a2
2 ), 0 ≤ r ≤ na2 − 1


is in PRMσ

d(2). Moreover, the evaluation of the polynomials in B1 ∪ B2 is linearly inde-
pendent.

Proof. In the previous discussion we have showed that, if d ≥ qs, all the polynomials in
B2 have their evaluation in PRMd(2), and we also checked that they evaluate to Fq due
to Lemma C.2.6. For the case d ≤ qs − 1, these polynomials have the same evaluation as
f r
a2 , which means that their evaluation is also in PRMσ

d(2).
The evaluation of the polynomials in B2 is linearly independent since it is linearly

independent in [{0}×{1}×Fqs ] by the affine case from Theorem C.2.3: in [{0}×{1}×Fqs ]
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we have univariate traces in x2 from different cyclotomic sets. Moreover, the evaluation
of the polynomials in B2 is linearly independent from the evaluation of the polynomials
in B1 because the evaluation of the polynomials in B1 is zero in [{0} × {1} × Fqs ].

Remark C.3.21. Let a2 ∈ A1, and let

Y ′
a2 := {a ∈ A≤d \ A<d | Ia = I(d−c2,c2)

for some c2 ∈ Ia2}.

The set

B′
2 =

⋃
a2∈Y

x0

∑
c∈Y ′

a2

Tc(ξra2x
c1
1 xc22 )

+ (1− x0)x1Ta2(ξra2x
a2
2 ), 0 ≤ r ≤ na2 − 1


has the same properties as B2 in Lemma C.3.20. This is because, for any a ∈ A<d, we
have already considered x0Ta(ξrax

a1
1 xa22 ), 0 ≤ r ≤ na − 1, in B1, and x0Ta(ξra2x

a1
1 xa22 ) is in

the span of those traces for any 0 ≤ r ≤ na2 − 1.

Example C.3.22. Let us continue with the setting from Example C.3.19 and compute
the polynomials in the set B′

2 defined in Remark C.3.21, although we will also compute
all the sets needed to obtain B2 as well. We first compute Y . We have that a2 ∈ Y if the
condition (C.3.9) is verified. In this case, d = 21 and d− (qs − 1) = d = 6. For a2 = 0 we
have I0 = {0}, and the union of cyclotomic sets in the left hand side of (C.3.9) is empty,
which means that the condition is satisfied, and 0 ∈ Y .

For a2 = 1, we verify that {(11, 1), (7, 2), (13, 8), (14, 4)} = I(21−8,8) ⊂ ∆≤21 (note that

8 is the only element in I1 greater than d = 6). The condition (C.3.9) is satisfied and
1 ∈ Y . We do not consider a2 = 3 now since I3 = Id, which is the case that we will
cover in Example C.3.25. For a2 ∈ {5, 7, 15}, it is easy to check that we have a2 ̸∈ Y . For
example, for a2 = 7, the cyclotomic set I(21−7,7) = {(14, 7), (7, 11), (11, 13), (13, 14)} ̸⊂
∆≤21, because, for instance, (11, 13) ̸∈ ∆≤21. Therefore, we have

Y = {0, 1}.

Now, for each a2 ∈ Y , we have to compute Ya2 . This was already done in Example
C.3.19, and Y0 = {(3, 0)} and Y1 = {(2, 1), (5, 1), (8, 1), (11, 1)}. By Remark C.3.21, we
can consider the sets Y ′

0 = ∅ and Y ′
1 = {(11, 1)} (I(11,1) is the only cyclotomic set that we

have considered which is in ∆≤21 \ ∆<21) instead of Y0, Y1, respectively, and the set B′
2

obtained satisfies the same properties as B2. For simplicity, we construct B′
2 instead of

B2.

We now obtain the polynomials in B′
2. For a2 = 0 we have na2 = n0 = 1, which means

that we only consider one polynomial, and we also have Y ′
0 = ∅. We consider the following

polynomial:

{(1− x0)x1T0(x02)} = {(1− x0)x1}.

For the case a2 = 1, we have na2 = n1 = 4, and we have Y ′
1 = {(11, 1)}. Thus, using

Remark C.3.21, we consider the set of polynomials

{x0T(11,1)(ξr1x111 x2) + (1− x0)x1T1(ξr1x2), 0 ≤ r ≤ n1 − 1},
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where ξ1 is a primitive element in Fqn1 = F16. Hence, we have constructed the set

B′
2 = {(1− x0)x1} ∪ {x0T(11,1)(ξr1x111 x2) + (1− x0)x1T1(ξr1x2), 0 ≤ r ≤ n1 − 1},

whose size is n1 + n0 = 5. In Example C.3.16 we obtained that the cardinality of B1 is
127. This means that B1 ∪B′

2 (and B1 ∪B2) contains 132 polynomials whose evaluation
is in PRMσ

21(2), and the evaluation of these polynomials is linearly independent.

We construct now one last set B3. In the previous study, we have omitted the case in
which Ia2 = Id. Therefore, we consider now a2 ∈ A1 be such that Ia2 = Id. We assume
that a2 ∈ A1

≤d (if a2 ̸∈ A1
≤d the set B3 will be the empty set). We follow a very similar

reasoning to the one we did for the set B2. For the case 1 ≤ d ≤ qs−1, we were considering
the polynomials

f r
a2 =

∑
c∈Ya2

T h
c (ξra2x

c1
1 xc22 )

to construct B2. We can still consider such a polynomial if Ia2 = Id, but in this case,
f r
a2(0, 0, 1) is the coefficient of xd2 in f r

a2 , which is nonzero if I(0,d) ⊂ ∆≤d. We have that
f r
a2(0, 0, 1) ∈ Fq only if r = 0, and in that case the polynomial

la2 = x0

∑
c∈Ya2

Tc(xc11 xc22 )

+ (1− x0)x1Ta2(x
a2
2 ) + (1− x0)(1− x1)x

d
2

has the same evaluation in P 2 as f0
a2 . If

⋃
c2∈Ia2

I(d−c2,c2) ⊂ ∆≤d, i.e., we have f
0
a2(0, 1, x2) =

Ta2(x
a2
2 ) = Td(xd2), la2 evaluates to Fq and its evaluation is in PRMd(2) (it has the same

evaluation as f r
a2).

For the case d ≥ qs, we can consider the homogenized field equation xd2(1−x0) to obtain
a polynomial gra2 such that gra2(1, x1, x2) = f r

a2(1, x1, x2) and gra2(0, 1, x2) = Ta2(ξra2x
a2
2 ).

The problem that arises in this specific case is the following: the monomial xd2 can be

obtained when setting x0 = 0, x1 = 1, from the monomials xq
s−1

1 xd2 and xd2, both of them
of degree d. Hence, following the previous notation, we have to study two different cases:
if f r

a2(0, 1, x2) has x
d
2 in its support (which means that xq

s−1
1 xd2 is in the support of f), or

if f r
a2(0, 1, x2) does not have xd2 in its support.

We start with the case in which f r
a2(0, 1, x2) does not have xd2 in its support, where

we need to use xd2(1 − x0) to construct gra2 . The main difference is that in this case

gra2(0, 0, 1) is equal to the coefficient of xd2, which is nonzero. Therefore, by Lemma C.2.6,
this coefficient has to be in Fq if gra2 evaluates to Fq. We are also interested in obtaining

gra2(0, 1, x2) = Ta2(ξra2x
a2
2 ) for some 0 ≤ r ≤ na2 − 1. The coefficient of xd2 in gra2(0, 1, x2) is

precisely the coefficient with which we considered xd2(1−x0) when constructing gra2 . Thus,
the only possibility to have this coefficient in Fq is that this coefficient is equal to 1 (the
case r = 0), and g0a2(0, 1, x2) = Ta2(x

a2
2 ). With this in mind, it is easy to check that la2 ,

as defined previously, has the same evaluation as the polynomial g0a2 in P 2 in this case.
As we argued for the set B2, to ensure that the evaluation of la2 is in PRMd(2), we need
to have

⋃
c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ ∆≤d. This condition ensures that f0

a2(0, 1, x2) has

all the monomials from Ta2(x
a2
2 ) in its support, except maybe the monomials xc22 with
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c2 ∈ {0, 1, . . . , d}, which appear in the support of g0a2(0, 1, x2) when adding to f0
a2(0, 1, x2)

the corresponding homogenized field equations.
Finally, we consider the case in which we have xq

s−1
1 xd2 in the support of f r

a2 , i.e.,

f r
a2(0, 1, x2) has x

d
2 in its support. If we look at the definition of f r

a2 , this happens if and

only if I(qs−1,d) ⊂ ∆≤d. This is equivalent to having that d is the maximal element of Ia2 .

Therefore, the condition
⋃

c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2) = ∅ ⊂ ∆≤d is automatically satisfied

in this case. This allows us to construct a polynomial l′a2 which is very similar to la2 :

l′a2 = la2 − x0T(qs−1,a2)(x
qs−1
1 xa22 ).

Indeed, we can subtract the polynomial T h
(qs−1,d)

(xc11 xc22 ) from f0
a2 , and, adding the corre-

sponding homogenized field equations (we will need to use xd2(1 − x0) in order to obtain

Ta2(x
a2
2 ) when setting x0 = 0, x1 = 1, as we have subtracted the monomial xq

s−1
1 xd2), we

would get a polynomial g′a2 such that g′a2(1, x1, x2) = f0
a2(1, x1, x2)− T(qs−1,a2)(x

qs−1
1 xa22 ),

g′a2(0, 1, x2) = Ta2(x
a2
2 ), g′a2(0, 0, 1) = 1. Hence, the polynomial l′a2 has the same evaluation

as the polynomial g′a2 , which means that the evaluation of l′a2 is in PRMσ
d(2).

On the other hand, we saw previously that the condition
⋃

c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2) ⊂
∆≤d is satisfied in this case. Hence, adding homogenized field equations to f r

a2 as we did to
obtain the set B2, we can obtain a polynomial gra2 such that gra2(1, x1, x2) = f r

a2(1, x1, x2),
gra2(0, 1, x1) = Ta2(ξra2x

a2
2 ), gra2(0, 0, 1) = 0. Note that in this case we are not using the

homogenized field equation xd2(1−x0) to construct gra2 since we already have the monomial

xq
s−1

1 xd2 in the support of f r
a2 , which reduces to xd2 when setting x0 = 0, x1 = 1. It is easy

to check that the polynomial

hra2 = x0

∑
c∈Ya2

Tc(ξra2x
c1
1 xc22 )

+ (1− x0)x1Ta2(ξra2x
a2
2 ),

where ξa2 is a primitive element in Fqna2 , has the same evaluation in P 2 as gra2 . Therefore,
the evaluation of the polynomials hra2 is equivalent modulo S/I(P 2) to the evaluation of
some homogeneous polynomials of degree d, and they evaluate to Fq, which means that
the evaluation of the polynomials hra2 is in PRMσ

d(2). We can now define the set B3 in the
following way:

(a) If I(qs−1,d) ⊂ ∆≤d, we set B3 = {la2−x0T(qs−1,a2)(x
qs−1
1 xa22 )}∪{hra2 , 0 ≤ r ≤ na2−1}.

(b) If I(qs−1,d) ̸⊂ ∆≤d:

(b.1) If
⋃

c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ ∆≤d, we set B3 = {la2}.

(b.2) We set B3 = ∅ otherwise.

With this definition, we can summarize everything discussed thus far in the following
result.

Lemma C.3.23. Let 1 ≤ d ≤ 2(qs−1) and let a2 ∈ A1 such that Ia2 = Id. If B3 ̸= ∅, the
evaluation of the set B3 is in PRMσ

d(2), and the evaluation of the set B = B1 ∪ B2 ∪ B3

is linearly independent.
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Proof. In the previous discussion we have seen that, under the stated conditions, the
evaluation of the polynomials in B3 is in PRMσ

d(2), i.e., for each polynomial in B3, a
homogeneous polynomial of degree d with the same evaluation can be constructed, and it
evaluates to Fq.

The set B1 ∪ B2 is linearly independent due to Lemma C.3.20. The polynomial la2
(respectively, the polynomial la2 − x0T(qs−1,a2)(x

qs−1
1 xa22 )) is not contained in the span of

B1 ∪ B2 since it is the only polynomial that we are considering with nonzero evaluation
at [0 : 0 : 1]. With this in mind, the same argument as in Lemma C.3.20 proves that
the evaluation of the rest of polynomials in B3 (if any) is linearly independent, and the
evaluation of these polynomials is also linearly independent with the evaluation of the
polynomials in B1 ∪B2.

Remark C.3.24. We can argue as in Remark C.3.21 to construct simpler polynomials
than the polynomials hra2 and la2 . This gives rise to a set B′

3 with the properties stated
in Lemma C.3.23.

Example C.3.25. Let us continue with the setting from C.3.22. We did not study the
case a2 = 3 because Ia2 = I3 = Id = I6. This case is covered by Lemma C.3.23, and
we construct the set B′

3 from Remark C.3.24 in this example. Following the statement of
Lemma C.3.23, we check first if I(qs−1,d) ⊂ ∆≤d, for d = 21, d = 6 and qs − 1 = 15. We
have

I(15,6) = {(15, 3), (15, 6), (15, 9), (15, 12)}.

We see that I(15,6) ̸⊂ ∆≤21, for example we have (15, 9) with 15 + 9 = 24 > 21.

Now we have to verify the condition (C.3.9). The only elements c2 in Ia2 = {3, 6, 9, 12}
such that c2 > d are 9 and 12. The corresponding cyclotomic sets I(21−9,9) and I(21−12,12)

are
I(9,3) = {(9, 3), (3, 6), (12, 9), (6, 12)},
I(6,3) = {(6, 3), (12, 6), (3, 9), (9, 12)}.

Hence, we see that the condition (C.3.9) is satisfied since both cyclotomic sets are
contained in ∆≤21. Therefore, we have to construct la2 , for which we have to compute
Y3. We have I(21−6,6) = I(15,3) from before, but we have seen that this cyclotomic set is
not contained in ∆≤21. Thus, (15, 3) ̸∈ Y3. On the other hand, we have just seen that
(6, 3), (9, 3) ∈ Ya2 , as both of them are contained in ∆≤21. The last cyclotomic set that
we have to consider is the following:

I(21−3,3) = {(3, 3), (6, 6), (9, 9), (12, 12)},

which is not contained in ∆≤21. Hence, Y3 = {(6, 3), (9, 3)}. Using Remarks C.3.21 and
C.3.24 in this case gives Y ′

3 = Y3, which means that we have B′
3 = B3. The only polynomial

in B3 is

l3 = x0
(
T(9,3)(x91x32) + T(6,3)(x61x32)

)
+ (1− x0)x1T3(x32) + (1− x0)(1− x1)x

21
2 .

We obtain that there are 133 polynomials in B1 ∪ B2 ∪ B3, with linearly independent
evaluation, and this evaluation is in PRMσ

21(2).

The following results show that the case where 1 ≤ d ≤ qs − 1 is particularly simple.
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Lemma C.3.26. Let 1 ≤ d ≤ qs − 1 .We have that |Id| = 1 if and only if d = λ qs−1
q−1 , for

some integer 1 ≤ λ ≤ q − 1.

Proof. We only need to observe that

|Id| = 1 ⇐⇒ dq ≡ d mod qs − 1 ⇐⇒ d(q − 1) = λ(qs − 1) = λ(q − 1)
qs − 1

q − 1

⇐⇒ d = λ
qs − 1

q − 1
, for some 1 ≤ λ ≤ q − 1.

Proposition C.3.27. Let 1 ≤ d ≤ qs − 1. Then B3 ̸= ∅ if and only if d is a multiple of
qs−1
q−1 . In that situation

B3 = {xd2}.

Proof. If d is a multiple of qs−1
q−1 , by Lemma C.3.26, we have that |Id| = 1 and I(0,d) ⊂ ∆≤d.

By Lemma C.3.23, B3 = {ld}. We have Yd = {(0, d)} from its definition. Then, by the
definition of ld we have ld = x0T(0,d)(xd2) + (1 − x0)x1Td(xd2) + (1 − x0)(1 − x1)x

d
2 =

x0x
d
2 + (1− x0)x1x

d
2 + (1− x0)(1− x1)x

d
2 = xd2.

On the other hand, if B3 ̸= ∅ and we consider a2 ∈ A1
≤d with Ia2 = Id, by Lemma C.3.23

we have that
⋃

c2∈Ia2
I(d−c2,c2) ⊂ ∆≤d. Using Lemma C.3.26, we assume that |Ia2 | > 1,

and we will obtain a contradiction. Let e ∈ Ia2 with e ̸= d. This implies that there is an

integer l > 0 such that d ≡ qle mod qs − 1. Therefore, we have (ql(d− e), d) ∈ I(d−e,e),

with ql(d− e) ̸= 0. This implies that I(d−e,e) ̸⊂ ∆≤d, a contradiction.

In order to assert that B is a basis, we would need to show that B generates the whole
code PRMσ

d(2). However, we have already computed the dimension for PRMσ,⊥
d (2). By

Lemma C.3.23, we know that the evaluation of the polynomials in B is linearly indepen-
dent, which means that if we show that |B| = n− dimPRMσ,⊥

d (2), then this implies that
B is a basis. To see this, we will introduce a new decomposition of the sets B and D.

Let 1 ≤ d ≤ 2(qs − 1), and d⊥ = 2(qs − 1)− d. For the set B, we first define Γ1 = B1.
On the other hand, let a2 ∈ A1 such that Ia2 = Id, and we define Γ2 in the following way:

1. If I(qs−1,d) ⊂ ∆≤d, we set

Γ2 = B2 ∪ {hra2 , 0 ≤ r ≤ na2 − 1}.

2. We set
Γ2 = B2,

otherwise.

And we define Γ3 = B \ (Γ1 ∪ Γ2). Equivalently, we consider the following definition:

(a) If I(qs−1,d) ⊂ ∆≤d, we set

Γ3 = {la2 − x0T(qs−1,a2)(x
qs−1
1 xa22 )}.

(b) If I(qs−1,d) ̸⊂ ∆≤d:
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(b.1) If
⋃

c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ ∆≤d, we set

Γ3 = {la2}.

(b.2) We set

Γ3 = ∅,

otherwise.

It is clear by construction that B = Γ1∪Γ2∪Γ3. The idea behind this decomposition is
that in Γ1 we have sets of size na for some a ∈ A, in Γ2 we have sets of size na2 for some
a2 ∈ A1, and in Γ3 we have a set of size 1 (if any). Now we define a similar decomposition
for D, and we will see later why we are interested in this decomposition.

For the set D, we define first Γ⊥
1 = D1. Let a2 ∈ A1 such that Ia2 = Id. Now we define

Γ⊥
3 as follows:

1. If there is an element c ∈ A such that c2 = a2, Ic ̸= I
(0,d⊥)

, and Mc(d
⊥) contains

monomials of the two types, we set

Γ⊥
3 = (x0 − 1)(x1 − 1).

2. We set

Γ⊥
3 = ∅,

otherwise.

We can now define Γ⊥
2 = D \ (Γ⊥

1 ∪ Γ⊥
3 ). This can also be expressed in the following

way:

Γ⊥
2 = (D2 ∪D3 ∪D4) \ {(x0 − 1)(x1 − 1)}. (C.3.10)

Again, by construction we have D = Γ⊥
1 ∪ Γ⊥

2 ∪ Γ⊥
3 .

Remark C.3.28. The condition in (1) from the definition of Γ⊥
3 implies that M

(0,d⊥)
(d⊥)

contains monomials of the two types. Indeed, if d⊥ ≥ qs, M
(0,d⊥)

(d⊥) always contains

monomials of the two types, and if d⊥ ≤ qs − 1 and there is an element c ∈ A such
that c2 = a2, Ic ̸= I

(0,d⊥)
, and Mc(d

⊥) contains monomials of the two types, this means

that there is γ ∈ Ic with γ1 > 0 such that γ1 + γ2 = d⊥ by Lemma C.3.7, with γ2 ∈
Id⊥ . Therefore, d⊥ is not the minimal element in Id⊥ , which means that M(0,d⊥)(d

⊥)

contains monomials of the two types. Hence, we have (x0 − 1)(x1 − 1) ∈ Γ⊥
3 if and only if

(x0 − 1)(x1 − 1) ∈ D3.

Let b2 ∈ A1 such that Ib2 = Id, for some degree 1 ≤ d ≤ 2(qs − 1). For ease of use, we
recall here the sizes of the set we have just defined:

(a.1) |Γ1| = |B1| =
∑

a∈A<d
na.

(a.2) |Γ2| = |B2|+ nd =
∑

a2∈Y na2 + nd if I(qs−1,d) ⊂ ∆≤d, and |Γ2| = |B2| otherwise.

(a.3) |Γ3| = 1 if
⋃

c2∈Ib2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ ∆≤d, and |Γ3| = 0 otherwise.
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(b.1)
∣∣Γ⊥

1

∣∣ = |D1| =
∑

a∈U na.

(b.2)
∣∣Γ⊥

2

∣∣ = |D2|+|D3 \ {(x0 − 1)(x1 − 1)}|+|D4| =
∑

a2∈V na2+nd+|D4| if M(0,d⊥)
(d⊥)

contains monomials of the two types, and
∣∣Γ⊥

2

∣∣ =∑a2∈V na2 + |D4| otherwise, where
|D4| = 1 if d = qs − 1, and |D4| = 0 otherwise.

(b.3)
∣∣Γ⊥

3

∣∣ = 1 if there is an element c ∈ A such that c2 = b2, Ic ̸= I
(0,d⊥)

, and Mc(d
⊥)

contains monomials of the two types, and
∣∣Γ⊥

3

∣∣ = 0 otherwise.

Definition C.3.29. Let b = (b1, b2) ∈ Z2
qs . We define

b′ = (b′1, b
′
2) := (qs − 1− b1, q

s − 1− b2).

Remark C.3.30. Let c ∈ A. Then c2 ∈ Ia2 if and only if c′2 = qs − 1− c2 ∈ Ia′2 .

We are interested in doing these decompositions because the length of these codes is

n = q3s−1
qs−1 = q2s + qs + 1, and we also have

∑
a∈A na = q2s,

∑
a2∈A1 na2 = qs. We prove

now that |Γ1| +
∣∣Γ⊥

1

∣∣ = q2s, |Γ2| +
∣∣Γ⊥

2

∣∣ = qs and |Γ3| +
∣∣Γ⊥

3

∣∣ = 1. This is reminiscent of
the affine case, in which if we evaluate the traces corresponding to a ∈ A for the primary
code, then for the dual code we do not need to consider the traces corresponding to Ia′ .
The strategy in our case will be similar: for each a ∈ A such that we consider its traces
in B, we will see that we do not consider the traces corresponding to Ia′ in D. We start
with the sets Γ1 and Γ⊥

1 .

Lemma C.3.31. With the definitions as above, we have |Γ1|+
∣∣Γ⊥

1

∣∣ = q2.

Proof. By definition, it is clear that we have q2s − |Γ1| =
∑

a∈A\A<d
na. We note that

a ∈ A \ A<d if and only if there is (c1, c2) ∈ Ia such that c1 + c2 ≥ d. Therefore,
2(qs − 1) − c1 − c2 = c′1 + c′2 ≤ d⊥, which means that Ma′(d

⊥) ̸= ∅. It is easy to
see that na = na′ , and we have

∑
a∈A\A<d

na =
∑

a′∈A|Ma′ (d
⊥) ̸=∅ na′ =

∣∣Γ⊥
1

∣∣. Thus,

|Γ1|+
∣∣Γ⊥

1

∣∣ = q2s.

For the case of Γ2 and Γ⊥
2 , we need the following technical results.

Lemma C.3.32. Let 1 ≤ d ≤ 2(qs − 1), d⊥ = 2(qs − 1) − d and c ∈ A. Then Mc′(d
⊥)

contains monomials of the two types if and only if Ic ∩ (∆d ∪ ∆
2(qs−1)−d⊥

) ̸= ∅ and

Ic ̸⊂ ∆≤d, where ∆z = ∅ if z < 0.

Proof. By Lemma C.3.7, Mc′(d
⊥) contains monomials of the two types if and only if

Ic′ ∩ ∆<d⊥ ̸= ∅ and Ic′ ∩ (∆d⊥ ∪ ∆
d⊥

) ̸= ∅. The condition Ic′ ∩ ∆<d⊥ ̸= ∅ implies that

there is (γ′1, γ
′
2) ∈ Ic′ such that 2(qs − 1) − γ1 − γ2 < d⊥ ⇐⇒ γ1 + γ2 > d. Thus,

γ ∈ Ic ̸⊂ ∆≤d. The condition Ic′ ∩ (∆d⊥ ∪ ∆
d⊥

) ̸= ∅ implies that there is an element

(γ′1, γ
′
2) ∈ Ic′ with either 2(qs − 1) − γ1 − γ2 = d⊥ or 2(qs − 1) − γ1 − γ2 = d⊥. Hence,

γ ∈ ∆d ∪∆
2(qs−1)−d⊥

.

Remark C.3.33. It is easy to check that 2(qs−1)−d⊥ = d if d ≥ qs−1, and 2(qs−1)−d⊥ =
d+ qs − 1 if d ≤ qs − 2.
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The following result, among other things, relates the set

Y =

a2 ∈ A1
≤d, Ia2 ̸= Id |

⋃
c2∈Ia2 ,c2>d−(qs−1)

I(d−c2,c2) ⊂ ∆≤d

 (C.3.11)

with the set V = {a2 ∈ A1 | Ia2 ̸= I
d⊥

and ∃ c ∈ A with c2 = a2 and Mc(d
⊥) contains

monomials of the two types}.

Lemma C.3.34. Let a2 ∈ A1
≤d. Then

⋃
c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ ∆≤d if and only if

there is no c ∈ A with Ic′ ̸= I
(0,d⊥)

, c′2 ∈ Ia′2, and such that Mc′(d
⊥) contains monomials

of the two types.

Proof. Let a2 ∈ A1
≤d. By Lemma C.3.32, we can translate the statement to the fol-

lowing: we have
⋃

c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ ∆≤d if and only if there is no c ∈ A,

Ic ̸= I
(qs−1,d⊥

′
)
, with c2 = a2, Ic∩ (∆d∪∆

2(qs−1)−d⊥
) ̸= ∅ and Ic ̸⊂ ∆≤d. In what follows,

we will use this last statement instead of the original one. We also note that d⊥
′
= d if

d ̸= qs − 1, and d⊥
′
= 0 if d = qs − 1.

We assume that
⋃

c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ ∆≤d and we consider c ∈ A, Ic ̸=
I
(qs−1,d⊥

′
)
, with c2 = a2. If Ic ∩ ∆d ̸= ∅, we have (d − γ2, γ2) ∈ Ic for some γ2 ∈ Ia2 .

This implies that d − γ2 ≤ qs − 1, i.e., γ2 ≥ d − (qs − 1). If γ2 > d − (qs − 1), then,
by our assumptions, Ic = I(d−γ2,γ2) ⊂ ∆≤d. If we had γ2 = d − (qs − 1) and d ≥ qs,

then this would imply that (qs − 1, d) ∈ Ic, which is a contradiction with the fact that
Ic ̸= I(qs−1,d). If d = qs − 1, then γ2 = 0, which implies that (d− γ2, γ2) = (qs − 1, 0) and

Ic = {(qs − 1, 0)}, a contradiction with the fact that Ic ̸= I
(qs−1,d⊥

′
)
= I(qs−1,0).

On the other hand, if Ic ∩ ∆d = ∅ and Ic ∩ ∆
2(qs−1)−d⊥

̸= ∅, we have γ ∈ Ic with

γ1+γ2 = 2(qs−1)−d⊥, and γ2 ∈ Ia2 . Considering Remark C.3.33, if d ≥ qs−1, this implies
γ ∈ ∆d, a contradiction with the assumption Ic∩∆d = ∅. If d ≤ qs− 2, then we note that
γ2 ≤ d since a2 ∈ A≤d, and γ1 ≤ qs−1, which implies γ1+γ2 ≤ d+qs−1 = 2(qs−1)−d⊥.
We can only obtain the equality if γ1 = qs − 1 and γ2 = d, which is a contradiction with
the assumption Ic ̸= I(qs−1,d).

For the other implication, we assume now that there is no c ∈ A, Ic ̸= I
(qs−1,d⊥

′
)
, with

c2 = a2, Ic∩(∆d∪∆2(qs−1)−d⊥
) ̸= ∅ and Ic ̸⊂ ∆≤d. For each γ2 ∈ Ia2 , with γ2 > d−(qs−1),

there is an element c ∈ A such that Ic = I(d−γ2,γ2). Because of the ordering chosen for
the elements in Z2

qs , we must have c2 = a2. We clearly have (d − γ2, γ2) ∈ Ic ∩∆d ̸= ∅.
By our assumption, we must have Ic = I(d−γ2,γ2) ⊂ ∆≤d.

Remark C.3.35. Lemma C.3.34 implies the following. Let a2 ∈ A1
≤d with Ia2 ̸= Id.

Then a2 ∈ Y if and only if there is no c ∈ A with c′2 ∈ Ia′2 , Ic′ ̸= I
(0,d⊥)

, and such that

Mc′(d
⊥) contains monomials of the two types.

Recalling that d
′
= d⊥ if d ̸= qs − 1, and d

′
= 0 if d = qs − 1, we see that if d ̸= qs − 1,

Ia2 ̸= Id together with c′2 ∈ Ia′2 already implies Ic′ ̸= I
(0,d⊥)

. For d = qs − 1, in the case

a2 = 0, we see that the previous statement says: 0 ∈ Y if and only if there is no c ∈ A
with c′2 ∈ Iqs−1, Ic′ ̸= I(0,qs−1), and such that Mc′(q

s − 1) contains monomials of the two
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types. However, M(0,qs−1)(q
s − 1) = {xq

s−1
2 } does not have monomials of the two types.

Therefore, in this case we can also omit the condition Ic′ ̸= I
(0,d⊥)

.

Thus, we have the following statement. Let a2 ∈ A1
≤d with Ia2 ̸= Id. Then a2 ∈ Y if

and only if there is no c ∈ A with c′2 ∈ Ia′2 and such that Mc′(d
⊥) contains monomials of

the two types.

Lemma C.3.36. Let 1 ≤ d ≤ 2(qs−1), d⊥ = 2(qs−1)−d. If d ̸= qs−1, then M
(0,d⊥)

(d⊥)

contains monomials of the two types if and only if I(qs−1,d) ̸⊂ ∆≤d.

Proof. If d⊥ ≥ qs, thenM
(0,d⊥)

(d⊥) contains monomials of the two types because xq
s−1

0 xd
⊥

2 ,

xd2 ∈ M
(0,d⊥)

(d⊥). In this case, we have d ≤ qs − 2, which ensures that I(qs−1,d) ̸⊂ ∆≤d.

If d⊥ ≤ qs−1,M(0,d⊥)(d
⊥) contains monomials of the two types if and only if d⊥ is not the

minimal element of Id⊥ . We have (d⊥)′ = qs−1−d⊥ = qs−1−(2(qs−1)−d) = d−(qs−1).
The condition d⊥ ≤ qs − 1 implies that d ≥ qs − 1. Taking into account the assumption
d ̸= qs − 1, we can assume now that d > qs − 1. Thus, (d⊥)′ = d, and we obtain that
M(0,d⊥)(d

⊥) contains monomials of the two types if and only if d⊥ is not the minimal

element of Id⊥ , which happens if and only if (d⊥)′ = d is not the maximal element of Id,
which happens if and only if I(qs−1,d) ̸⊂ ∆≤d.

Lemma C.3.37. We have that |Γ2|+
∣∣Γ⊥

2

∣∣ = qs.

Proof. We start with the following decomposition:

qs =
∑

a2∈A1

na2 =
∑

a2∈A1
≤d,a2∈Y,Ia2 ̸=Id

na2+
∑

a2∈A1
≤d,a2 ̸∈Y,Ia2 ̸=Id

na2+
∑

a2∈A1\A1
≤d,Ia2 ̸=Id

na2+nd.

We recall that
∑

a2∈A1
≤d,a2∈Y,Ia2 ̸=Id

na2 = |B2|. We also recall the definition V = {a2 ∈
A1 | Ia2 ̸= I

d⊥
and ∃ c ∈ A | c2 = a2 and Mc(d

⊥) contains monomials of the two types}.
Let a2 ∈ A1

≤d. By Remark C.3.35, if d ̸= qs − 1, we have that a2 ∈ Y if and only if the
minimal element of Ia′2 is not in V . Taking into account that na2 = na′2

, we have that∑
a2∈A1

≤d,a2 ̸∈Y,Ia2 ̸=Id

na2 =
∑

b′2∈V |Ib2=Ia2 ,a2∈A
1
≤d

nb′2
.

If d ≥ qs − 1, we have A1
≤d = A1, and the only thing left to do is to consider the

cyclotomic set Id. However, if d ≤ qs − 2, we can consider a2 ∈ A1 \ A1
≤d. We have

that d ≤ qs − 2 ⇐⇒ d⊥ ≥ qs, and a2 ∈ A1 \ A1
≤d implies that there is γ2 ∈ Ia2 with

γ2 > d ⇐⇒ γ′2 < d⊥ in this case. Hence, we can consider c = (d⊥ − γ′2, γ
′
2), and

we have that {xq
s−1

0 x
d⊥−γ′

2
1 x

γ′
2

2 , x
d⊥−γ′

2
1 x

γ′
2

2 } ⊂ Mc(d
⊥), which means that Mc(d

⊥) contains
monomials of the two types, and Ia′2 ̸= I

d⊥
, i.e., if we consider b2 ∈ A1 such that Ib2 = Ia′2 ,

we have b2 ∈ V .

Reciprocally, if we consider a2 ∈ A1 and we have c′ ∈ A such that c′2 ∈ Ia′2 ̸= I
d⊥

and

Mc′(d
⊥) contains monomials of the two types, there is (γ′1, γ

′
2) ∈ Ic with γ′1 + γ′2 = d⊥ =

d⊥ − (qs − 1), which means that γ1 + γ2 = d+ (qs − 1), with γ2 ∈ Ia2 . If γ1 < qs − 1, then
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γ2 > d and a2 ∈ A \ A≤d. If γ1 = qs − 1, then γ2 = d, a contradiction since in this case
Ia′2 ̸= I

d⊥
implies Ia2 ̸= Id.

Thus, we have obtained that∑
a2∈A1

≤d,a2 ̸∈Y,Ia2 ̸=Id

na2 +
∑

a2∈A1\A1
≤d,Ia2 ̸=Id

na2 =
∑
b′2∈V

nb′2
= |D2|.

We now focus on the cyclotomic set Id. We use Lemma C.3.36, as we are still in the
case d ̸= qs − 1. If d < qs − 1, we always have |Γ2| = |B2| by definition, and we also

have |Γ3| = |D2| + nd because {xq
s−1

0 xd
⊥

2 , xd
⊥

2 } ⊂ M
(0,d⊥)

(d⊥), i.e., M
(0,d⊥)

(d⊥) contains

monomials of the two types. If d > qs − 1, we have |Γ2| = |B2| + nd if and only if
M(0,d⊥)(d

⊥) does not have monomials of the two types, by Lemma C.3.36, and |Γ2| = |B2|
otherwise. Thus, we have that |Γ2| = |B2|+ nd if and only if

∣∣Γ⊥
2

∣∣ = |D2|, and |Γ2| = |B2|
if and only if

∣∣Γ⊥
2

∣∣ = |D2|+ nd. Hence, for d ̸= qs − 1 we have proved that

|Γ2|+
∣∣∣Γ⊥

2

∣∣∣ = qs.

On the other hand, if d = qs − 1, the condition Ia2 ̸= Id = Iqs−1 implies Ia′2 ̸= I0
instead of Ia′2 ̸= I

d⊥
= Iqs−1. For any a2 ∈ A1

≤d = A1, a2 ̸∈ {0, qs − 1}, the previous
relations between elements in Y and elements in V hold by Remark C.3.35. For a2 = 0 and
a2 = qs − 1 we have that M(0,qs−1)(q

s − 1) and M(qs−1,0)(q
s − 1) are the only sets Mc(d

⊥)
with c2 = 0′ or c2 = (qs− 1)′, respectively, such that x0 does not divide all the monomials
inMc(q

s−1), and none of them contains monomials of the two types. Hence, for d = qs−1,
we obtain that 0 ̸∈ V , and also that |D2| =

∑
a′2∈V

na′2
since M(0,qs−1)(q

s − 1) does not
have monomials of the two types, and there is no other c ∈ A with c2 = qs − 1 such that
Mc(q

s − 1) contains monomials of the two types. On the other hand, for d = qs − 1 is
easy to see that 0 ∈ Y . Moreover, for d = qs − 1 we have that A1 \ A1

≤d = ∅, and we
have I(qs−1,qs−1) ̸⊂ ∆qs−1, which means that |Γ2| = |B2| =

∑
a2∈Y na2 . Summarizing all

of this, we have

|Γ2|+ |D2|+ nqs−1 = qs,

because for any a2 ∈ A1, a2 ̸∈ {0, qs − 1}, we have that either a2 ∈ Y or a′2 ∈ V as before,
and we have that 0 ∈ Y , qs−1 ̸∈ Y and qs−1 ̸∈ V . Obviously, in this case nqs−1 = 1, and
for d = qs − 1, looking at the definition of Γ⊥

2 from (C.3.10), we see that
∣∣Γ⊥

2

∣∣ = |D2|+ 1
(the previous argument shows that, in this case D3 = ∅). Therefore, |Γ2|+

∣∣Γ⊥
2

∣∣ = qs.

Lemma C.3.38. We have that |Γ3|+
∣∣Γ⊥

3

∣∣ = 1.

Proof. Let a2 ∈ A1 such that Ia2 = I
d⊥

. By Remark C.3.28, we have that Γ⊥
3 ̸= ∅

if and only if there is an element c ∈ A such that c2 = a2, Ic ̸= I
(0,d⊥)

, and Mc(d
⊥)

contains monomials of the two types. By Lemma C.3.34, this happens if and only if⋃
c2∈Ia2 ,c2>d−(qs−1) I(d−c2,c2) ̸⊂ ∆≤d. By the definition of Γ3, this happens if and only

if Γ3 = ∅. The cardinality of these sets is 1 if they are nonempty, which implies that
|Γ3|+

∣∣Γ⊥
3

∣∣ = 1.

Now we state the main result of this section.
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Theorem C.3.39. Let 1 ≤ d ≤ 2(qs − 1). The image by the evaluation map of the set

B = B1 ∪B2 ∪B3,

with B1, B2, B3 as defined in Lemmas C.3.15, C.3.20 and C.3.23, respectively, forms a
basis for the code PRMσ

d(2).

Proof. By Lemma C.3.23, we know that the image by the evaluation map of the set B is
in PRMσ

d(2), and it is linearly independent. By Lemmas C.3.31, C.3.37 and C.3.38, we

have that |B| + |D| = |B| + dimPRMσ,⊥
d (2) = q2 + q + 1 = n. Thus, B is a maximal

linearly independent set, and we obtain the result.

Remark C.3.40. The sets B′
2 and B′

3 obtained using Remarks C.3.21 and C.3.24, respec-
tively, also satisfy that B1 ∪B′

2 ∪B′
3 is a basis for PRMσ

d(2).

We have that PRMσ
d(2) is a subcode of PRMd(2). Thus, we should be able to obtain

PRMσ
d(2) as the evaluation of some set of homogeneous polynomials of degree d. In fact,

in all the discussions leading to Lemmas C.3.15, C.3.20 and C.3.23, we showed how to
construct homogeneous polynomials with the same evaluation as the ones considered in
Theorem C.3.39. Concrete expressions for these homogeneous polynomials can be given,
but they get considerably more involved than the expressions obtained for the polynomials
in B.

Example C.3.41. Continuing with Example C.3.25, Theorem C.3.39 states that the
image by the evaluation map of the set B = B1 ∪ B′

2 ∪ B3 that we have constructed
in those examples gives a basis for the code PRMσ

21(2). Indeed, it can be checked with
Magma [2] that the dimension of PRMσ

21(2) is precisely 133 (the cardinality of B), and
that the evaluation of the polynomials in B is in PRMσ

21(2).

Corollary C.3.42. Let 1 ≤ d ≤ 2(qs − 1). We have the following formula for the dimen-
sion of PRMσ

d(2):

dim(PRMσ
d(2)) = |B1|+ |B2|+ |B3| =

∑
a∈A<d

na +
∑
a2∈Y

na2 + ϵ,

where, if we consider b2 ∈ A1 with Ib2 = Id, then ϵ = nd + 1 if I(qs−1,d) ⊂ ∆≤d; ϵ = 1 if

I(qs−1,d) ̸⊂ ∆≤d and
⋃

c2∈Ib2 ,c2>d−(qs−1) I(d−c2,c2) ⊂ ∆≤d; and ϵ = 0 otherwise.

We have seen in Lemma C.3.38 that we have the evaluation of a polynomial with xd2 in
its support in PRMσ

d(2) if and only if we do not have the evaluation of (x0 − 1)(x1 − 1)

in PRMσ,⊥
d (2). If we have the evaluation of (x0 − 1)(x1 − 1) in PRMσ,⊥

d (2), this implies
that PRMσ

d(2) is a degenerate code, with a common zero at the coordinate associated to
[0 : 0 : 1] for all its vectors. However, if we only have one common zero, the code that
we obtain after puncturing are still different than the ones obtained in the affine case.
Nevertheless, if we obtain that all the points in [{0} × {1} × Fqs ] are common zeroes of
the vectors in PRMσ

d(2), then, after puncturing, we obtain a subfield subcode of an affine
Reed-Muller code.
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The only parameter left to estimate is the minimum distance. For a code C we denote
its minimum distance by wt(C). For the code PRMσ

d(2) we have the bound given by the
minimum distance of PRMd(2) (see [20]):

wt(PRMσ
d(2)) ≥ (qs − t)qs(1−r), (C.3.12)

where d− 1 = r(qs − 1) + t, 0 ≤ t < qs − 1. This is the usual way to bound the minimum
distance of a subfield subcode, for instance see [12] for the subfield subcodes of projective
Reed-Solomon codes. For the subfield subcodes of projective Reed-Muller codes, this
bound is sharp in most of the cases that we have checked with Magma [2] (qs ≤ 9). For
example, in Table C.2 from Section C.5, the bound is sharp except for d = 2, which
corresponds to a degenerate code, and for d = 10 (the bound is 8 instead of 9).

For the dual code PRMσ,⊥
d (2), there is no straightforward bound for the minimum

distance, as we see next. Given C ⊂ Fn
qs , if C

q = C, where we understand this as the
component wise power of the code, we say that C is Galois invariant. By [1, Thm. 4],
we have that Tr(C) = Cσ. Writing Theorem C.2.7 as C⊥ ∩ Fn

q = Tr(C)⊥, we note that

C⊥,σ = C⊥ ∩ Fn
q = (Cσ)⊥ = Cσ,⊥. Therefore, when C is Galois invariant, we have

wt(Cσ,⊥) = wt(C⊥,σ) ≥ wt(C⊥).

This bound has been used frequently in the affine case [8, 10], but in the projective case
we do not have Galois invariant codes in general and we do not have the previous bound,
nor the equality between PRMσ,⊥

d (m) and PRM⊥,σ
d (m).

C.4 Codes over the projective space

In this section we want to deal with the case of m variables, for m > 2. We have seen
that, for m = 2, obtaining bases for the subfield subcodes is quite technical. Hence, we
do not aspire to give explicit results in this section for the bases of the subfield subcodes
of projective Reed-Muller codes with m > 2, but we can show that all the basic ideas can
be generalized to treat this case. First we give a universal Gröbner basis for the vanishing
ideal of Pm, which was a fundamental tool for the previous section when m = 2. With
respect to the terminology for Gröbner bases, we refer the reader to [4]. Particular cases
of the following result were already presented in [12,19].

Theorem C.4.1. The vanishing ideal of Pm is generated by:

I(Pm) =⟨x20 − x0, x
qs

1 − x1, x
qs

2 − x2, . . . , x
qs

m − xm, (x0 − 1)(x21 − x1),

(x0 − 1)(x1 − 1)(x22 − x2), . . . , (x0 − 1) · · · (x2m−1 − xm−1), (x0 − 1) · · · (xm − 1)⟩.

Moreover, these generators form a universal Gröbner basis of the ideal I(Pm), and we
have that

in(I(Pm)) = ⟨x20, x
qs

1 , xq
s

2 , . . . , xq
s

m , x0x
2
1, x0x1x

2
2, . . . , x0x1 · · ·x2m−1, x0x1 · · ·xm⟩.

Proof. We consider the polynomials f0 = x20 − x0, f1 = xq
s

1 − x1, f2 = xq
s

2 − x2,. . . ,

fm = xq
s

m − xm, and g1 = (x0 − 1)(x21 − x1), g2 = (x0 − 1)(x1 − 1)(x22 − x2),. . . , gm−1 =

102



C.4. Codes over the projective space

(x0 − 1)(x1 − 1) · · · (xm−2 − 1)(x2m−1 − xm−1), gm = (x0 − 1) · · · (xm − 1), and set J :=
⟨f0, . . . , fm, g1, . . . , gm⟩.
Due to the generators fi, i = 0, 1, . . . ,m, it is clear that the variety defined by J over

the algebraic closure Fqs is the same as the variety defined over Fqs . By using [11, Thm.
2.3], if we prove that the variety defined by J over Fqs is Pm, then we can conclude that
J = I(Pm).
Given P ∈ Pm, we have that P = [0 : 0 : · · · : 0 : 1 : Pl+1 : · · · : Pm] for some l,

0 ≤ l ≤ m, with Pi ∈ Fqs for i = l + 1, . . . ,m. One can check that each generator of J
vanishes at P , which means that Pm is contained in the variety defined by J .
Conversely, if all the generators of J vanish at a point P = [P0 : P1 : · · · : Pm], because

of the generator f0 the first coordinate is either 0 or 1. Considering the generator gm, we
also have that

(P0 − 1)(P1 − 1) · · · (Pm − 1) = 0.

This means that there is an integer l such that Pl = 1, and we choose this l to be the
smallest with that property. If l = 0, then P = [1 : P1 : · · · : Pm] ∈ Pm. If l > 0, using
the generator gl−1 we obtain

(P0 − 1)(P1 − 1) · · · (P 2
l−1 − Pl−1) = 0.

Hence, Pl−1 = 0 since P0, P1, . . . , Pl−1 are different from 1 due to the choice of l. Doing
this recursively we get that P0 = P1 = · · · = Pl−1 = 0, which means that P = [0 : 0 : · · · :
0 : 1 : Pl+1 : · · · : Pm] ∈ Pm. Therefore, we have J = I(Pm).

The only thing left to prove is that the generators of I(Pm) form a universal Gröbner
basis for I(Pm). For any monomial order we have that xi > 1, i = 0, 1, . . . ,m. Looking
at each generator, we see that its initial monomial does not depend on the monomial
order. Thus, if we prove that all the S-polynomials reduce to 0, and these reductions do
not depend on the monomial order, we will have that these generators form a universal
Gröbner basis for I(Pm) using Buchberger’s criterion [4, §9 Thm. 3, Chapter 2], and we
will also obtain the stated initial ideal.

To show that all the S-polynomials reduce to 0, we will use two facts:

(a) If the leading monomials of f and g are relatively prime, then S(f, g) reduces to 0
by [4, §9 Prop. 4, Chapter 2]. In particular, if f and g depend on different variables,
then S(f, g) reduces to 0.

(b) If f and g share a common factor w, then S(f, g) = wS(f/w, g/w). Moreover, if we
can apply (a) to S(f/w, g/w), i.e., S(f/w, g/w) reduces to 0 using f/w and g/w,
then S(f, g) reduces to 0 using f and g.

On one hand, for all i, j, 0 ≤ i < j ≤ m, we have that S(fi, fj) reduces to 0 by (a). On
the other hand, for all k, l, 1 ≤ k < l < m, using (b) we have

S(gk, gl) = (x0 − 1) · · · (xk−1 − 1)(xk − 1)S(xk, (xk+1 − 1) · · · (xl−1 − 1)(x2l − xl)),

where the last S-polynomial reduces to 0 by (a). For l = m, the same argument applies,
as we have

S(gk, gm) = (x0 − 1) · · · (xk−1 − 1)(xk − 1)S(xk, (xk+1 − 1) · · · (xm−1 − 1)(xm − 1)).
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Finally, we consider S(fi, gk), for 1 ≤ i ≤ m, 1 ≤ k < m. If i > k, this S-polynomial
reduces to 0 by (a). If i = k, using (b) we have

S(fk, gk) = (x2k − xk)S((1 + xk + · · ·+ xq
s−2

k ), (x1 − 1) · · · (xk−1 − 1)),

and the last S-polynomial reduces to 0 by (a). If i < k, applying (b) we obtain

S(fi, gk) =

(xi − 1)S(xi(1 + xi + · · ·+ xq
s−2

i ), (x1 − 1) · · · (xi−1 − 1)(xi+1 − 1) · · · (x2k − xk)),

where the last S-polynomial reduces to 0 by (a). For the cases with i = 0 or k = m, an
analogous reasoning proves that the S-polynomials reduce to 0.

Remark C.4.2. If qs > 2, from the proof of Theorem C.4.1 we also obtain that the
universal Gröbner basis obtained in Theorem C.4.1 is in fact the reduced Gröbner basis
with respect to any monomial order. Moreover, the same happens for any subset of the
generators given in Theorem C.4.1 and the ideal that they generate.

Now we give a convenient basis for S/I(Pm), and also we show how to express any
monomial in S/I(Pm) in terms of this basis, i.e., we give the result of using the division
algorithm for any monomial with respect to the universal Gröbner basis from Theorem
C.4.1.

Lemma C.4.3. The set given by the classes of the following monomials

{xa11 · · ·xamm , x0x
a2
2 · · ·xamm , . . . , x0x1 · · ·xm−2x

am
m , x0 · · ·xm−1 | 0 ≤ ai ≤ qs − 1, 1 ≤ i ≤ m}

is a basis for S/I(Pm).

Proof. Let M be the given set of monomials. We have that there is no monomial from
M contained in in(I(Pm)) by Theorem C.4.1. We also have that |M| = qsm + qs(m−1) +

· · ·+ qs + 1 = qs(m+1)−1
qs−1 = |Pm|, which is the dimension of S/I(Pm) as a vector space (by

definition, this is equal to deg(S/I(Pm)), which is equal to |Pm| by [16, Prop. 2.2]). We
finish the proof by noting that the classes of the monomials not contained in in(I(Pm))
form a basis for S/I(Pm) [6, Thm. 15.3].

Lemma C.4.4. Let xa00 xa11 · · ·xamm =
∏m

i=0 x
ai
i such that a0 > 0, a1 > 0, . . . , al > 0 and

al+1 = 0, with 0 ≤ l ≤ m (ak := 0 for k > m). Assume also that ai ≤ qs − 1, 1 ≤ i ≤ m.

(a) If l < m, then

m∏
i=0

xaii ≡

(
m∏

i=l+2

xaii

)(
l∏

i=1

xaii

+(x0 − 1)

(
+ (x1 − 1)

(
· · ·

(
xall + (xl−1 − 1)xl

)
· · ·

)))
mod I(Pm),

where we understand that the product from s to t with s > t is equal to 1.
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(b) If l = m, then

m∏
i=0

xaii ≡

(
m∏
i=1

xaii

+ (x0 − 1)

(
m∏
i=2

xaii +(x1 − 1)

(
· · ·

(
xamm + (xm−1 − 1)

)
· · ·

)))
mod I(Pm).

Proof. Two polynomials belong to the same class in S/I(Pm) if and only if their evaluation
in Pm is the same. Thus, to check the stated equivalences, it is enough to verify that both
sides have the same evaluation in Pm. We assume first that l < m. We claim that

l∏
i=0

xaii ≡
l∏

i=1

xaii + (x0 − 1)

(
l∏

i=2

xaii + (x1 − 1)

(
· · ·

(
xall + (xl−1 − 1)xl

)
· · ·

))
mod I(Pm).

Indeed, if we decompose Pm as in the proof of Lemma C.2.6, we can check that the
evaluation of both sides is the same at each Ar, 0 ≤ r ≤ m. Because of the assumption
a0 > 0, the left hand side is 0 at every point which is not in A0. Both sides evaluate to
the same values in A0. For the evaluation in Ar, with 1 ≤ r < l, we can set x0 = x1 =
· · · = xr−1 = 0, and in the right hand side we get

(−1)r+1

(
l∏

i=r

xaii −

(
l∏

i=r+1

xaii + (xr − 1)

(
· · ·

(
xall + (xl−1 − 1)xl

)
· · ·

)))
.

Setting xr = 1, we obtain 0, which is what we get in the left hand side as well. If r = l,
when we set x0 = x1 = · · · = xl−1 = 0 we obtain

(−1)l+1
(
xall − xl

)
,

which is equal to 0 when we set xl = 1, as the left hand side. For Ar with l < r ≤ m, the
right hand side is always 0 since it is divisible by xl. Now (a) follows by considering the
following factorization:

m∏
i=0

xaii =

(
m∏

i=l+2

xaii

)(
l∏

i=0

xaii

)
.

An analogous argument shows that, when l = m, the polynomial stated in (b) has the
same evaluation as

∏m
i=0 x

ai
i in Pm.

Remark C.4.5. It is not hard to see that all the monomials appearing in the right hand
side of the expressions given in Lemma C.4.4 are part of the basis from Lemma C.4.3.

Hence, we have seen that the basic tools we have used for the case m = 2 can be
generalized to the case m > 2. For the duals of the subfield subcodes, the reasoning
that led to (C.3.1) and (C.3.2) shows that, in order to obtain a basis for T (Sd), for each
monomial xγ ∈ Sd, it is enough to consider the traces

{Tγ̂(ξrγ̂xγ) | 0 ≤ r ≤ nγ̂ − 1}, (C.4.1)
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where in this case we are considering cyclotomic sets in m coordinates, and we extend
the definitions for γ̂ and Tγ̂ to this case in the obvious way. Hence, to obtain a basis we
have to extract a maximal linearly independent set from the union of the previous sets.
Theorem C.4.1 and Lemma C.4.4 give the necessary tools to do that, but getting a general
explicit formula for such a basis is quite involved.

For the primary code, the idea would be to consider homogenizations of the traces from
the basis of the affine case from Theorem C.2.3, and then consider linear combinations of
these polynomials such that, when setting x0 = x1 = · · · = xj = 0 for some 0 ≤ j ≤ m−1,
we obtain traces in less variables, similarly to what we did in the case of the projective
plane.

C.5 Examples

In this section we show some examples of the parameters obtained from subfield subcodes of
projective Reed-Muller codes over the projective plane. For computing the dimension, we
can use Corollary C.3.13 and Corollary C.3.42, and for computing the minimum distance
we use Magma [2]. We will denote the parameters of PRMσ

d(2) by [n, k, δ], and the

parameters of the dual code PRMσ,⊥
d (2) by [n, k⊥, δ⊥]. With respect to the parameters

of the codes that we obtain, it is only possible to compare these codes with the codes
from [13] for small finite field sizes. This is because the codes that we obtain have length

n = q3s−1
qs−1 = q2s + qs + 1, which gives rise to very long codes when we increase q or s.

Moreover, it is better to consider moderate values of s due to the fact that the size of the
corresponding cyclotomic sets increases for larger s, and therefore if we start with degree
d and we consider degree d − 1, for each monomial of degree d that we are no longer
evaluating, all its powers of q (seen in S/I(P 2)) will not appear in any trace from the
basis that we have given for PRMσ

d(2), and the size of the set formed by the monomial
and its powers of q is precisely the size of the corresponding cyclotomic set. This can
cause significant drops in dimension, leading in some cases to codes with worse parameters
compared to the cases with smaller s. Thus, we first consider binary codes and ternary
codes arising from extensions of small degree.

For the extensions F4 ⊃ F2 and F8 ⊃ F2, we obtain the parameters from Table C.1. For
the extension F8 ⊃ F2 we omit the codes with d = 2, 3 as they are equal to PRMσ

1 (2). In
the cases where δ⊥ is 1, we have that PRMd(2) is a degenerate code. For instance, for
the extension F4 ⊃ F2, for d = 1 we have qs + 1 = 5 common zeroes for all the vectors in
the code, which means that, after puncturing, we obtain the same as the subfield subcode
of an affine Reed-Muller code. However, for d = 2 we only have 1 common zero, and the
corresponding code after puncturing does not correspond to the subfield subcode of any
affine Reed-Muller code. With respect to the parameters, some of the codes from Table
C.1 have the best known parameters for a linear code with its length and dimension,
according to [13]. For example, that is the case for the codes with parameters [21, 9, 8]2,
[21, 12, 5]2 and [21, 16, 3]2.

With respect to ternary codes, we consider the extension F9 ⊃ F3. The parameters of
the corresponding codes are presented in Table C.2, where we have omitted the case d = 2
since it corresponds to the same code as PRMσ

1 (2).

We can compare the parameters of these codes with the ones obtained with affine Reed-
Muller codes. Besides the fact that we obtain longer codes for the same field size, if we
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Table C.1: Binary codes corresponding to the extensions F4 ⊃ F2 and F8 ⊃ F2, respec-
tively.

d n k δ k⊥ δ⊥

1 21 1 16 20 1
2 21 2 12 19 1
3 21 9 8 12 5
4 21 11 4 10 2
5 21 16 3 5 8
6 21 20 2 1 21

d n k δ k⊥ δ⊥

1 73 1 64 72 1
4 73 2 40 71 1
5 73 7 32 66 1
6 73 8 24 65 1
7 73 27 16 46 9
8 73 28 8 45 1
9 73 32 8 41 2
10 73 40 8 33 1
11 73 51 5 22 16
12 73 59 4 14 4
13 73 66 3 7 32
14 73 72 2 1 73

Table C.2: Ternary codes corresponding to the extension F9 ⊃ F3.

d n k δ k⊥ δ⊥

1 91 1 81 90 1
3 91 2 63 89 1
4 91 9 54 82 4
5 91 9 45 82 1
6 91 10 36 81 1
7 91 19 27 72 1
8 91 36 18 55 10
9 91 38 9 53 2
10 91 45 9 46 4
11 91 58 7 33 18
12 91 70 6 21 36
13 91 73 5 18 6
14 91 80 4 11 36
15 91 86 3 5 54
16 91 90 2 1 91

consider k+δ
n as a measure of how good a code is, we usually have that the projective

code PRMσ
d(2) is better in that sense than RMσ

d(2). For example, we have that the code
RMσ

4 (2) corresponding to the extension F9 ⊃ F3 has parameters [81, 9, 45]3, and PRMσ
4 (2)

has parameters [91, 9, 54]3, and one can check that PRMσ
4 (2) has better parameters with

respect to the value k+δ
n . In fact, the parameters of the code PRMσ

4 (2) are the best known
parameters for a code with length 91 and dimension 9 over F3, according to [13]. Moreover,
the codes from Table C.2 with parameters [91, 21, 36]3, [91, 82, 4]3 and [91, 86, 3]3 are also
the best known according to [13].

For extensions of higher degree, or for fields with higher q, the codes that we obtain
in this way are too long to be compared to the ones from [13]. As we have seen in the

107



Subfield subcodes of projective Reed-Muller codes

previous examples, some of the codes that we obtain have the best known parameters,
while others do not have great parameters. Focusing on the ones with better parameters,
in Table C.3 we provide some long codes that surpass the Gilbert-Varshamov bound for
different field extensions. For the minimum distance, we use the bound (C.3.12) since
these codes are too large for Magma [2].

Table C.3: Long codes exceeding the Gilbert-Varshamov bound.

q s d n k δ ≥
2 4 28 273 255 4
2 4 29 273 264 3
4 2 5 273 9 192
4 2 28 273 262 4
4 2 29 273 268 3
5 2 6 651 9 500
5 2 46 651 640 4
5 2 47 651 646 3
3 3 50 757 741 4
3 3 51 757 750 3
2 5 60 1057 1035 4
2 5 61 1057 1046 3
7 2 8 2451 9 2058
7 2 94 2451 2440 4
7 2 95 2451 2446 3

Finally, for the case m > 2, in Table C.4 we show the binary codes obtained by consid-
ering the subfield subcodes of projective Reed-Muller codes over P3 with respect to the
extension F4 ⊃ F2, where we have computed the parameters with Magma [2]. The codes
with parameters [85, 16, 32]2, [85, 60, 8]2 and [85, 78, 3]2 have the best known parameters
according to [13].

Table C.4: Binary codes corresponding to the extension F4 ⊃ F2 with m = 3.

d n k δ k⊥ δ⊥

1 85 1 64 84 1
2 85 2 48 83 1
3 85 16 32 69 5
4 85 18 16 67 1
5 85 33 12 52 2
6 85 60 8 25 21
7 85 67 4 18 8
8 85 78 3 7 32
9 85 84 2 1 85
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Reference: R. San-José. A recursive construction for projective Reed-Muller codes.

IEEE Transactions on Information Theory, to appear (2024). ArXiv 2312.05072.
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D.1 Introduction

Binary affine Reed-Muller codes can be constructed recursively via the (u | u+v) construc-
tion, and, more generally, q-ary affine Reed-Muller codes can be constructed recursively
using the matrix-product code construction [5, Thm 5.6]. These recursive constructions
provide a wealth of information about the code. For example, the recursive construction
from [5] provides a simple proof for the minimum distance of affine Reed-Muller codes.
Moreover, the subfield subcode of a code obtained using the (u | u+v) construction can be
obtained by applying the (u | u+v) construction to the subfield subcodes of the component
codes. In this work we are interested in a recursive construction for projective Reed-Muller
codes, a generalization of affine Reed-Muller codes obtained by evaluating homogeneous
polynomials in the projective space Pm which was introduced by Lachaud [18] and whose
basic parameters are presented in full generality in [20]. We apply this recursive construc-
tion to obtain information about the subfield subcodes and generalized Hamming weights
of projective Reed-Muller codes.

Given a code C ⊂ Fn
qs , its subfield subcode with respect to the extension Fqs ⊃ Fq is the

linear code C∩Fn
q . This is a standard procedure that has been used to construct long linear

codes over a small finite field. In particular, this technique has been applied to obtain
BCH codes as subfield subcodes of Reed-Solomon codes [4], and in the multivariate case,
the subfield subcodes of J-affine variety codes (in particular, affine Reed-Muller codes)
are well known and have been applied in several contexts [10–12]. The subfield subcodes
of projective Reed-Solomon codes and projective Reed-Muller codes were studied in [13]
and [14], respectively. The primary challenge when dealing with subfield subcodes is the
computation of a basis for the code, which, in particular, gives the dimension of the subfield
subcode. However, one can check in [14] that, for m = 2, the expressions for the basis of
the subfield subcode get quite involved, and for m > 2, obtaining explicit expressions for
the basis in general seems out of reach. In Section D.4, we show that, for certain degrees,
the recursive construction we obtain for projective Reed-Muller codes can be applied to
their subfield subcodes as well. This directly gives the dimension of these subfield subcodes
in a recursive manner, for any m ≥ 2. Moreover, an explicit expression for a basis of these
subfield subcodes can be obtained in terms of the basis from the subfield subcodes of affine
Reed-Muller codes and the subfield subcodes of projective Reed-Muller codes with fewer
variables. We also show that these particular degrees give codes with good parameters.

With respect to the generalized Hamming weights of a code, these are a set of param-
eters that generalize the minimum distance of a code. One of the main applications of
the generalized Hamming weights is that they characterize the performance of the code
on the wire-tap channel of type II [21]. The generalized Hamming weights of affine Reed-
Muller codes were completely determined more than 20 years ago in [16]. However, the
computation of the generalized Hamming weights of projective Reed-Muller codes in gen-
eral remains an open problem and only partial results are known [1, 6, 8]. In [3], many of
the previous results and hypotheses are collected, and the authors obtain the generalized
Hamming weights of projective Reed-Muller codes in some cases for degree d < qs. In
Section D.5, we use the recursive construction from Section D.3 in order to give a recursive
lower bound for the generalized Hamming weights of a projective Reed-Muller code of any
degree. Moreover, we also provide an upper bound that gives us a criterion to ensure that
the bound is sharp in many cases. In the particular case of m = 2, we are able to give a

112



D.2. Preliminaries

more explicit expression for these bounds. By considering the general properties of gen-
eralized Hamming weights and our bounds, we obtain the exact values of the generalized
Hamming weights of projective Reed-Muller codes in many cases.

D.2 Preliminaries

We consider the finite field Fq of q elements with characteristic p, and its degree s extension
Fqs , with s ≥ 1. We consider the projective space Pm over Fqs . We denote by pj the

number of points in Pj , i.e., pj = qs(j+1)−1
qs−1 = qsj + qs(j−1) + · · · + 1. Throughout this

work, we will fix representatives for the points of Pm: for each point [Q] ∈ Pm, we choose
the representative whose first nonzero coordinate is equal to 1. We will denote by Pm

the set of representatives that we have chosen (seen as points in the affine space Am+1).
Therefore, we have the following decomposition

Pm =
(
{1} × Fm

qs
)
∪
(
{0} × {1} × Fm−1

qs
)
∪ · · · ∪ {(0, . . . , 0, 1)}.

Moreover, we also can obtain this recursively by noting that

Pm =
(
{1} × Fm

qs
)
∪
(
{0} × Pm−1

)
. (D.2.1)

We consider now the polynomial ring S = Fqs [x0, . . . , xm]. Let n = |Pm| = pm. We
define the following evaluation map:

ev : S → Fn
qs , f 7→ (f(Q1), . . . , f(Qn))Qi∈Pm .

Let d be a positive integer. If we consider Sd ⊂ S, the set of homogeneous polynomials
of degree d, we have that ev(Sd) is the projective Reed-Muller code of degree d, which we
will denote by PRMd(q

s,m), or PRMd(m) if there is no confusion about the field. For
m = 1, we obtain the projective Reed-Solomon codes (sometimes called doubly extended
Reed-Solomon codes), which are MDS codes with parameters [qs + 1, d + 1, qs − d + 1].
For a code C ⊂ Fn

q , we will denote its minimum distance by d1(C) (using the notation for
generalized Hamming weights that we will consider in Section D.5). For the case m ≥ 2,
we have the following results from [20] about the parameters of projective Reed-Muller
codes and their duality.

Theorem D.2.1. The projective Reed-Muller code PRMd(q
s,m), 1 ≤ d ≤ m(qs − 1), is

an [n, k]-code with

n =
qs(m+1) − 1

qs − 1
,

k =
∑

t≡d mod qs−1,0<t≤d

m+1∑
j=0

(−1)j
(
m+ 1

j

)(
t− jqs +m

t− jqs

) .

For the minimum distance, we have

d1(PRMd(q
s,m)) = (qs − µ)qs(m−ν−1), where d− 1 = ν(qs − 1) + µ, 0 ≤ µ < qs − 1.
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Theorem D.2.2. Let 1 ≤ d ≤ m(qs − 1) and let d⊥ = m(qs − 1)− d. Then

PRM⊥
d (q

s,m) = PRMd⊥(q
s,m) if d ̸≡ 0 mod (qs − 1),

PRM⊥
d (q

s,m) = PRMd⊥(q
s,m) + ⟨(1, . . . , 1)⟩ if d ≡ 0 mod (qs − 1).

Let d > 0 and let Mi = {xαi
i · · ·xαm

m , |α| = d, αi > 0, 0 ≤ αj ≤ qs − 1, i < j ≤ m}, for
i = 0, 1, . . . ,m, and M =

⋃m
i=0Mi. One can check that M is a basis for Sd/I(Pm)d ∼=

PRMd(m) (for example, see [2]), where I(Pm) is the vanishing ideal of Pm, i.e, the ideal
generated by the homogeneous polynomials that vanish at all the points of Pm. This also
implies that the image by the evaluation map of M is a basis for PRMd(m).

We will also need to use affine Reed-Muller codes, which we denote by RMd(q
s,m), or

simply RMd(m) if there is no confusion about the field. We consider the evaluation map

evA : R → Fqms

qs , f 7→ (f(Q1), . . . , f(Qn))Qi∈Fm
qs
,

where R = Fqs [x1, . . . , xm]. Let R≤d be the polynomials of R with degree less than or equal
to d. Then we have RMd(m) := evA(R≤d). The following result about the parameters of
affine Reed-Muller codes appears in [9, 17].

Theorem D.2.3. The Reed-Muller code RMd(q
s,m), 1 ≤ d ≤ m(qs− 1), is an [n, k]-code

with
n = qsm,

k =
d∑

t=0

m∑
j=0

(−1)j
(
m

j

)(
t− jqs +m− 1

t− jqs

)
.

For the minimum distance, we have

d1(RMd(q
s,m)) = (qs − µ)qs(m−ν−1), where d = ν(qs − 1) + µ, 0 ≤ µ < qs − 1.

D.3 A recursive construction for projective Reed-Muller
codes

In this section, we introduce a recursive construction for projective Reed-Muller codes
from affine Reed-Muller codes and projective Reed-Muller codes over a smaller projective
space. The inspiration behind this idea was the fact that affine Reed-Muller codes can be
obtained recursively by using matrix-product codes [5, Thm. 5.6].

In order to state this recursive construction, we need to consider a specific ordering
of the points in Pm: we are going to assume that the first qsm points of Pm are the
points of ({1} × Fm

qs) (see decomposition (D.2.1)). Therefore, we have that the first qsm

coordinates of the evaluation of a polynomial in Pm correspond to the evaluation at the
points ({1} × Fm

qs), and the rest of coordinates correspond to the evaluation at the points
in the second part of the decomposition (D.2.1). Let ξ ∈ Fqs be a primitive element. We
are also going to consider the following decomposition

Fm
qs = Pm−1 ∪ ξ · Pm−1 ∪ · · · ∪ ξq

s−2 · Pm−1 ∪ {(0, . . . , 0)}. (D.3.1)
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This decomposition is obtained by noting the following: given a point Q in Fm
qs\{(0, . . . , 0},

its first nonzero coordinate is equal to ξr for some 0 ≤ r ≤ qs − 2, which implies that
Q ∈ ξr · Pm−1. Therefore, using (D.2.1) and (D.3.1) we have

Pm =
(
{1} ×

(
Pm−1 ∪ ξ · Pm−1 ∪ · · · ∪ ξq

s−2 · Pm−1 ∪ {(0, . . . , 0)}
))

∪
(
{0} × Pm−1

)
.

(D.3.2)
We fix an ordering {Q′

1, . . . , Q
′
pm−1

} of the points of Pm−1. We are going to assume that the
first pm−1 coordinates of the image of the evaluation map correspond to the evaluation at
the points {1}×Pm−1 (with the fixed ordering for Pm−1), the following pm−1 coordinates
correspond to the evaluation at the points {1}×ξ ·Pm−1, etc. We fix this for all the points
in {1} × Fm

qs , and for the rest of the coordinates, which correspond to the evaluation in
{0} × Pm−1, we also assume that we are using the same fixed ordering for Pm−1.

Hence, for a given ordering of the points of Pm−1, we fix the ordering of all the points
of Pm as shown above. In what follows, we assume that the projective Reed-Muller codes
are obtained by using the evaluation map over Pm with this ordering for the points, and
the affine Reed-Muller codes are obtained by evaluating in Fm

qs , ordered in the same way
that we ordered {1} × Fm

qs .

Theorem D.3.1. Let 1 ≤ d ≤ m(qs − 1) and let ξ be a primitive element in Fqs. We
have the following recursive construction:

PRMd(m) = {(u+ vξ,d, v) | u ∈ RMd−1(m), v ∈ PRMd(m− 1)},

where vξ,d := v × ξdv × · · · × ξ(q
s−2)dv × {0} = (v, ξdv, ξ2dv, . . . , ξ(q

s−2)dv, 0).

Proof. Taking into account that x0 divides all the monomials in M0 and the decomposition
(D.2.1), it is clear that ⟨ev(M0)⟩ = RMd−1(m)× {0}pm−1 .
Now we consider a monomial xα ∈

⋃m
i=1Mi. Its evaluation in {0} × Pm−1 (the second

part of the decomposition (D.2.1)) is in PRMd(m − 1) because xα only involves the last
m variables. In fact, the evaluation of all the monomials in

⋃m
i=1Mi at the points of

{0}×Pm−1 gives a basis for PRMd(m− 1). Now assume that the evaluation of xα at the
points {0}×Pm−1 is v. Let ξ ∈ Fqs be a primitive element. Then, because of the ordering
that we have chosen and the decomposition (D.3.1), it is clear that the evaluation of xα

at the points {1}×Fm
qs is precisely vξ,d. We have obtained the evaluation of the monomial

xα at both parts of the decomposition (D.2.1). Thus, ev(xα) = (vξ,d, v).
If we have f ∈ k[x0, . . . , xm]d/I(Pm)d ∼= PRMd(m), then it can be written as

f =
∑
i

λibi +
∑
i

γiai, bi ∈ M0, ai ∈
m⋃
i=1

Mi, λi, γi ∈ Fqs .

We have seen that ev(bi) = u×{0}pm−1 , for some u ∈ RMd−1(m), and ev(ai) = (vξ,d, v), for
some v ∈ PRMd(m− 1). We finish the proof by considering the linearity of the evaluation
map.

Remark D.3.2. For d ≡ 0 mod qs − 1, the construction is simpler and, to some extent,
resembles the (u | u+ v) construction:

PRMd(m) = {(u+ vξ,d, v), u ∈ RMd−1(m), v ∈ PRMd(m− 1)},

with vξ,d = (v, v, . . . , v, 0).
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With the construction from Theorem D.3.1 we can recover the dimension of projective
Reed-Muller codes from Theorem D.2.1 in a different way, which was already noted in [19,
Lem. 9].

Corollary D.3.3. We have that

dim(PRMd(m)) = dim(RMd−1(m)) + dim(PRMd(m− 1)).

Proof. Using the notation in Theorem D.3.1, we have dim(RMd−1(m)) linearly indepen-
dent vectors corresponding to v = 0, and we have dim(PRMd(m−1)) linearly independent
vectors corresponding to u = 0. By the construction from Theorem D.3.1, every codeword
of PRMd(m) can be obtained as the sum of a vector with u = 0 and a vector with v = 0,
and we obtain the result.

D.4 Subfield subcodes of projective Reed-Muller codes

As we stated at the beginning of the previous section, in some cases the recursive con-
struction from Theorem D.3.1 resembles the (u | u + v) construction. It is not hard to
check that, given two codes C1, C2, the subfield subcode of the resulting code after using
the (u | u + v) construction with C1 and C2 is equal to the code obtained by applying
the (u | u+ v) construction to Cσ

1 and Cσ
2 . Therefore, one may wonder if we can use the

construction from Theorem D.3.1 in order to obtain results about the subfield subcodes of
projective Reed-Muller codes, or even a recursive construction for them, which is what we
study in this section. In [14] the subfield subcodes of projective Reed-Muller codes were
studied, mainly for the case m = 2. Our approach in this section can be applied recur-
sively for any m, and for the case m = 2 our method provides an easier way to obtain the
basis of the subfield subcode for some degrees. We start with a result about the minimum
distance and dimension of the subfield subcodes of projective Reed-Muller codes.

Corollary D.4.1. Let 1 ≤ d ≤ m(qs − 1). We have the following inequalities:

d1(RMd−1(m)) ≤ d1(PRM
σ
d(m)) ≤ d1(RM

σ
d−1(m)),

dim(PRMσ
d(m)) ≥ dim(RMσ

d−1(m)),

and the last inequality is strict if PRMσ
d(m) is non-degenerate.

Proof. We have that d1(PRMd(m)) ≤ d1(PRM
σ
d(m)) because PRMσ

d(m) ⊂ PRMd(m), and
one can check that d1(PRMd(m)) = d1(RMd−1(m)) using Theorem D.2.1 and Theorem
D.2.3. For the other inequalities, by Theorem D.3.1 we obtain RMd−1(m) × {0}pm−1 ⊂
PRMd(m), which implies RMσ

d−1(m)× {0}pm−1 ⊂ PRMσ
d(m).

In most of the non-degenerate cases we have the equality for the three minimum dis-
tances in the previous result, although the bound is not always sharp as it was seen in [14].
In the non-degenerate case we have dim(PRMσ

d(m)) > dim(RMσ
d−1(m)), which may also

be true in many degenerate cases, as one can check for the case m = 2 in [14, Cor 3.41].
For some specific degrees we are able to obtain a recursive construction for the subfield

subcodes of projective Reed-Muller codes, which in turn allows us to give more precise
results about the parameters.
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Corollary D.4.2. Let ξ ∈ Fqs be a primitive element. Let m > 1 and let dλ = λ qs−1
q−1 for

some λ ∈ {1, 2, . . . ,m(q − 1)}. Then we have

PRMσ
dλ
(m) = {(u+ vξ,dλ , v), u ∈ RMσ

dλ−1(m), v ∈ PRMσ
dλ
(m− 1)}.

As a consequence, we obtain:

dim(PRMσ
dλ
(m)) = dim(RMσ

dλ−1(m)) + dim(PRMσ
dλ
(m− 1)).

Proof. We have that

(ξdλ)q−1 = ξλ(q
s−1) = 1 =⇒ ξdλ ∈ Fq.

Then it is clear that for any u ∈ RMσ
dλ−1(m), v ∈ PRMσ

dλ
(m− 1), we have vξ,dλ ∈ Fn

q and
(u+ vξ,dλ , v) ∈ PRMσ

dλ
(m) because of Theorem D.3.1.

On the other hand, if we have w ∈ PRMσ
dλ
(m), by Theorem D.3.1 we know that w is of

the form (u + vξ,dλ , v), for u ∈ RMd−1(m), v ∈ PRMd(m − 1), and its coordinates are in
Fq. Therefore, v must have its coordinates in Fq, i.e., v ∈ PRMσ

d(m−1). Moreover, taking
into account that ξdλ ∈ Fq, we also get that vξ,dλ ∈ Fn

q , which implies that u ∈ RMσ
d−1(m).

Arguing as in Corollary D.3.3 we obtain the formula for the dimension.

Remark D.4.3. Note that the hypothesis about the degrees in Corollary D.4.2 is neces-
sary. For instance, in [14, Cor. 3.41] it can be seen that the formula for the dimension
from Corollary D.4.2 does not hold in general when d ̸= dλ for any λ ∈ {1, 2, . . . ,m(q−1)}.

In all the cases from Corollary D.4.2 we can obtain a set of polynomials such that their
image by the evaluation map is a basis for PRMσ

dλ
(m) in a straightforward manner. In

order to do so, for a given degree d > 0, we define the homogenization up to degree
d of a polynomial f ∈ Fqs [x1, . . . , xm] with degree deg(f) < d as fh = xd0f(x1/x0) ∈
Fqs [x0, . . . , xm]d. Note that, with this definition, we always have that x0 divides fh.

Corollary D.4.4. Let dλ = λ qs−1
q−1 for some λ ∈ {1, 2, . . . ,m(q − 1)}. Let {fi}i ⊂

Fqs [x1, . . . , xm]≤d−1 (resp. {gj}j ⊂ Fqs [x1, . . . , xm]d) be a set of polynomials such that
their evaluation in Fm

qs (resp. Pm−1) is a basis for RMσ
d−1(m) (resp. PRMσ

d(m − 1)).

Then the image by the evaluation map of {fh
i }i ∪ {gj}j ⊂ Fqs [x0, . . . , xm] over Pm is a

basis for PRMσ
d(m).

Proof. Assume that we have the sets {fi}i and {gj}j as in the statement. Then we have
that {fh

i }i is a set of homogeneous polynomials of degree d, and the image by the evaluation
map of this set generates RMσ

d−1(m)×{0}pm−1 , i.e., the vectors with v = 0 of the recursive
construction from Corollary D.4.2.

Let ξ ∈ Fqs be a primitive element. If the evaluation of a polynomial of {gj}j over
Pm−1 is v ∈ PRMσ

d(m− 1), then, when regarding this polynomial in Fqs [x0, . . . , xm], the
evaluation over Pm is precisely (vξ,d, v) (this is the idea of the proof of Theorem D.3.1).
Therefore, the image by the evaluation map of {fh

i }i ∪ {gj}j over Pm generates

{(u+ vξ,dλ , v), u ∈ RMσ
dλ−1(m), v ∈ PRMσ

dλ
(m− 1)},

which is PRMσ
d(m) by Corollary D.4.2.
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In both Corollary D.4.2 and Corollary D.4.4, in order to use the recursion we need
to obtain bases for affine and projective Reed-Muller codes for some m ≥ 1. Sets of
polynomials whose evaluation are a basis for the subfield subcodes of affine Reed-Muller
codes are known for any number of variables [10, Thm. 11], and for projective Reed-Muller
codes we also know how to obtain such sets of polynomials in the case of projective Reed-
Solomon codes [13] and in the case of projective Reed-Muller codes over the projective
plane [14]. For m > 2, we can apply Corollary D.4.2 and Corollary D.4.4 recursively until
we reach the known cases of m = 1 or m = 2.

Example D.4.5. Let qs = 9, d = 4, m = 2, and let ξ be a primitive element of F9.
We are going to obtain a set of polynomials such that its image by the evaluation map
is a basis for PRMσ

d(m). Using Corollary D.4.4, we need to compute a basis for RMσ
3 (2)

and PRMσ
4 (1). In the following we adopt the notation from [10] and [13] for denoting the

polynomials we are going to use. The notation itself is not relevant for this example and
we just use it to denote each polynomial. From [10, Thm. 11], we obtain that the image
by the evaluation map over F2

9 of the following polynomials is a basis for RMσ
3 (2):

T(0,0)(1) = 1, T(1,0)(x1) = x1 + x31, T(1,0)(ξx1) = ξx1 + ξ3x31,

T(0,1)(x2) = x2 + x32, T(0,1)(ξx2) = ξx2 + ξ3x32.

From [13, Ex. 3.6], the image by the evaluation map over P 1 of the polynomials

T h
0 (x02) = x41, T h

3 (x32) = x31x2 + x1x
3
2, T h

3 (ξx32) = ξ3x31x2 + ξx1x
3
2, T h

4 (x42) = x42,

forms a basis for PRMσ
4 (1). By Corollary D.4.4, the image by the evaluation map over P 2

of the following set of polynomials is a basis for PRMσ
4 (2):

{x40, x30x1 + x0x
3
1, ξx

3
0x1 + ξ3x0x

3
1, x

3
0x2 + x0x

3
2, ξx

3
0x2 + ξ3x0x

3
2}∪

{x41, x31x2 + x1x
3
2, ξ

3x31x2 + ξx1x
3
2, x

4
2}.

We also obtain dimPRMσ
4 (2) = 9, which can also be obtained directly from Corollary

D.4.2 because, as we have seen above, dimRMσ
3 (2) = 5 and dimPRMσ

4 (1) = 4.

As the dual of a projective Reed-Muller codes is another projective Reed-Muller code for
d ̸≡ 0 mod qs− 1 (by Theorem D.2.2), the recursive construction from Theorem D.3.1 can
be used for the dual codes, except for the case d ≡ 0 mod qs − 1. However, it is not true
in general that PRMσ,⊥

d (m) := (PRMσ
d(m))⊥ is equal to PRM⊥,σ

d (m) := (PRM⊥
d (m))σ.

Therefore, the construction from Corollary D.4.2 does not apply to the dual code of the
subfield subcode of a projective Reed-Muller code. Nevertheless, in the next result we
show that the dual codes can also be obtained from a similar recursive construction.

Proposition D.4.6. Let ξ ∈ Fqs be a primitive element. Let m > 1 and let dλ = λ qs−1
q−1

for some λ ∈ {1, 2, . . . ,m(q − 1)}. Then we have

PRMσ,⊥
dλ

(m) = {(ut, vt − utξ,d), u
t ∈ RMσ,⊥

dλ−1(m), vt ∈ PRMσ,⊥
dλ

(m− 1)},

where, taking into account the decomposition (D.3.1), if ut = (ut0, u
t
1, . . . , u

t
qs−2, u

t
qs−1),

with ut0, . . . , u
t
qs−2 ∈ Fpm−1

q and utqs−1 ∈ Fq, then

utξ,d := ut0 + ξdut1 + · · ·+ ξ(q
s−2)dutqs−2 =

qs−2∑
i=0

ξi·duti.
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D.4. Subfield subcodes of projective Reed-Muller codes

Proof. The vector space {(ut, vt − utξ,d), u
t ∈ RMσ,⊥

dλ−1(m), vt ∈ PRMσ,⊥
dλ

(m − 1)} has di-

mension dimRMσ,⊥
dλ−1(m)+dimPRMσ,⊥

dλ
(m−1), which is the dimension of PRMσ,⊥

dλ
(m) ac-

cording to Corollary D.4.2. Therefore, if we consider u ∈ RMσ
dλ−1(m), v ∈ PRMσ

dλ
(m−1),

ut ∈ RMσ,⊥
dλ−1(m) and vt ∈ PRMσ,⊥

dλ
(m− 1), by Corollary D.4.2 we just need to verify that

(u+ vξ,d, v) · (ut, vt − utξ,d) = vξ,d · ut − v · utξ = 0.

By considering the decomposition (D.3.1), we can divide the vector ut as in the statement
of this result, and the previous expression can be written as

vξ,d ·ut−v ·utξ = v ·ut0+ξdv ·ut1+ · · ·+ξ(q
s−2)dv ·utqs−2−v ·(ut0+ξdut1+ · · ·+ξ(q

s−2)dutqs−2),

which is equal to 0.

As with the recursive construction from Corollary D.4.2, the previous result can be used
recursively because we know bases for RMσ,⊥

dλ−1(m) (for example, see [12]), and also for

PRMσ,⊥
dλ

(m), for m = 1 and m = 2, see [13,14].

D.4.1 Examples

In this subsection we show that we can obtain good parameters with the subfield subcodes
of projective Reed-Muller codes appearing in Corollary D.4.2 and Proposition D.4.6. For
m = 2, the codes arising from Corollary D.4.2 are a particular case of the codes studied
in [14]. However, for the degrees considered in Corollary D.4.2 we have an easier construc-
tion, and we show in Table D.1 that many of the codes with good parameters from [14]
correspond precisely to the codes from Corollary D.4.2 or their duals from Proposition
D.4.6. For the minimum distance of the codes from Corollary D.4.2 we can use the bound
d1(PRM

σ
d(m)) ≥ d1(PRMd(m)), and for the duals we can compute the minimum distance

with Magma [7]. All codes presented in Table D.1 exceed the Gilbert-Varshamov bound,
and some of them have the best known parameters according to codetables [15], as stated
in [14].

Table D.1: Codes with good parameters appearing in [14] that can be obtained from
Corollary D.4.2 or Proposition D.4.6.

q s m λ Result n k d1(C) ≥
2 2 2 1 D.4.2 21 9 8
2 2 2 1 D.4.6 21 12 5
2 2 3 1 D.4.2 85 16 32
2 2 3 2 D.4.6 85 25 21
2 2 3 2 D.4.2 85 60 8
2 2 3 1 D.4.6 85 69 5
3 9 2 1 D.4.2 91 9 54
3 9 2 1 D.4.6 91 82 4
4 2 2 1 D.4.2 273 9 192
5 2 2 1 D.4.2 651 9 500
7 2 2 1 D.4.2 2451 9 2058
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Furthermore, as the recursive approach from this work allows us to work easily with
m > 2, we can also provide examples of good parameters which do not appear in [14]. As
these codes are very long when we increase qs, we only provide a few examples that still
have moderate lengths. For the extension F4 ⊃ F2 and m = 4, for λ = 1, 2, from Corollary
D.4.2 we obtain the codes [341, 25, 128]2 and [341, 295, 8]2, respectively, which surpass
the Gilbert-Varshamov bound. The dual of the code with parameters [341, 25, 128]2 has
parameters [341, 316, 5]2, which also exceed the Gilbert-Varshamov bound.
For the extension F9 ⊃ F3 and m = 3, we can consider λ = 1 in Corollary D.4.2, which

gives a code with parameters [820, 16, 486]3. Its dual has parameters [820, 804, 4]3, and
both of them surpass the Gilbert-Varshamov bound. We also note that, as we claimed in
the introduction, by considering subfield subcodes we are able to obtain long codes with
good parameters over a small finite field.

D.5 A bound for the generalized Hamming weights of pro-
jective Reed-Muller codes

In this section we provide a lower bound for the generalized Hamming weights of any
projective Reed-Muller code. Let C ⊂ Fn

qs be a linear code and D ⊂ C. The support of
D, denoted by supp(D), is defined as

supp(D) := {i | ∃ c = (c1, . . . , cn) ∈ D, ci ̸= 0}.

If D is a linear subspace contained in C, then we say that it is a subcode of C. The rth
generalized Hamming weight of C, denoted by dr(C), is defined as

dr(C) = min{|supp(D)| | D is a subcode of C with dimD = r}.

Remark D.5.1. Given a basis B = {b1, . . . , bk} for a subcode D, we have that

supp(D) =

k⋃
i=1

supp(bi).

The generalized Hamming weights satisfy a Singleton-type bound and they are monoto-
nous, as it is shown in the following results from [21].

Theorem D.5.2 (Monotonicity). For an [n, k] linear code C with k > 0 we have

1 ≤ d1(C) < d2(C) < · · · < dk(C) ≤ n.

Corollary D.5.3 (Generalized Singleton Bound). For an [n, k] linear code C we have

dr(C) ≤ n− k + r, 1 ≤ r ≤ k.

For an MDS code C with length n and dimension k, Theorem D.5.2 and Corollary D.5.3
imply that

dr(C) = n− k + r, 1 ≤ r ≤ k.

For the affine case, the generalized Hamming weights of Reed-Muller codes were obtained
in [16], where the authors give several ways to compute them. We present one of them now,
which does not require additional machinery, see [16, Thm. 5.10]. Let Q = {0, . . . , qs−1}.
We consider the set Qm with the lexicographic order. For β ∈ Qm, we denote deg(β) =∑m

i=1 βi.
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Theorem D.5.4. Let β be the rth element in Qm in the lexicographic order with the
property that

deg(β) > m(qs − 1)− d− 1.

Then

dr(RMd(m)) =
m∑
i=1

βm−i+1q
s(i−1) + 1.

Our goal in this section is to provide a general lower bound for the generalized Hamming
weights of any projective Reed-Muller code using the construction from Theorem D.3.1.
We consider a degree d and ξ ∈ Fqs a primitive element. Let ku = dim(RMd−1(m))
and kv = dim(PRMd(m − 1)). We consider a basis {ui}kui=1 for RMd−1(m) and a basis
{vj}kvj=1 for PRMd(m−1). Then, by Theorem D.3.1, we have that B = {ui×{0}pm−1}kui=1∪
{(vjξ,d, v

j)}kvj=1 is a basis for PRMd(m). Given any subcodeD of PRMd(m) with dimD = r,
we consider a basis

BD = {bl, 1 ≤ l ≤ r} :=


ku∑
i=1

λl,iu
i × {0}pm−1 +

kv∑
j=1

µl,j(v
j
ξ,d, v

j), 1 ≤ l ≤ r

 .

Now we divide the vectors bl into two parts, bl = (bl,1, bl,2), where

bl,1 :=

ku∑
i=1

λl,iu
i +

kv∑
j=1

µl,jv
j
ξ,d , bl,2 :=

kv∑
j=1

µl,jv
j . (D.5.1)

Remark D.5.5. By the definition, it is clear that bl,2 ∈ PRMd(m − 1). On the other
hand, if bl,2 = 0, then µl,j = 0 for all j and bl,1 ∈ RMd−1(m). Moreover, in general
we have bl,1 ∈ RMd(m). This is because bl,1 is the first part of bl, which is a vector
from PRMd(m), i.e., is the evaluation of a homogeneous polynomial f of degree d. The
evaluation of f in the first part of the decomposition (D.2.1) is the same as the evaluation
of g := f(1, x1, . . . , xm) in Am, which belongs to RMd(m).

If we consider the matrix G whose rows are given by the vectors in BD we obtain

G =


b1,1 b1,2
b2,1 b2,2
...

...
br,1 br,2

 .

By performing row operations in G, and reordering the bl,i if necessary, we can assume
that there is an integer α ≤ r such that the set {b1,2, . . . , bα,2} is linearly independent, and
bα+1,2 = · · · = br,2 = 0. Therefore, we have

G =



b1,1 b1,2
...

...
bα,1 bα,2
bα+1,1 0

...
...

br,1 0


.
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With the current ordering, note that the set {bα+1,1, . . . , br,1} is linearly independent
(because BD is a basis and G is a full rank matrix). Therefore, we can perform row
operations in such a way that, after reordering the bl,i (if necessary), for 1 ≤ l ≤ α, we
have an integer γ ≤ α such that b1,1 = · · · = bγ,1 = 0, and the set {bγ+1,1, . . . , br,1} is
linearly independent. Therefore, we can assume that G has the form

G =



0 b1,2
...

...
0 bγ,2

bγ+1,1 bγ+1,2
...

...
bα,1 bα,2
bα+1,1 0

...
...

br,1 0


=:
(
G1 G2

)
, (D.5.2)

where {b1,2, . . . , bα,2} and {bγ+1,1, . . . , br,1} are linearly independent sets. Now we will give
a lower bound for |supp(D)| for any subcode D of PRMd(m) depending on the values of α
and γ. Note that these values do not depend on the choice of BD. For technical reasons,
in what follows we will understand that d0(C) = 0 for a code C ⊂ Fn

qs .
Assuming that G has the form from (D.5.2), by using Remark D.5.5 we see that

{bα+1,1, . . . , br,1} is contained in RMd−1(m) and {b1,2, . . . , bα,2} is contained in PRMd(m−
1). Both of these sets are linearly independent because of the assumptions on the form
of G. Therefore, r − dimRMd−1(m) ≤ α ≤ dimPRMd(m − 1) (we also have the obvious
condition α ≤ r).
In order to bound |supp(D)|, we note that supp(D) is the union of the supports of bl,

1 ≤ l ≤ r, by Remark D.5.1. Therefore, it is enough to study the union of the supports
of the rows of G. Moreover, we can study the union of the support of the bi,1 and bj,2,
1 ≤ i, j ≤ r, separately, which corresponds to studying the union of the supports of the
rows of G1 and G2, which we denote by supp(G1) and supp(G2), respectively.
For G1, by considering the last r−α rows it is clear that |supp(G1)| ≥ dr−α(RMd−1(m))

using Remark D.5.5. Another possible bound is |supp(G1)| ≥ dr−γ(RMd(m)), which is
obtained by considering all the rows of G1 and Remark D.5.5. Therefore,

|supp(G1)| ≥ max(dr−α(RMd−1(m)), dr−γ(RMd(m))).

For G2, using Remark D.5.5 we have |supp(G2)| ≥ dα(PRMd(m − 1)). This bound can
be improved by studying the first γ rows of G. This is because in order to have bl,1 = 0,
by Theorem D.3.1 we also must have bl,1 = u + vξ,d = 0 for some u ∈ RMd−1(m),
v ∈ PRMd(m − 1). The vector u is the evaluation of a polynomial f of degree at most
d− 1 in Am, and vξ,d is the evaluation of a homogeneous polynomial g of degree d in Am.
We have the isomorphism given by the evaluation over the affine space

Fqs [x1, . . . , xm]/⟨xq
s

1 − x1, . . . , x
qs

m − xm⟩ ∼= Am.

As f and g have the opposite evaluation in Am, we must have f ≡ −g mod ⟨xq
s

1 −
x1, . . . , x

qs
m − xm⟩. This implies that, if we consider f and g the polynomials obtained
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by reducing all the exponents of the monomials of f and g, respectively, modulo qs − 1,
then f = −g. As f is of degree at most d − 1, f and g are of degree at most d − 1.
Taking into account that g is homogeneous of degree d, we deduce that all the exponents
of the monomials of g can be reduced modulo qs − 1 (in order to have g of degree at most
d − 1), which implies that all the monomials from g reduce to monomials of degree at
most d− (qs−1) in g. Hence, g has the same evaluation as some homogeneous polynomial
of degree d − (qs − 1). Thus, v ∈ PRMd−(qs−1)(m − 1). What we have obtained is that
bl,2 ∈ PRMd−(qs−1)(m− 1), 1 ≤ l ≤ γ, and

|supp(G2)| ≥ max(dα(PRMd(m− 1)), dγ(PRMd−(qs−1)(m− 1))).

Therefore, for D we have

|supp(D)| ≥ Bα,γ :=max(dr−γ(RMd(m)), dr−α(RMd−1(m)))

+ max(dα(PRMd(m− 1)), dγ(PRMd−(qs−1)(m− 1))).
(D.5.3)

Note that, because of the previous reasoning and the form of G, we must have r −
dimRMd(m) ≤ γ ≤ dimPRMd−(qs−1)(m− 1) (besides γ ≤ α).

Remark D.5.6. The previous reasoning about PRMd−(qs−1)(m− 1) implies that we can
only have γ > 0 if d ≥ qs.

We summarize what we have obtained in the following result, where we understand that
PRMd = {0} for d ≤ 0, and, as before, d0(C) = 0 for a code C ⊂ Fn

qs .

Theorem D.5.7. Let 1 ≤ d ≤ m(qs − 1) and 2 ≤ r ≤ dim(PRMd(m)). We consider

Y =

{
(α, γ) :

max{r − dimRMd−1(m), 0} ≤ α ≤ min{dimPRMd(m− 1), r}
max{r − dimRMd(m), 0} ≤ γ ≤ min{dimPRMd−(qs−1)(m− 1), α}

}
.

Then we have

dr(PRMd(m)) ≥ min
(α,γ)∈Y

Bα,γ ,

where Bα,γ is defined in (D.5.3).

Proof. Given any subcode D ⊂ PRMd(m) with dimD = r, we can obtain a basis BD for D
such that when we consider the matrix G whose rows are the vectors of BD, this matrix is of
the form from (D.5.2). Therefore, by the reasoning prior to this result, |supp(D)| ≥ Bα,γ ,
for the integers α and γ deduced from G. By considering the bounds for the parameters
α and γ obtained before, we obtain the set Y and we finish the proof.

With the previous result we obtain lower bounds for all the generalized Hamming weights
of projective Reed-Muller codes recursively. This is because we can apply the previous
theorem recursively until we get to projective Reed-Solomon codes, in which case we have
dr(PRMd(1)) = max{qs − d + r, r}, for 1 ≤ r ≤ d + 1. With this starting point, and
using Theorem D.5.4 for the generalized Hamming weights of affine Reed-Muller, we can
compute the value of the previous bound for the generalized Hamming weight of any
projective Reed-Muller code. This contrasts with the results from [3], where the authors
are able to compute the generalized Hamming weights of projective Reed-Muller codes

123



A recursive construction for projective Reed-Muller codes

in some cases and they also provide lower bounds, but only for d < qs, while our bound
works for any degree and any r.

We have checked by computer that the bound in Theorem D.5.7 is sharp for all the
generalized Hamming weights with m = 2, 3, and qs = 2; m = 2 and qs = 3; and also
for some particular degrees, such that m = 3, qs = 3 and d = 1; and m = 2, qs = 4 and
d = 1, 2. As computing the generalized Hamming weights of a code is computationally
intensive, we can only do it for smaller examples. It is therefore desirable to have some
criterion to guarantee that the bound from Theorem D.5.7 is sharp in some cases, which
is the purpose of the following result.

Lemma D.5.8. Let 1 ≤ d ≤ m(qs−1) and 2 ≤ r ≤ max{dimRMd−1(m), dimPRMd(m−
1)}. Then

dr(PRMd(m)) ≤ min{dr(RMd−1(m)), qs · dr(PRMd(m− 1))},

where if r > dimRMd−1(m) or r > dimPRMd(m−1) we do not consider the corresponding
generalized Hamming weight in the minimum.

Proof. We are going to find subcodes E′ of PRMd(m) such that |supp(E′)| = dr(RMd−1(m))
or |supp(E′)| = qs · dr(PRMd(m− 1)). Assuming r ≤ dimRMd−1(m), there is a subcode
E ⊂ RMd−1(m) with dimE = r and |supp(E)| = dr(RMd−1(m)). Then, the subcode
E′ = E × {0}pm−1 ⊂ PRMd(m) verifies |supp(E′)| = dr(RMd−1(m)).

If we assume that r ≤ dimPRMd(m− 1) instead, there is a subcode E ⊂ PRMd(m− 1)
with dimE = r, such that |supp(E)| = dr(PRMd(m− 1)). The subcode

E′ := {(vξ,d, v), v ∈ E} ⊂ PRMd(m)

verifies |supp(E′)| = qs · dr(PRMd(m− 1)).

We can use Lemma D.5.8, together with Theorem D.5.2, in order to ensure that the
bound from Theorem D.5.7 is sharp in many cases. We see this in Example D.5.9 and
in Subsection D.5.3, where we show the tables that we obtain using our results for the
generalized Hamming weights of projective Reed-Muller codes for several finite fields.
Notwithstanding the foregoing, as we will see in Example D.5.10, we can also find particular
cases in which the bound is not sharp.

Example D.5.9. Let qs = 4, d = 5, m = 2 and r = 2. In this example we are going to
compute the bound from Theorem D.5.7 for d2(PRM5(2)). From Theorem D.2.3 we can
obtain dimRM4(2) = 13 and dimRM5(2) = 15. For m = 2, PRMd(m− 1) is a projective
Reed-Solomon code, and for d = 5 > 4 = qs we have PRM5(1) = Fqs+1

qs , which implies
dimPRM5(1) = qs + 1. Moreover, for d − (qs − 1) = 2, we have dimPRM2(1) = 3.
Therefore, we obtain

Y =

{
(α, γ) :

0 ≤ α ≤ 2
0 ≤ γ ≤ α

}
= {(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2)}.

Now we have to compute min(α,γ)∈Y Bα,γ . In order to do it, we need to obtain the gener-
alized Hamming weights for affine Reed-Muller codes and projective Reed-Solomon codes.
For projective Reed-Solomon codes, we have already stated that we have dr(PRMd(1)) =
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r 1 2

dr(RM5(2)) 2 3
dr(RM4(2)) 3 4

max{qs − d + r, r}, and for affine Reed-Muller codes we can use Theorem D.5.4 in order
to obtain
With all of this we can compute all the values Bα,γ , for (α, γ) ∈ Y :

B0,0 = d2(RM4(2)) = 4,

B1,0 = max{d2(RM5(2)), d1(RM4(2))}+ d1(PRM5(1)) = max{3, 3}+ 1 = 4,

B1,1 = max{d1(RM5(2)), d1(RM4(2))}+max{d1(PRM5(1)), d1(PRM2(1))} = 6,

B2,0 = d2(RM5(2)) + d2(PRM5(1)) = 3 + 2 = 5,

B2,1 = d1(RM5(2)) + max{d2(PRM5(1)), d1(PRM2(1))} = 2 +max{2, 3} = 5,

B2,2 = max{d2(PRM5(1)), d2(PRM2(1))} = max{2, 4} = 4.

Therefore, we have obtained

dr(PRMd(m)) ≥ min
(α,γ)∈Y

Bα,γ = 4.

Moreover, as min(α,γ)∈Y Bα,γ = B0,0 = dr(RMd−1(2)), by Lemma D.5.8 we know that we
have the equality dr(PRMd(m)) = 4.

Example D.5.10. In this example we show a particular case in which the bound from
Theorem D.5.7 is not sharp. Let qs = 4, d = 3, m = 2 and r = 2. Using Theorem D.2.3,
we obtain dimRM2(2) = 6 and dimRM3(2) = 10. For PRMd(1), we have that this code
is a projective Reed-Solomon code, and therefore its dimension is d + 1 = 4 in this case.
Thus,

Y =

{
(α, γ) :

0 ≤ α ≤ 2
0 ≤ γ ≤ 0

}
= {(0, 0), (1, 0), (2, 0)}.

Note that γ = 0 because d < qs, see Remark D.5.6. With respect to the generalized
Hamming weights of affine Reed-Muller codes, we can use Theorem D.5.4 to obtain:

r 1 2

dr(RM3(2)) 4 7
dr(RM2(2)) 8 11

Now we have all the values required in order to compute the bound from Theorem D.5.7:

B0,0 = d2(RM2(2)) = 11,

B1,0 = max{d2(RM3(2), d1(RM2(2))}+ d1(PRM1(1)) = max{7, 8}+ 2 = 10,

B2,0 = d2(RM3(2) + d2(PRM1(1)) = 7 + 3 = 10,

where we have used that dr(PRMd(1)) = qs − d+ r for d ≤ qs. Therefore,

d2(PRM3(2)) ≥ min
(α,γ)∈Y

Bα,γ = min{11, 10, 10} = 10.

However, according to [3, Ex 7.5], the true value is d2(PRM3(2)) = 11 in this case.
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Example D.5.11. We mainly use Lemma D.5.8 with the bound

dr(PRMd(m)) ≤ dr(RMd−1(m)) = B0,0,

but the part
dr(PRMd(m)) ≤ qs · dr(PRMd(m− 1))

is also useful in some cases. For example, for qs = 3, d = 1, r = 2, m = 2, one can check
that min(α,γ)∈Y Bα,γ = 12. We cannot use the bound dr(PRMd(m)) ≤ dr(RMd−1(m))
because dimRM0(2) = 1 < 2 = r. However, we have r = 2 = dimPRM1(1), and
12 = qs · d2(PRM1(1)).
In the previous case, the bound was useful because we could not use dr(PRMd(m)) ≤

dr(RMd−1(m)). Nevertheless, there are also cases in which the bound dr(PRMd(m)) ≤ qs ·
dr(PRMd(m−1)) is better than the bound dr(PRMd(m)) ≤ dr(RMd−1(m)). For instance,
for qs = 3, d = 3, r = 2, m = 3, we have d2(RM2(3)) = 15 > 12 = 3 · d2(PRM3(2)). In
fact, one can also check in this case that min(α,γ)∈Y Bα,γ = 12 and we can state that the
bound from Theorem D.5.7 is sharp due to Lemma D.5.8.

D.5.1 A bound for the projective Reed-Muller codes over P2

Even though the bound from Theorem D.5.7 is not hard to obtain by computer in general,
it can be obtained in more efficient ways in some particular cases. In this subsection, we
are going to obtain the bound from Theorem D.5.7 in a more explicit way and requiring
less values of Bα,γ in order to compute the minimum over Y , for the case m = 2.

Theorem D.5.12. Let 1 ≤ d ≤ 2(qs − 1), 2 ≤ r ≤ dim(PRMd(2)), and Y as in Theorem
D.5.7.

(a) If d < qs, we consider α0 the smallest integer such that dr−α0(RMd−1(2)) ≤ dr(RMd(2)),
µ0 = max{α0, r − dimRMd−1(2)} and λ = min{d+ 1, r}. Then

dr(PRMd(2)) ≥ min
(α,γ)∈Y

Bα,γ =

{
min{B0,0, Hα0,0} if r ≤ dimRMd−1(2),

Bα0,0 if r > dimRMd−1(2),

where B0,0 = dr(RMd−1(2)) and

Hα0,0 =

{
dr(RMd(2)) + qs − d+ µ0 if α0 ≤ λ,

dr−λ(RMd−1(2)) + qs − d+ λ if α0 > λ.

(b) If d ≥ qs, we consider

E = {γ | max{r − dimRMd(2), 0} ≤ γ ≤ min{d− qs + 2, r}}.

Let i ≤ αi ≤ r be the smallest integer such that dr−αi(RMd−1(2)) ≤ dr−i(RMd(2)), for
i ∈ E. We also consider µi = max{αi, r − dimRMd−1(2)} and λ = min{qs + 1, r}. Then

dr(PRMd(2)) ≥ min
(α,γ)∈Y

Bα,γ =

{
min{B0,0,minγ∈E{Hαγ ,γ}} if r ≤ dimRMd−1(2),

minγ∈E{Hαγ ,γ} if r > dimRMd−1(2),

(D.5.4)

126



D.5. A bound for the generalized Hamming weights of projective Reed-Muller codes

where B0,0 = dr(RMd−1(2)) and

Hαγ ,γ =


dr(RMd(2)) + µ0 if γ = 0, αγ ≤ λ,

dr−λ(RMd−1(2)) + λ if γ = 0, αγ > λ,

dr−γ(RMd(2)) + max{µγ , 2q
s − d+ γ − 1} if γ > 0, αγ ≤ λ,

dr−λ(RMd−1(2)) + max{λ, 2qs − d+ γ − 1} if γ > 0, αγ > λ.

(D.5.5)

Moreover, in both cases if min(α,γ)∈Y Bα,γ = B0,0 = dr(RMd−1(2)) or min(α,γ)∈Y Bα,γ =
qs ·max{qs − d+ r, r}, for r ≤ dimRMd−1(2) or r ≤ min{d+1, qs +1}, respectively, then
the bound is sharp.

Proof. We are going to prove the statement for d ≥ qs and r ≤ dimRMd−1(2) because the
rest of the cases are argued in the same way (for instance, the case d < qs is analogous to
the case of γ = 0 with d ≥ qs, see Remark D.5.6). If we prove the equality in (D.5.4), the
rest follows from Theorem D.5.7 and Lemma D.5.8.
For d ≥ qs, we can rewrite the set Y from Theorem D.5.7 for the case m = 2 in the

following way:

Y =

{
(α, γ) :

max{r − dimRMd−1(2), γ} ≤ α ≤ min{qs + 1, r}
max{r − dimRMd(2), 0} ≤ γ ≤ min{d− qs + 2, r}

}
,

where we have used the expressions for the dimension of the corresponding projective
Reed-Solomon codes and we have written the conditions for α in terms of γ. For each
γ ∈ E we consider

Yγ = {α | (α, γ) ∈ Y }.

This set is nonempty for each γ ∈ E because γ ≤ min{d− qs+2, r} ≤ min{qs+1, r}, and
we also have r−dimRMd−1(2) ≤ min{qs+1, r} because of Corollary D.3.3. We have that
Y =

⋃
γ∈E Yγ , and therefore

min
(α,γ)∈Y

Bα,γ = min
γ∈E

{min
α∈Yγ

Bα,γ}.

For γ ∈ E fixed, we are going to study now the behavior of Bα,γ , as defined in (D.5.3),
as a function of α. We first consider the case with γ > 0. As we are assuming 2(qs − 1) ≥
d ≥ qs, we have that PRMd(1) = Fqs+1

qs . Therefore, for α ≥ γ > 0, we have

max{dα(PRMd(1)), dγ(PRMd−(qs−1)(1))} = max{α, 2qs − d+ γ − 1}.

For γ > 0 fixed, max{α, 2qs− d+ γ− 1} is a nondecreasing function of α. For 1 ≤ α < αγ

we have that

max{dr−γ(RMd(2)), dr−α(RMd−1(2))} = dr−α(RMd−1(2)).

Using Theorem D.5.2, we see that this value decreases in at least one unit when we increase
α in one unit, while max{α, 2qs − d + γ − 1} is going to increase by at most one unit.
Therefore, Bα,γ is a nonincreasing function of α, for 1 ≤ α < αγ .
For α ≥ αγ , we have

max{dr−γ(RMd(2)), dr−α(RMd−1(2))} = dr−γ(RMd(2)),
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which is constant for a fixed γ. As max{α, 2qs − d + γ − 1} is nondecreasing, we obtain
that Bα,γ is a nondecreasing function of α, for αγ ≤ α ≤ r.

Therefore, we know the behavior of Bα,γ and we can obtain minα∈Yγ Bα,γ . Indeed, for
1 ≤ α < αγ , Bα,γ is nonincreasing, and therefore, minα∈Yγ ,α<αγ Bα,γ is attained at the
largest value of α ∈ Yγ such that α < αγ (if any). And, as Bα,γ is nondecreasing for
αγ ≤ α ≤ r, we have that minα∈Yγ ,α≥αγ Bα,γ is attained at the lowest value of α ∈ Yγ
such that α ≥ αγ . In order to obtain minα∈Yγ Bα,γ , we just need to consider the minimum
between the minimums in the case 1 ≤ α < αγ and αγ ≤ α ≤ r. We have two cases:

(a) If αγ ≤ λ: by definition, αγ ≥ γ. Therefore, we have αγ ∈ Yγ if and only if
r − dimRMd−1(2) ≤ αγ , which happens if and only if µγ = αγ . If αγ > r −
dimRMd−1(2), all the values of Yγ are larger than αγ , i.e., we are in the nondecreasing
part of Bα,γ , and the minimum of Bα,γ over Yγ is thus obtained at the lowest value
of Yγ , which is precisely r − dimRMd−1(2) = µγ in this case. By the definition of
αγ , we have

Bµγ ,γ = dr−γ(RMd(2)) + max{µγ , 2q
s − d+ γ − 1}.

On the other hand, if αγ ≤ r − dimRMd−1(2), i.e., αγ = µγ , then the minimum
in the nondecreasing part is Bαγ ,γ = Bµγ ,γ as above. If αγ − 1 ̸∈ Yγ , this is the
minimum over Yγ . If αγ − 1 ∈ Yγ , we have to also consider the minimum over the
nonincreasing part, which, taking into account the definition of αγ , would be

Bαγ−1,γ = dr−(αγ−1)(RMd−1(2)) + max{αγ − 1, 2qs − d+ γ − 1}.

If we compute the difference we obtain

Bαγ−1,γ −Bαγ ,γ ≥ dr−(αγ−1)(RMd−1(2))− dr−γ(RMd(2))− 1 ≥ 0

because of the definition of αγ . Hence, in this case we also obtain minα∈Yγ Bα,γ =
Bµγ ,γ .

(b) If αγ > λ: we have that all the values of Yγ are below αγ , i.e., we are in the
nonincreasing part of Bα,γ . The minimum is thus obtained at the maximum value
in Yγ , which is λ, and by the definition of αγ we have

Bλ,γ = dr−λ(RMd−1(2)) + max{λ, 2qs − d+ γ − 1}.

For the case with γ = 0, we have max{dα(PRMd(1)), dγ(PRMd−(qs−1)(1))} = α. The
previous argument also applies in this case for the α ∈ Y0 with α > 0 because this does
not change the behaviour of Bα,γ (it only changes the exact expression of Bα,γ , as seen
in the statement). Therefore the minimum of Bα,γ in Y0 \ {0} is either Bµγ ,γ or Bλ,γ as
before. If 0 ∈ Y0, which happens if and only if r ≤ dimRMd−1(2), we also have to take
into account for the minimum the bound B0,0 = dr(RMd−1(2)). We complete the proof by
noting that Hαγ ,γ is equal to Bµγ ,γ or Bλ,γ , depending on where the minimum is attained
in each case.

One can also express the previous result in a more explicit way by taking into account
that

dimRMd(2) =

{(
d+2
2

)
if d < qs,(

d+2
2

)
− 2
(
d−qs+2

2

)
if qs ≤ d ≤ 2(qs − 1),

(D.5.6)
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which can be proven from Theorem D.2.3.

Although Theorem D.5.12 looks more involved than Theorem D.5.7, it can greatly
simplify the procedure of computing the bound from Theorem D.5.7 for the case m = 2,
as we show in the next example.

Example D.5.13. Let qs = 4, d = 5, m = 2 and r = 5. We are going to use Theorem
D.5.12 in order to obtain a bound for d4(PRM5(2)). As we have d ≤ qs, we compute
dimRM5(2) = 15 with (D.5.6) and we obtain

E = {γ | 0 ≤ γ ≤ 3}.

Using Theorem D.5.4, we can compute

r 1 2 3 4 5

dr(RM5(2)) 2 3 4 5 6
dr(RM4(2)) 3 4 6 7 8

From this table we obtain α0 = 2, α1 = α2 = 3 and α3 = 4. For example, we check that
d5−3(RM4(2)) = 4 ≤ 5 = d5−2(RM5−1(2)), but d5−2(RM4(2)) = 6 > 5 = d5−2(RM5−1(2)),
which implies α2 = 3. Using (D.5.6) again, we can compute dimRM4(2) = 13, which
implies that r − dimRM4(2) < 0 and µi = αi for i = 0, 1, 2, 3. We also have λ =
min{qs + 1, r} = 5. Thus, αi < λ for i = 0, 1, 2, 3. The only thing left to do is to compute
B0,0 and Hαγ ,γ , for γ ∈ E. We obtain

B0,0 = d5(RM4(2)) = 8,

H2,0 = d5(RM5(2)) + µ0 = 6 + 2 = 8,

H3,1 = d4(RM5(2)) + max{µ1, 2q
s − d+ 1− 1} = 5 +max{3, 3} = 8,

H3,2 = d3(RM5(2)) + max{µ2, 2q
s − d+ 2− 1} = 4 +max{3, 4} = 8,

H4,3 = d2(RM5(2)) + max{µ3, 2q
s − d+ 3− 1} = 3 +max{4, 5} = 8.

The minimum of these values is 8, and we have d5(PRM5(2)) ≥ 8. Furthermore, as the
minimum is equal to B0,0, by Theorem D.5.12 (or Lemma D.5.8) we have the equality
d5(PRM5(2)) = 8.

Note that if we want to use Theorem D.5.7 in order to obtain the bound for d5(PRM5(2)),
we would have to consider the minimum of |Y | terms. In this case, we have

Y =

{
(α, γ) :

γ ≤ α ≤ min{qs + 1, r} = 5
0 ≤ γ ≤ min{d− qs + 2, r} = 3

}
.

Thus, using Theorem D.5.7 we would have to consider the minimum of |Y | = 18 terms,
while using Theorem D.5.12 we only needed 5.

D.5.2 A bound for the generalized Hamming weights of the subfield
subcodes of projective Reed-Muller codes

The subfield subcodes of Section D.4 are subcodes of projective Reed-Muller codes and
therefore the generalized Hamming weights of projective Reed-Muller codes give lower
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bounds for the generalized Hamming weights of the corresponding subfield subcodes. How-
ever, as the dimension of the subfield subcode is usually much smaller than the dimension
of the original code, this bound is not sharp for most of the generalized Hamming weights.
Nevertheless, Theorem D.5.7 and Lemma D.5.8 can be adapted for the subfield subcodes
as well.

Corollary D.5.14. Let ξ ∈ Fqs be a primitive element and m > 1. Let dλ = λ qs−1
q−1 for

some λ ∈ {1, 2, . . . ,m(q − 1)} and 2 ≤ r ≤ dim(PRMσ
d(m)). We consider

Y σ =

{
(α, γ) :

max{r − dimRMσ
dλ−1(m), 0} ≤ α ≤ min{dimPRMσ

dλ
(m− 1), r}

max{r − dimRMσ
dλ
(m), 0} ≤ γ ≤ min{dimPRMσ

dλ−(qs−1)(m− 1), α}

}
.

Then we have
dr(PRM

σ
dλ
(m)) ≥ min

(α,γ)∈Y σ
Bσ

α,γ ,

where

Bσ
α,γ := max(dr−γ(RM

σ
dλ
(m)),dr−α(RM

σ
dλ−1(m)))

+ max(dα(PRM
σ
dλ
(m− 1)), dγ(PRM

σ
dλ−(qs−1)(m− 1))).

Proof. We consider the recursive construction from Corollary D.4.2, and we apply an
analogous reasoning to the one above Theorem D.5.7.

Corollary D.5.15. Let ξ ∈ Fqs be a primitive element and m > 1. Let dλ = λ qs−1
q−1 for

some λ ∈ {1, 2, . . . ,m(q − 1)} and 2 ≤ r ≤ max{dimRMσ
dλ−1(m), dimPRMσ

dλ
(m − 1)}.

Then
dr(PRM

σ
dλ
(m)) ≤ min{dr(RMσ

dλ−1(m)), qs · dr(PRMσ
dλ
(m− 1))},

where if r > dimRMσ
dλ−1(m)) or r > dimPRMσ

dλ
(m − 1) we do not consider the corre-

sponding generalized Hamming weight in the minimum.

Proof. We consider the recursive construction from Corollary D.4.2 and argue as in the
proof of Lemma D.5.8.

With respect to the values that appear in these results, we have formulas for the di-
mension of the subfield subcodes of affine Reed-Muller codes [10, Thm. 11] and for the
subfield subcodes of projective Reed-Muller codes over P2 [14, Cor. 3.41]. However, we do
not have explicit results about the generalized Hamming weights of the subfield subcodes
in the affine case or the projective case, besides the bounds given by the generalized Ham-
ming weights of the affine or projective Reed-Muller codes. Therefore, although Corollary
D.5.14 and Corollary D.5.15 are of theoretical interest, their practical utility is more lim-
ited than that of Theorem D.5.7 and Lemma D.5.8.

D.5.3 Examples

In this subsection we provide tables showing examples of how one can use the results
in Section D.5 to determine the generalized Hamming weights of some projective Reed-
Muller codes. In order to use the bound from Theorem D.5.7, we are going to use the
true values for the minimum distances of projective Reed-Muller codes from Theorem
D.2.1. We are going to use Theorem D.5.7 in order to provide a lower bound, and we can
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use Lemma D.5.8 in order to give an upper bound in some cases. Moreover, if we know
the true value of a generalized Hamming weight dr(PRMd(m)), for r′ ≤ r we know that
dr′(PRMd(m)) ≤ dr(PRMd(m)) − (r − r′) due to the monotonicity from Theorem D.5.2,
which provides another upper bound. With this we can obtain the tables that we present
below. Note that we are only using the bounds that we have just stated, we are not
considering the values obtained in other papers such as [3]. For instance, by considering
the values given in Example D.5.10, we see that d2(PRM3(2)) = 11 for qs = 4. Looking
at Table D.4, we see that this also implies that d3(PRM3(2)) = 12 by Theorem D.5.2, and
we would therefore obtain all the generalized Hamming weights of PRM3(2) for qs = 4.
Nevertheless, as it is seen in the tables, we can still obtain many of the true values of the
generalized Hamming weights for projective Reed-Muller codes.

With respect to the notation, we will use dots when the generalized Hamming weights
grow by one unit when increasing r. Unless stated otherwise, the value of the bound from
Theorem D.5.7 coincides with the value of the generalized Hamming weight that appears
in the table. When that does not happen (or if we do not know the true value), we will
write the lower bound from Theorem D.5.7 and the best of the upper bounds that we have
discussed above. We note that, for all the values that we omit by using dots, the bound
from Theorem D.5.7 is sharp.

As we stated previously, for qs = 2 we have checked by computer that we obtain the
true values of dr(PRMd(m)) for m = 2, 3. However, this case is not that important in the
projective setting because, for qs = 2, we have Pm = Am+1 \ {(0, . . . , 0)}. Therefore, the
projective Reed-Muller codes over F2 in Pm are equal to the shortening of affine Reed-
Muller codes over in m+ 1 variables over F2 at the point (0, . . . , 0).

Table D.2: Generalized Hamming weights for qs = 3, m = 2.

d\r 2 3 4 5 6 7 8 9 10 11 12 13

1 12 13
2 8 9 11 12 13
3 4-5 6 7 8 9 10 11 12 13
4 3 4 5 6 7 8 9 10 11 12 13

Table D.3: Generalized Hamming weights for qs = 3, m = 3.

d\r 2 3 4 5 6 7 8 9 10 11 12 13 · · · 20
1 36 39 40
2 23-24 26 27 32-35 35-36 36-37 38 39 40
3 12 13-17 18 21 22-23 24 25 26 27 30-31 31-32 33 · · · 40

d\r 2 3 4 5 6 7 8 9 10 11 · · · 17 18 · · · 29

4 8 9 11-12 12-14 13-15 15-16 17 18 20 21 · · · 27 29 · · · 40

d\r 2 3 4 5 6 7 8 9 10 11 · · · 36

5 4-5 6 7 8 9 10-11 11-12 12-13 13-14 15 · · · 40

d\r 2 · · · 39

6 3 · · · 40

We see in Table D.2 that we recover all the generalized Hamming weights for qs = 3
and m = 2, besides the one corresponding to d = 3, r = 2. For qs = 3 and m = 3,
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Table D.4: Generalized Hamming weights for qs = 4, m = 2.

d\r 2 3 4 5 6 7 8 9 10 11 · · · 20

1 20 21
2 15 16 19 20 21
3 10-11 11-12 14 15 16 18 19 20 21
4 5-7 8 9-10 10-11 12 13 14 15 16 17 · · ·
5 4 5-6 7 8 9 10 11 12 13 14 · · ·
6 3 4 5 6 7 8 9 10 11 12 · · · 21

Table D.5: Generalized Hamming weights for qs = 5, m = 2.

d\r 2 3 4 5 6 7 8 9 10 11 · · · 30

1 30 31
2 24 25 29 30 31
3 18-19 19-20 23 24 25 28 29 30 31
4 12-14 13-15 17-18 18-19 19-20 22 23 24 25 27 · · ·
5 6-9 10 11-13 12-14 15 16-17 17-18 18-19 20 21 · · ·
6 5 6-8 9 10 11-12 12-13 14 15 16 17 · · ·
7 4 5 6-7 8 9 10 11 12 13 14 · · ·
8 3 4 5 6 7 8 9 10 11 12 · · · 31

we obtain most of the generalized Hamming weights (see Table D.3), although in some
cases we cannot claim that we have the equality with the bound from Theorem D.5.7. For
example, for d = 5, we obtain directly 30 out of the 35 generalized Hamming weights for
r > 1 (we recall that the bound is sharp for all the values represented with dots), and for
the ones for which we only have bounds, the difference between the bound from Theorem
D.5.7 and the true value is at most 1.
For qs = 4, 5, and m = 2, we show the values that we obtain in Table D.4 and Table D.5.

We see that for high values of r we obtain the true values of the generalized Hamming
weights, and for moderate values of d and r, even in the cases where we are not able to
state what the true value is, we have a small interval of possible values due to the bounds
we are using.
The tables can be further improved by using the following duality theorem for the

generalized Hamming weights from [21].

Theorem D.5.16 (Duality). Let C be an [n, k] code. Then

{dr(C) : 1 ≤ r ≤ k} = {1, 2, . . . , n} \ {n+ 1− dr(C
⊥) : 1 ≤ r ≤ n− k}.

The set {dr(C) : 1 ≤ r ≤ k} is called the weight hierarchy of the code C. From Theorem
D.5.16, we see that the weight hierarchy of a code is completely determined by the weight
hierarchy of its dual, and vice versa. As the dual of a projective Reed-Muller code is
another projective Reed-Muller code (for d ̸≡ 0 mod qs−1), this gives us more restrictions
for the possible values appearing in the previous tables.

Example D.5.17. Let qs = 3, d = 3 and m = 3. Looking at Table D.3, we see that for
r = 3, 6, 11, 12, we do not know the exact value of the corresponding generalized Hamming
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weight of PRM3(3). Using Theorem D.2.2, we know that PRM⊥
3 (3) = PRM3(3). We

are going to use Theorem D.5.16 to obtain the true value of more of the generalized
Hamming weights of PRM3(3). Using Theorem D.2.1, we know that d1(PRM3(3)) = 9.
Therefore, by Theorem D.5.16, n + 1 − d1(PRM3(3)) = 41 − 9 = 32 is not in the weight
hierarchy of PRM3(3). Looking at Table D.3, this implies that d12(PRM3(3)) = 31. By
the monotonicity from Theorem D.5.2, this also implies that d11(PRM3(3)) = 30.

If we consider d10(PRM3(3)) = 27 from Table D.3, by Theorem D.5.16 we see that
41 − 27 = 14 is not in the weight hierarchy of PRM3(3). Considering the next weight
d11(PRM3(3)) = 30, we obtain that 11 is not in the weight hierarchy. But by Theorem
D.5.16, as these are consecutive generalized Hamming weights and we have the monotonic-
ity from Theorem D.5.2, this implies that 12 and 13 are contained in the weight hierarchy
of PRM3(3). Thus, d3(PRM3(3)) = 13. Finally, by considering d4(PRM3(3)) = 18, we
obtain that 41− 18 = 23 does not belong to the weight hierarchy of PRM3(3), and there-
fore d6(PRM3(3)) = 22. Hence, we have been able to obtain the whole weight hierarchy
of PRM3(3) by using the bound from Theorem D.5.7 and the general properties of the
generalized Hamming weights from [21].

The ideas from Example D.5.17 can be applied to improve the previous tables. For the
case qs = 3, m = 2, the only value that we did not have exactly was d2(PRM3(2)), which
must be equal to 4 because PRM⊥

3 (2) = PRM1(2) and d1(PRM1(2)) = 9, which means
that n + 1 − d1(PRM1(2)) = 5 is not in the weight hierarchy of PRM3(2). For the rest
of the tables, we show the improved values in Tables D.6, D.7 and D.8. We note that we
obtain almost all of the exact values of the generalized Hamming weights corresponding
to the previous tables for d ̸≡ 0 mod qs − 1.

Table D.6: Improved table of the generalized Hamming weights for qs = 3, m = 3, with
d ̸≡ 0 mod qs − 1.

d\r 2 3 4 5 6 7 8 9 10 11 12 13 · · · 20

1 36 39 40
3 12 13 18 21 22 24 25 26 27 30 31 33 · · · 40
5 4 6 7 8 9 10 11 12 13 15 16 17 · · · 40

Table D.7: Improved table of the generalized Hamming weights for qs = 4, m = 2, with
d ̸≡ 0 mod qs − 1.

d\r 2 3 4 5 6 7 8 9 10 11 · · · 18

1 20 21
2 15 16 19 20 21
4 5 8 9 11 12 13 14 15 16 17 · · ·
5 4 5 7 8 9 10 11 12 13 14 · · · 21
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Table D.8: Improved table of the generalized Hamming weights for qs = 5, m = 2, with
d ̸≡ 0 mod qs − 1.

d\r 2 3 4 5 6 7 8 9 10 11 · · · 28

1 30 31
2 24 25 29 30 31
3 18-19 19-20 23 24 25 28 29 30 31
5 6 10 11 12-14 15 16 18 19 20 21 · · ·
6 5 6 9 10 11 13 14 15 16 17 · · ·
7 4 5 6 8 9 10 11 12 13 14 · · · 31

We also note that the generalized Hamming weights of projective Reed-Muller codes
seem to achieve the generalized Singleton bound D.5.3 in many cases. This can be
checked in the tables by considering, for a fixed degree d, the smallest value r∗ such
that dr+1(PRMd(m)) − dr(PRMd(m)) = 1 for all r ≥ r∗. All the generalized Hamming
weights dr(PRMd(m)) with r ≥ r∗ achieve the generalized Singleton bound. For instance,
in Table D.7, for d = 4 we have that dr(PRM4(2)) achieves the generalized Singleton
bound for r ≥ 5 (in this case, n− k + r = 21− 15 + r = 6 + r).

For the cases where we have d ≡ 0 mod qs − 1, the weight hierarchy of PRMd(m) gives
information about the weight hierarchy of PRM⊥

d (m) = PRMd⊥(m) + ⟨(1, . . . , 1)⟩. In
particular, if we consider r∗ as before, then

d1(PRM
⊥
d (m)) = d1(PRMd⊥(m) + ⟨(1, . . . , 1)⟩) = n+ 2− dr∗(PRMd(m)).

As we are able to obtain exactly the value of the generalized Hamming weights for large
values of r in all the cases that we have checked, we can obtain the minimum distance of
PRM⊥

d (m) for the case d ≡ 0 mod qs − 1. The minimum distances of these codes are the
only basic parameters missing in [20] for the family of projective Reed-Muller codes and
their duals. Clearly, by using more of the generalized Hamming weights of PRMd(m) we
can obtain (or at least bound) more generalized Hamming weights of PRM⊥

d (m) besides
the minimum distance in the case d ≡ 0 mod qs − 1.
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E.1 Introduction

Evaluation codes, have a rich algebraic structure and can be studied using tools from
commutative algebra [16,21,22]. In particular, projective Reed-Muller codes are a family
of evaluation codes obtained by evaluating homogeneous polynomials of a given degree at
the projective space [20, 27]. In [20] it is shown that these codes can outperform affine
Reed-Muller codes in some instances. Taking into account that Reed-Muller codes were
one of the first families of linear codes used to construct quantum error-correcting codes
(QECCs) [29], it is natural to consider projective Reed-Muller codes for constructing
quantum codes. When one evaluates over the projective line, this family corresponds to
projective Reed-Solomon codes, which have been used for constructing QECCs in various
contexts [2, 13]. As we will see, by using evaluation codes we translate problems about
quantum and classical codes to questions regarding polynomials in a quotient ring.
The importance of QECCs is growing in parallel to the interest in quantum computing,

as QECCs are necessary to achieve fault tolerant computation [26]. One can construct
QECCs from classical linear codes using the CSS construction and the Hermitian construc-
tion [6, 19, 28], but these constructions require to have some self-orthogonality conditions
for the corresponding classical codes. Using entanglement assistance, it is possible to
remove the self-orthogonality restrictions, giving rise to entanglement-assisted quantum
error-correcting codes (EAQECCs) [5]. Both the CSS construction and the Hermitian
construction can be generalized to this context, see Theorems E.4.1 and E.4.8 from [11]
and [10], respectively.
For the CSS construction, one can consider two codes C1 and C2, and the minimum

number required of maximally entangled quantum states is equal to c := dimC1−dimC1∩
C⊥
2 . Therefore, the dimension of the relative hull of C1 with respect to C2, defined as

HullC2(C1) := C1 ∩ C⊥
2 ,

determines the parameter c [1]. For the Hermitian construction, we only use one code C,
and the parameter c is given by dimC − dimC ∩ C⊥h , where C⊥h is the Hermitian dual
of C. The Hermitian hull of C is thus defined as

HullH(C) := C ∩ C⊥h .

Going back to projective Reed-Muller codes, as they are evaluation codes, we can view
their codewords as classes of polynomials in a quotient ring. This motivates Section E.3
of this paper, where we compute bases of polynomials for some appropriate subspaces
of the quotient rings associated to projective Reed-Muller codes by using Gröbner bases
techniques. As a consequence of this computation, we give a basis for the relative hull of
projective Reed-Muller codes over the projective plane P2. We also estimate the dimension
of the Hermitian hull, and give bases in some cases. The estimate that we obtain is sharp in
all the cases we have checked. As a byproduct of these computations, we also compute the
Hermitian hull of affine Reed-Muller codes in 2 variables, which was known to be trivial in
some cases [12,24], but was not known in general. With this knowledge, in Section E.4 we
give the parameters of the EAQECCs obtained by using projective Reed-Muller codes over
P2, since the dimension of the hull determines the parameter c. Although projective Reed-
Muller codes had already been used to construct QECCs in some particular cases [25], the
cases that required entanglement assistance had not been yet addressed. We focus on the
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case of P2 because it offers a good trade-off between providing long codes over a small finite
field and avoiding computations that are too involved, making explicit formulas unfeasible.
For the general case of Pm, one has to make additional assumptions, such as restricting to
the Euclidean case and requiring C1 = C2, see [17].

E.2 Preliminaries

We consider the finite field Fq with q elements, and the projective space Pm over Fq.
Throughout this work, we will fix representatives for the points of Pm: for each point
[Q] ∈ Pm, we choose the representative whose leftmost entry is equal to 1. We will denote

by Pm = {Q1, . . . , Qn}, with n = |Pm| = qm+1−1
q−1 , the set of representatives that we

have chosen (seen as points in the affine space Am+1). For a set of points A ⊂ Am+1 we
will denote by [A] the set of points {[a0 : · · · : am] | (a0, . . . , am) ∈ A \ {0}} (using the
representatives that we have chosen).
We consider now the polynomial ring S = Fq[x0, . . . , xm]. The evaluation map is the

Fq-linear map defined by

ev : S → Fn
q , f 7→ (f(Q1), . . . , f(Qn)) .

Let d be a positive integer. If we consider Sd ⊂ S, the set of homogeneous polynomials
of degree d, we have that ev(Sd) is the projective Reed-Muller code of degree d, which we
will denote by PRMd(q,m), or PRMd(m) if there is no confusion about the field. For a
code C ⊂ Fn

q , we denote its minimum distance by wt(C). The following results about the
parameters of projective Reed-Muller codes and their duality appear in [27].

Theorem E.2.1. The projective Reed-Muller code PRMd(q,m), 1 ≤ d ≤ m(q − 1), is an
[n, k]-code with

n =
qm+1 − 1

q − 1
,

k =
∑

t≡d mod q−1,0<t≤d

m+1∑
j=0

(−1)j
(
m+ 1

j

)(
t− jq +m

t− jq

) .

For the minimum distance, we have

wt(PRMd(q,m)) = (q − s)qm−r−1, where d− 1 = r(q − 1) + s, 0 ≤ s < q − 1.

Theorem E.2.2. Let 1 ≤ d ≤ m(q − 1) and let d⊥ = m(q − 1)− d. Then

PRM⊥
d (q,m) = PRMd⊥(q,m) if d ̸≡ 0 mod q − 1,

PRM⊥
d (q,m) = PRMd⊥(q,m) + ⟨(1, . . . , 1)⟩ if d ≡ 0 mod q − 1.

Remark E.2.3. Theorem E.2.2 states that, if d ̸≡ 0 mod q − 1 the dual of a projec-
tive Reed-Muller code is another projective Reed-Muller code. If we define PRM0(2) =
⟨(1, . . . , 1)⟩, then for d = m(q−1) we can also say that the dual of a projective Reed-Muller
code is another projective Reed-Muller code. Hence, for m = 2, the case we are going to
study in this paper, the only case in which the dual of a projective Reed-Muller code is
not another projective Reed-Muller code is when d = q − 1.
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With respect to affine Reed-Muller codes, we denote them by RMd(q,m), or by RMd(m)
if there is no confusion about the field. We have the following results about their param-
eters and their duality from [8,18].

Theorem E.2.4. The Reed-Muller code RMd(q,m), 0 ≤ d ≤ m(q − 1), is an [n, k]-code
with

n = qm,

k =
d∑

t=0

m∑
j=0

(−1)j
(
m

j

)(
t− jq +m− 1

t− jq

)
.

For the minimum distance, we have

wt(RMd(q,m)) = (q − s)qm−r−1, where d = r(q − 1) + s, 0 ≤ s < q − 1.

Theorem E.2.5. Let 0 ≤ d ≤ m(q − 1). Then

RM⊥
d (q,m) = RMm(q−1)−d−1(q,m).

Going back to projective Reed-Muller codes, we have seen that PRMd(m) = ev(Sd),
which gives the isomorphism

PRMd(m) ∼= Sd/(I(P
m) ∩ Sd) ∼= (Sd + I(Pm))/I(Pm),

where I(Pm) is the vanishing ideal of Pm. This is because, if we restrict ev to Sd, the
polynomials in the kernel are precisely the polynomials from Sd that vanish at each of
the points of Pm, which are the polynomials in I(Pm) ∩ Sd. This isomorphism allows
us to view the vectors of the code as polynomials in a quotient ring. It is important
to note that two polynomials in S/I(Pm) have the same evaluation if and only if their
classes in S/I(Pm) are the same. This is why we can discuss linear independence both in
PRMd(m) ⊂ Fn

q and in S/I(Pm).
Moreover, we can express many important aspects of the code purely in terms of poly-

nomials, for example the minimum distance [16] or their duals [21]. The theory of Gröbner
bases is one of the main tools that are used for studying evaluation codes using this ap-
proach. In the rest of this section, we introduce some of the Gröbner-related results for
projective Reed-Muller codes that we will use in the rest of the paper.
In what follows, we will abuse the notation and denote Sd/I(P

m) = (Sd+I(Pm))/I(Pm).
Moreover, for a polynomial f ∈ S, we will use the same notation f for both the polynomial
and its class in S/I(Pm). We refer the reader to [7] for the basic concepts of Gröbner
bases. For f ∈ S, we denote by in(f) the leading monomial of f (without the coefficient).
For an ideal I ⊂ S, in(I) denotes the ideal generated by the leading monomials of the
polynomials in I. We have the following result for the vanishing ideal of Pm from [14].

Theorem E.2.6. The vanishing ideal of Pm is generated by the following polynomials:

I(Pm) =⟨x20 − x0, x
q
1 − x1, x

q
2 − x2, . . . , x

q
m − xm, (x0 − 1)(x21 − x1),

(x0 − 1)(x1 − 1)(x22 − x2), . . . , (x0 − 1) · · · (x2m−1 − xm−1), (x0 − 1) · · · (xm − 1)⟩.

Moreover, these generators form a universal Gröbner basis of the ideal I(Pm) (i.e., they
form a Gröbner basis for any monomial order), and we have that

in(I(Pm)) = ⟨x20, x
q
1, x

q
2, . . . , x

q
m, x0x

2
1, x0x1x

2
2, . . . , x0x1 · · ·x2m−1, x0x1 · · ·xm⟩.
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In this work we will study the case m = 2, in which we have

I(P 2) = ⟨x20 − x0, x
q
1 − x1, x

q
2 − x2, (x0 − 1)(x21 − x1), (x0 − 1)(x1 − 1)(x2 − 1)⟩.

We introduce now the bases of polynomials that we will use in the following sections.

Lemma E.2.7. Let 1 ≤ d ≤ 2(q − 1). We consider the following sets of monomials:

Ad
1 = {xa00 xa11 xa22 | a0 > 0, a0 + a1 + a2 = d, 0 ≤ a1, a2 ≤ q − 1},

Ad
2 = {xa11 xa22 | a1 > 0, a1 + a2 = d, 0 ≤ a2 ≤ q − 1},

Ad
3 = {xd2}.

Then, Ad = Ad
1 ∪Ad

2 ∪Ad
3 forms a basis for Sd/I(P

2).

Proof. Ad is a basis for Sd/I(P2)d (for example, see [3]), where I(P2) is the vanishing ideal
of P2, i.e, the ideal generated by the homogeneous polynomials that vanish in all the points
of P2. Therefore, the image by the evaluation map of Ad is a basis for PRMd(2), which
means that the classes of these polynomials in S/I(P 2) are also a basis for Sd/I(P

2).

Remark E.2.8. Let 1 ≤ d ≤ 2(q − 1) and k = dimRMd−1(2). Then it is clear that∣∣Ad
1

∣∣ = k, and the previous result shows that we have the following formula:

dimPRMd(2) =

{
k + d+ 1 if 1 ≤ d ≤ q − 1,

k + q + 1 if q ≤ d < 2(q − 1).

From [14], we have the following lemma about S/I(P 2).

Lemma E.2.9. The set of monomials {xa11 xa22 , x0x
a2
2 , x0x1 | 0 ≤ ai ≤ q − 1, 1 ≤ i ≤ 2} is

a basis for S/I(P 2).

We show now how to express any monomial from Ad in terms of the basis from Lemma
E.2.9. The following definition is useful for this purpose.

Definition E.2.10. For an integer z ≥ 0, we denote by z the integer 1 ≤ z ≤ q − 1 such
that z ≡ z mod q − 1 if z > 0, and z = 0 if z = 0.

Remark E.2.11. Any monomial xα0
0 xα1

1 xα2
2 with α0 > 0 is equivalent to x

α′
0

0 xα1
1 xα2

2 in
S/I(P 2), for any α′

0 > 0, because we have the polynomial x20 − x0 in I(P 2). In particular,
xα0
0 xα1

1 xα2
2 is equivalent to x0x

α1
1 xα2

2 if α0 > 0. Moreover, in Definition E.2.10 we treat
the case z = 0 separately so that we have

xa00 xa11 xa22 ≡ xa00 xa11 xa22 mod I(P 2),

for any 0 ≤ a0, a1, a2 ≤ 2(q− 1). Notice that, for evaluation codes, having exponent q− 1
is not the same as 0 since, for instance,

x00 = 1 ̸≡ xq−1
0 mod I(P 2).

This can be checked by evaluating 1 and xq−1
0 at any point of the form (0, 1, x2), x2 ∈ Fq

(recall that two polynomials are equivalent modulo I(P 2) if and only if they have the same
evaluation).
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The following Lemma from [14] shows how to express any monomial in terms of the
basis from Lemma E.2.9.

Lemma E.2.12. Let a0, a1, a2 be integers.

1. If a0 = 0, then

xa11 xa22 ≡ xa11 xa22 mod I(P 2).

2. If a1 = 0, then

xa00 xa22 ≡ x0x
a2
2 mod I(P 2).

3. If a0 > 0 and a1 > 0, then

xa00 xa11 xa22 ≡ xa11 xa22 + x0x
a2
2 − xa22 + x0x1 − x0 − x1 + 1 mod I(P 2)

≡ xa11 xa22 + (x0 − 1)(xa22 + x1 − 1) mod I(P 2).

In particular, Lemma E.2.12 allows us to express all the monomials from the basis in
Lemma E.2.7 in terms of the basis from Lemma E.2.9. This is crucial because the idea of
the next section is, for 1 ≤ d1 ≤ d2 ≤ 2(q − 1), to consider the bases from Lemma E.2.7
for Sd1/I(P

2) and Sd2/I(P
2), and express them in terms of the basis for S/I(P 2) from

Lemma E.2.9 using Lemma E.2.12. Once we have all the polynomials expressed in this
way, it is easier to find the polynomials lying in Sd1/I(P

2)∩ Sd2/I(P
2), which, as we will

see, determines the relative hull of PRMd1(2) and PRMd2(2). For the Hermitian case, the
ideas are also very similar, although the computations are more involved.

E.3 Computing the hulls of projective Reed-Muller codes

The aim of this section is to obtain bases for the relative hull and Hermitian hull of
projective Reed-Muller codes. We do this by computing first a basis of polynomials for
some appropriate subspaces of S/I(P 2). We deduce, in particular, the dimension of the
hull, which will determine the entanglement parameter c for the EAQECCs constructed
with projective Reed-Muller codes in Section E.4.

E.3.1 Euclidean hull

In this subsection we compute a basis for HullC2(C1) = C1 ∩ C⊥
2 , the relative hull of C1

and C2, when Ci = PRMdi(2), for i = 1, 2. For PRM⊥
d2
(2), by Theorem E.2.2 we have

that, if d2 ̸= q − 1, then PRM⊥
d2
(2) = PRMd⊥2

(2), where d⊥2 = 2(q − 1) − d2 (assuming

PRM0(2) = ⟨(1, . . . , 1)⟩). We avoid the case where d2 = q − 1 because, by Theorem
E.2.2, in that case we have PRM⊥

d2
(2) = PRMd⊥2

(2) + ⟨(1, . . . , 1)⟩, which is no longer

isomorphic to Sd⊥2
/I(P 2). Assuming d2 ̸= q − 1, the problem of obtaining a basis for

PRMd1(2)∩PRM⊥
d2
(2) becomes equivalent to computing a basis for PRMd1(2)∩PRMd2(2),

for any 1 ≤ d1 ≤ d2 ≤ 2(q − 1), d2 ̸= q − 1, and that is the problem we solve in what
follows. In [25, Thm. 10.7] the authors construct quantum codes using pairs of projective
Reed-Muller codes such that the dual of one of the codes is contained in the other. In
particular, they obtain the following result.
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Lemma E.3.1. Let 1 ≤ d1 ≤ d2 ≤ m(q − 1). If d1 ≡ d2 mod q − 1, then PRMd1(m) ⊂
PRMd2(m).

Therefore, when d1 ≡ d2 mod q− 1, with d2 ̸= q− 1, the relative hull is straightforward
to obtain. To avoid making exceptions in many of the following results, we exclude the
case d1 ≡ d2 mod q − 1, which is already covered by Lemma E.3.1.

Because of the isomorphism Sdi/I(P
2) ∼= PRMdi(2), for i = 1, 2, the problem of com-

puting a basis for PRMd1(2) ∩ PRMd2(2) can be understood as computing a basis for
Sd1/I(P

2) ∩ Sd2/I(P
2), as a subspace of S/I(P 2). Hence, computing the dimension of

Sd1/I(P
2) ∩ Sd2/I(P

2) for arbitrary 1 ≤ d1 ≤ d2 ≤ 2(q − 1) gives the parameter c for any
pair of projective Reed-Muller codes over P 2 (except when we have d2 = q − 1). We give
now some preliminary results.

Lemma E.3.2. We have that 1 ̸∈ Sd/I(P
2) for 1 ≤ d ≤ 2(q − 1).

Proof. If d ≤ q−1 and we had 1 ∈ Sd/I(P
2), then we would have the evaluation of xd0−1 in

PRMd(2), which has Hamming weight q2+q+1−q2 = q+1 < (q−d+1)q = wt(PRMd(2)).
For q ≤ d ≤ 2(q − 1), if we had 1 ∈ Sd/I(P

2), then we would also have the evaluation of

xd0 − xq−1
0 x

d−(q−1)
1 + xd1 − 1 ≡ xd0 + (1− x0)x

d
1 − 1 mod I(P 2) in PRMd(2) (recall Remark

E.2.11), which has Hamming weight 1 < wt(PRMd(2)).

Let f ∈ Sd1 . The following lemmas show when we have f ∈ Sd2/I(P
2) depending on the

monomials that are in the support of f . This will allow us to determine which polynomials
are in Sd1/I(P

2) ∩ Sd2/I(P
2) and, thus, to obtain a basis.

Lemma E.3.3. Let 1 ≤ d1 < d2 ≤ 2(q − 1). We have that the classes of the monomials
in Ad1

1 are contained in Sd2/I(P
2).

Proof. Let xa00 xa11 xa22 ∈ Ad1
1 . Then xa0+d2−d1

0 xa11 xa22 ∈ Sd2/I(P
2), and xa00 xa11 xa22 ≡

xa0+d2−d1
0 xa11 xa22 mod I(P 2) by Remark E.2.11.

Let 1 ≤ d1 < d2 ≤ 2(q − 1). We note that the monomials in Ad1
1 and Ad2

1 generate
RMd1−1(2) and RMd2−1(2), respectively, when considering their evaluation in [{1} × F2

q ].
Thus, dim

(
Sd1/I(P

2) ∩ Sd2/I(P
2)
)
≥ dimRMd1−1(2).

Example E.3.4. Let Fq = F4, and we consider d1 = 4 < 5 = d2. By Lemma E.3.3, we
have that A4

1 is in S4/I(P
2) ∩ S5/I(P

2). In this case, we have

A4
1 = {x40, x30x1, x30x2, x20x21, x20x1x2, x20x22, x0x31, x0x21x2, x0x1x22, x0x32}.

If we multiply all the elements of A4
1 by x0, we obtain a set of monomials of degree 5 which

have the same evaluation at P 2 as these monomials (see Remark E.2.11).

Lemma E.3.5. Let 1 ≤ d1 < d2 ≤ 2(q− 1) with d1 ̸≡ d2 mod q− 1. Let f ∈ Sd1 such that
it only has monomials from Ad1

2 in its support, i.e., it can be expressed as

f =
∑

a1+a2=d1,0<a1,0≤a2≤q−1

λa1,a2x
a1
1 xa22 , λa1,a2 ∈ Fq.

Let Y = {0, 1, . . . ,min{d1 − 1, d2 − q}} and Yf = {0 ≤ a2 ≤ q − 1 | λd1−a2,a2 ̸= 0}. Then
f ∈ Sd2/I(P

2) if and only if Yf ⊂ Y .
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Proof. Assuming that f ∈ Sd2/I(P
2), there is also an expression

f ≡
∑

x
a0
0 x

a1
1 x

a2
2 ∈Ad2

γa0,a1,a2x
a0
0 xa11 xa22 mod I(P 2), γa0,a1,a2 ∈ Fq. (E.3.1)

We have f(0, 0, 1) = 0, which means that γ0,0,d2 = 0. We consider now a monomial
order with x0 < x1 < x2, and let in(f) = xa11 xa22 ≡ xa11 xa22 mod I(P 2), with a1 > 0,
0 ≤ a2 ≤ q − 1 and a1 + a2 = d1. Therefore, because of (E.3.1), we must have some
monomial in Ad2 such that its expression in the basis from Lemma E.2.9 contains xa11 xa22
in its support. The only monomials that satisfy that are xa1+q−1

1 xa22 if d2 = a1+a2+(q−1),
or xc00 xa11 xa22 , with c0 = d2− a1− a2 > 0. In the first case, we have d1 ≡ d2 mod q− 1, but
we are assuming d1 ̸≡ d2 mod q − 1. In the other case, by Lemma E.2.12 we have

xc00 xa11 xa22 ≡ xa11 xa22 + (x0 − 1)(xa22 + x1 − 1) mod I(P 2).

Hence, to obtain xa11 xa22 in the right-hand side of (E.3.1), we must have γc0,a1,a2 = λa1,a2 .
We denote now (Ad2)(1) := Ad2 \ {xc00 xa11 xa22 }. We obtain

f (1) =f − λa1,a2x
a1
1 xa22

≡
∑

x
α0
0 x

α1
1 x

α2
2 ∈(Ad2 )(1)

γα0,α1,α2x
α0
0 xα1

1 xα2
2 + γc0,a1,a2(x0 − 1)(xa22 + x1 − 1) mod I(P 2).

(E.3.2)
Now we have in(f (1)) < in(f). We can consider in(f (1)) = xb11 xb22 and argue as before
to obtain a polynomial f (2) such that in(f (2)) < in(f (1)), which can be expressed as in

(E.3.2) in terms of a set (Ad2)(2) = Ad2 \ {xc00 xa11 xa22 , x
c′0
0 xb11 xb22 }.

We can do this until we get f (l) = 0 for some l ≥ 0. At that step, we have

0 ≡
∑

x
α0
0 x

α1
1 x

α2
2 ∈(Ad2 )(l)

γα0,α1,α2x
α0
0 xα1

1 xα2
2 + (x0 − 1)

∑
a2∈Yf

γc0,a1,a2(x
a2
2 + x1 − 1) mod I(P 2),

(E.3.3)
where Yf = {0 ≤ a2 ≤ q − 1 | λd1−a2,a2 ̸= 0}. With this notation, we have that (Ad2)(l) =

Ad2 \
⋃

a2∈Yf
{xd2−(d1−a2)−a2

0 xd1−a2
1 xa22 }. If we express all the monomials in (E.3.3) in terms

of the basis from Lemma E.2.9, then we must have the coefficient of each element of the
basis equal to 0. The monomials from (E.3.3) in the second sum are already expressed
in terms of the basis from Lemma E.2.9. If we focus on the monomial xa22 for some
a2 ∈ Yf with a2 > 0, we see that all the monomials xα0

0 xα1
1 xa22 ∈ (Ad2)(l) with 0 < α0,

0 < α1 ≤ q− 1, α1 ̸= d1 − a2, and α0+α1+ a2 = d2, have x
a2
2 in their expression in terms

of the basis from Lemma E.2.9 by Lemma E.2.12:

xα0
0 xα1

1 xa22 ≡ xα1
1 xa22 + (x0 − 1)(xa22 + x1 − 1) mod I(P 2). (E.3.4)

In fact, these are the only monomials from (Ad2)(l) with xa22 in their expression (note that
the monomial with α1 = d1 − a2 is not in (Ad2)(l)). However, if we have γα0,α1,a2 ̸= 0,
some other monomial from (Ad2)(l) must cancel the monomial xα1

1 xa22 that appears in
(E.3.4) from (E.3.3). The only other monomial in (Ad2)(l) with xα1

1 xa22 in its support when

expressed in terms of the basis from Lemma E.2.9 is xα1+q−1
1 xa22 , if α1 + a2 + q − 1 = d2

(which implies α0 = q − 1).
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Therefore, if d2 ≤ q − 1, given a2 ∈ Yf , a2 > 0, the monomial xa22 from (E.3.3) cannot
be cancelled with any monomial from (Ad2)(l), which means that we must have γc0,a1,a2 =
λa1,a2 = 0, a contradiction with the fact that a2 ∈ Yf . This means that there is no a2 ∈ Yf
with a2 > 0. Taking this into account, the only possible term in the second sum of (E.3.3)
corresponds to the case a2 = 0, and we have γc0,a1,a2(x0−1)(xa2+x1−1) = γc0,d1,0(x0−1)x1.

This polynomial cannot be generated by polynomials from Ad2 because its evaluation has
Hamming weight q2+q+1−q2−1 = q < wt(PRMd2(2)) if d2 ≤ q−1. Thus, if d2 ≤ q−1,
we have must have Yf = ∅ and f = 0.

Lets assume now that d2 ≥ q. For each a2 ∈ Yf with a2 < d2, we can consider
α1 = d2 − a2 > 0. We have seen that

xα0
0 xα1

1 xa22 − xα1+q−1
1 xa22 ≡ (x0 − 1)(xa22 + x1 − 1) mod I(P 2).

Note that in the monomials that we have excluded to obtain (Ad2)(l) from Ad2 , we have that
the exponent of x1 is equivalent to d1−a2 modulo q−1. The α1 that we have chosen in this
case is equivalent to d2 − a2 modulo q− 1, which means that the corresponding monomial
is still in (Ad2)(l), unless d1 ≡ d2 mod q−1, which is the case that we do not cover. Hence,
for every a2 ∈ Yf with a2 < d2, if we choose γα0,α1,a2 = −γ0,α1+q−1,a2 = λd1−a2,a2 , the
polynomial (x0 − 1)(xa22 + x1 − 1) is cancelled from (E.3.3). If we had some a2 ∈ Yf
with a2 ≥ d2, we can argue as in the previous case and obtain that λd1−a2,a2 = 0, a
contradiction.
We also have that a2 ≤ d1 − 1 for every a2 ∈ Yf . Therefore, Yf ⊂ {0, 1, . . . ,min{d1 −

1, d2 − 1}}. Thus, Yf ⊂ Y = {0, 1, . . . ,min{d1 − 1, d2 − q}}, where if d2 − q < 0 we
understand that Y = ∅, which covers the case with d2 ≥ q and the case with d2 ≤ q − 1.

On the other hand, let f ∈ Sd1 such that it only has monomials from Ad1
2 in its support,

and with Yf ⊂ Y . For each a2 ∈ Yf we have

xd1−a2
1 xa22 ≡ xd2−a2

1 xa22 − xd2−d2
0 xd2−a2

1 xa22 + xd2−d1
0 xd1−a2

1 xa22 mod I(P 2).

This is easy to check because both sides have the same evaluation at P 2 = [{1} × F2
q ] ∪

[{0}×{1}×Fq]∪{[0 : 0 : 1]}. Hence, xd1−a2
1 xa22 ∈ Sd1/I(P

2)∩Sd2/I(P
2) for each a2 ∈ Yf ,

which means that f ∈ Sd1/I(P
2) ∩ Sd2/I(P

2).

Example E.3.6. We continue with Example E.3.4. Using the notation from Lemma
E.3.5, we have Y = {0, 1} and we obtain that the set of monomials {x41, x31x2} is contained
in S4/I(P

2) ∩ S5/I(P
2). In fact, following the proof of Lemma E.3.5, we have that

x41 ≡ x51 − x30x
2
1 + x0x

4
1 mod I(P 2),

x31x2 ≡ x41x2 − x30x1x2 + x0x
3
1x2 mod I(P 2).

These equivalences can be easily checked by evaluating both sides at P 2 = [{1} × F2
4] ∪

[{0} × {1} × F4] ∪ {[0 : 0 : 1]}.

Lemma E.3.7. Let 1 ≤ d1 < d2 ≤ 2(q − 1) such that d1 ̸≡ d2 mod q − 1. There is some
f ∈ Sd1 with xd12 in its support and such that f ∈ Sd2/I(P

2) if and only if d1 ≥ q.

Proof. Let f ∈ Sd1 . By Lemma E.3.3, if there is some monomial from Ad1
1 in the support

of f , we can consider the polynomial f ′ obtained by subtracting that monomial from f ,
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and f ′ ∈ Sd2/I(P
2) if and only if f ∈ Sd2/I(P

2). Therefore, we can assume that the
support of f is contained in Ad1

2 ∪Ad1
3 , i.e., it can be expressed as

f =
∑

a1+a2=d1,0<a1,0≤a2≤q−1

λa1,a2x
a1
1 xa22 + λ0,d1x

d1
2 , λa1,a2 ∈ Fq.

We assume that λ0,d1 ̸= 0. As in the previous result, we must have an expression

f ≡
∑

x
a0
0 x

a1
1 x

a2
2 ∈Ad2

γa0,a1,a2x
a0
0 xa11 xa22 mod I(P 2), γa0,a1,a2 ∈ Fq. (E.3.5)

The only monomials in Ad2 with xd12 in their expression in terms of the basis from Lemma

E.2.9 are xa00 xa11 xd12 , for some 0 < a0, 0 < a1 ≤ q− 1, such that a0 + a1 + d1 = d2, and xd22
if d1 ≡ d2 mod q − 1, which is the case that we do not cover. Therefore, we focus on the
first type of monomials, which by Lemma E.2.12 can be expressed as

xa00 xa11 xd12 ≡ xa11 xd12 + (x0 − 1)(xd12 + x1 − 1) mod I(P 2). (E.3.6)

If d1 ≤ q − 1, we have d1 = d1 and the monomials xa11 xd12 have degree greater than
d1. Thus, they cannot be in the support of f and they have to be cancelled in the
expression from (E.3.5) if we consider some monomial xa00 xa11 xd12 . The only other monomial

in Ad2 with xa11 xd12 in its expression from the basis from Lemma E.2.9 is xa1+q−1
1 xd12 if

d2 = a1 + d1 + q − 1. We have a1 > 0, which implies d2 − d1 − (q − 1) = a1 > 0. We also
have that a0+ a1+ d1 = d2, which means that a0 = q− 1, and the only monomial that we

can consider then is xq−1
0 x

d2−d1−(q−1)
1 xd12 if d2 − d1 − (q − 1) > 0. From (E.3.6) we obtain

xd12 ≡ xd2−d1
1 xd12 − xq−1

0 x
d2−d1−(q−1)
1 xd12 + (x0 − 1)(x1 − 1) + x0x

d1
2 mod I(P 2).

We have seen that xq−1
0 x

d2−d1−(q−1)
1 xd12 is the only monomial that we can consider to ob-

tain the monomial xd12 in the right hand side of (E.3.5), and we need to consider xd2−d1
1 xd12

with the opposite coefficient to cancel the monomial x
d2−d1−(q−1)
1 xd12 (the expression of

xd2−d1
1 xd12 in terms of the basis from Lemma E.2.9), i.e., we must have−γq−1,d2−d1−(q−1),d1 =

γ0,d2−d1,d1 = λ0,d1 . We can define in this case (Ad2)(1) = Ad2\{xq−1
0 x

d2−d1−(q−1)
1 xd12 , xd2−d1

1 xd12 },
and consider

f (1) =f − λ0,d1x
d1
2

≡
∑

x
α0
0 x

α1
1 x

α2
2 ∈(Ad2 )(1)

γα0,α1,α2x
α0
0 xα1

1 xα2
2 − λ0,d1

(
(x0 − 1)(x1 − 1) + x0x

d1
2

)
mod I(P 2).

(E.3.7)
Now f (1) only has monomials from Ad1

2 in its support, and we can argue as we did in
Lemma E.3.5 to obtain f (l) = 0 after l ≥ 0 steps. Taking into account that d1 ≤ q− 1, we
see that the monomials left in the support of f (1) are of the type xa11 xa22 with a1+a2 = d1,
0 < a1, which implies that a2 ≤ d1 − 1. Therefore, in the process of obtaining f (l)

we do not need to use the monomials that we have used to obtain f (1) because those
monomials have d1 as the exponent for x2. Hence, after l steps we obtain an expression

similar to (E.3.3), but with the extra term −λ0,d1

(
(x0 − 1)(x1 − 1) + x0x

d1
2

)
in the right
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hand side. The same argument proves that we can only have λd1−a2,a2 ̸= 0 if a2 ∈ Y =
{0, 1, . . . ,min{d1−1, d2−q}}. If we are in that situation, then we can cancel all the terms in
the second sum of the right hand side in (E.3.3). Thus, in that case, we would obtain a sum

of monomials in (Ad2)(l) equal to λ0,d1

(
(x0 − 1)(x1 − 1) + x0x

d1
2

)
. This implies that we

have the evaluation of (x0−1)(x1−1)+x0x
d1
2 in PRMd2(2). This is a contradiction because

we have the evaluation of xd2−d1
0 xd12 in PRMd2(2), and (x0−1)(x1−1)+x0x

d1
2 −xd2−d1

0 xd12 ≡
(x0 − 1)(x1 − 1) mod I(P 2), whose evaluation has Hamming weight 1. This means that
we cannot have d1 ≤ q − 1 and xd12 in the support of f simultaneously.

On the other hand, if d1 ≥ q, we consider the following polynomials:

Qd1,d2 := xd12 + xd1−d2
1 xd22 + xd1−d2

0 xd22 + xd1−d2
0 xd2−d1

1 xd12 ∈ Sd1 ,

Q′
d2,d1 := xd22 + xd2−d1

1 xd12 + xd2−d1
0 xd12 + xd2−d1

0 xd1−d2
1 xd22 ∈ Sd2 .

(E.3.8)

These polynomials are obtained by realising that if xd12 is in the support of f , then we
must also have xd22 in (E.3.5) to obtain f(0, 0, 1) ̸= 0, and adding monomials to obtain
polynomials with the same evaluation at P 2, we arrive at the polynomials Qd1,d2 and
Q′

d2,d1
. As they have the same evaluation at P 2, these polynomials are in the same class in

S/I(P 2). This also implies that this class is in Sd1/I(P
2)∩ Sd2/I(P

2) and Qd1,d2 satisfies
the conditions in the statement.

Example E.3.8. We continue with Example E.3.6. We had q = 4 ≤ d1 < d2 = 5.
Thus, by Lemma E.3.7, we have the polynomials Q4,5 and Q′

5,4 from (E.3.8) in S4/I(P
2)∩

S5/I(P
2):

Q4,5 = x42 + x21x
2
2 + x20x

2
2 + x20x1x2,

Q′
5,4 = x52 + x41x2 + x40x2 + x0x

2
1x

2
2.

It is easy to check that both polynomials have the same evaluation at [{1} × F2
4] as x2 +

x22 + x1x2 + x21x
2
2, the same evaluation at [{0} × {1} × F4] as x2 + x22, and both evaluate

to 1 at [0 : 0 : 1]. Therefore, they have the same evaluation at P 2.

With the notation as above, we present the main result of this section.

Theorem E.3.9. Let 1 ≤ d1 < d2 ≤ 2(q− 1), and let Y = {0, 1, . . . ,min{d1 − 1, d2 − q}}.
If d1 ≡ d2 mod q − 1, Ad1 is a basis for Sd1/I(P

2)∩ Sd2/I(P
2). If d1 ̸≡ d2 mod q − 1, the

following set B is a basis for Sd1/I(P
2) ∩ Sd2/I(P

2):

B =


Ad1

1 if d2 ≤ q − 1,

Ad1
1 ∪

(⋃
a2∈Y {x

d1−a2
1 xa22 }

)
if d1 ≤ q − 1 < d2,

Ad1
1 ∪

(⋃
a2∈Y {x

d1−a2
1 xa22 }

)
∪ {Qd1,d2} if q ≤ d1,

with Qd1,d2 defined as in (E.3.8). In particular, the image by the evaluation map of B is
a basis for PRMd1(2) ∩ PRMd2(2).

Proof. The case d1 ≡ d2 mod q−1 is covered by Lemma E.3.1. We assume d1 ̸≡ d2 mod q−
1 now. First, we are going to see that the set Ad1

1 ∪
(⋃

a2∈Y {x
d1−a2
1 xa22 }

)
∪ {Qd1,d2} is

linearly independent in S/I(P 2), which proves that all the sets we are considering are
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linearly independent. Ad1
1 ∪

(⋃
a2∈Y {x

d1−a2
1 xa22 }

)
is linearly independent because it is

a subset of Ad1 , which is linearly independent. And, when we consider the union with
{Qd1,d2}, we preserve linear independence because Qd1,d2 is the only polynomial of this
union that has nonzero evaluation in [0 : 0 : 1], which implies that its evaluation is
linearly independent from the rest. On the other hand, these sets are clearly contained in
Sd1/I(P

2), and the proofs from Lemmas E.3.3, E.3.5 and E.3.7 show that these sets are
also contained in Sd2/I(P

2).
Hence, we only need to prove that B is a system of generators for Sd1/I(P

2)∩Sd2/I(P
2).

Let f ∈ Sd1/I(P
2) ∩ Sd2/I(P

2). If f(0, 0, 1) = λ ̸= 0, then f has xd12 in its support
when expressed in terms of the monomials in Ad1 . By Lemma E.3.7, we must have
q ≤ d1. Moreover, we can subtract λQd1,d2 from f and obtain a polynomial f (1) such that
f (1)(0, 0, 1) = 0, its expression in terms of the monomials in Ad1 only contains monomials
from Ad1

1 ∪ Ad1
2 , and f (1) ∈ Sd1/I(P

2) ∩ Sd2/I(P
2). On the other hand, if f (1) has

monomials from Ad1
1 in its support when expressed in terms of the monomials in Ad1 ,

by Lemma E.3.3 we know that we can subtract adequate multiples of those monomials
and obtain a polynomial f (2) ∈ Sd1/I(P

2)∩Sd2/I(P
2) that only has monomials from Ad1

2

in its support. Finally, we can apply Lemma E.3.5 to f (2) and obtain that f (2) can be
generated by

⋃
a2∈Y {x

d1−a2
1 xa22 }. If f(0, 0, 1) = 0, we can apply the reasoning we have

used above for f (1).

Note that the basis from the previous result is formed by monomials, except when
q ≤ d1, where we consider Qd1,d2 . This polynomial cannot be reduced to a monomial

subtracting other monomials from the basis B of Theorem E.3.9 because both xd12 and

xd1−d2
1 xd22 are linearly independent from the rest of monomials from B by Lemma E.2.7

(also check the definition of Y from Lemma E.3.5 and note that d2 − q < d2).

Example E.3.10. Continuing with Examples E.3.4, E.3.6 and E.3.8, we see that the set

A4
1 ∪ {x41, x31x2} ∪ {x42 + x21x

2
2 + x20x

2
2 + x20x1x2}

is a basis for S4/I(P
2) ∩ S5/I(P

2).

By counting the elements of the set B in Theorem E.3.9, we obtain the dimension of
Sd1/I(P

2) ∩ Sd2/I(P
2).

Corollary E.3.11. Let 1 ≤ d1 < d2 ≤ 2(q − 1). Let k1 = dimRMd1−1(2). If d1 ≡
d2 mod q − 1, then dim(PRMd1(2) ∩ PRMd2(2)) = dimPRMd1(2). If d1 ̸≡ d2 mod q − 1,
then

dim(PRMd1(2) ∩ PRMd2(2)) =


k1 if d2 ≤ q − 1,

k1 +min{d1, d2 − (q − 1)} if d1 ≤ q − 1 < d2,

k1 + d2 − q + 2 if q ≤ d1.

In the case where d2 = d⊥1 = 2(q − 1)− d1, Corollary E.3.11 simplies to the following.

Corollary E.3.12. Let 1 ≤ d ≤ q − 1, let Y = {0, 1, . . . ,min{d − 1, q − d − 2}}, and
let k1 = dimRMd−1(2). If 2d ≡ 0 mod q − 1, then PRMd(2) ∩ PRM⊥

d (2) = PRMd(2). If

2d ̸≡ 0 mod q− 1, a basis for PRMd(2)∩PRM⊥
d (2) is given by Ad

1 ∪
(⋃

a2∈Y {x
d−a2
1 xa22 }

)
.

Consequently, dimPRMd(2) ∩ PRM⊥
d (2) = k1 +min{d, q − d− 1}.
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Proof. For the case d = q − 1, we have that PRMq−1(2) = PRMq−1(2) ∩ PRM⊥
q−1(2) by

Theorem E.2.2. For 1 ≤ d < q−1, from Theorem E.2.2 we see that PRM⊥
d (2) = PRMd⊥(2),

with d⊥ = 2(q−1)−d. The result is obtained by applying the previous results with d1 = d,
d2 = d⊥.

Note that for q ≤ d < 2(q − 1), we can also obtain the dimension of the hull by
considering PRMd⊥(2) in the previous result. For d = 2(q−1), by Theorem E.2.2 the dual
code is generated by the evaluation of 1, and by Lemma E.3.2 we obtain PRM2(q−1)(2) ∩
PRM⊥

2(q−1)(2) = {0}.

E.3.2 Hermitian hull

In the Hermitian case, we consider codes defined over Fn
q2 , and the Hermitian product of

two vectors v, w ∈ Fn
q2 is

v ·h w =

n∑
i=1

viw
q
i .

The Hermitian dual of a code C ⊂ Fn
q2 is defined as C⊥h := {v ∈ Fn

q2 | v·hw = 0, ∀ w ∈ C}.
We recall that we defined the Hermitian hull as HullH(C) = C ∩ C⊥h . It is easy to check
that, for a code C ⊂ Fn

q2 , we have that C⊥h = (C⊥)q, where we consider the component
wise power of q. In particular, this implies that the Hermitian dual and the Euclidean dual
have the same parameters. In this section we show that we may apply similar techniques
to the ones used in the previous section to compute the Hermitian hull in some cases. In
what follows, as we are working over Fq2 , we change q by q2 in the definitions of S, Ad

i ,
for i = 1, 2, 3, etc. We show now how the main definitions from the other sections are
adapted to the Hermitian case in this section:

1. S = Fq2 [x0, x1, x2].

2. Projective and affine Reed-Muller codes are defined for 1 ≤ d ≤ m(q2 − 1).

3. Ad is defined for 1 ≤ d ≤ 2(q2 − 1). If we have xa00 xa11 xa22 ∈ Ad
1, then 0 ≤ a1, a2 ≤

q2 − 1, and if xa00 xa11 xa22 ∈ Ad
2, then 0 ≤ a2 ≤ q2 − 1. For Lemma E.2.9, we have

0 ≤ ai ≤ q2 − 1, for 1 ≤ i ≤ 2.

4. Now z is the integer 1 ≤ z ≤ q2 − 1 such that z ≡ z mod q2 − 1 when z > 0, and
z = 0 otherwise.

In the affine case, Reed-Muller codes are either contained in their Euclidean dual or they
contain it, which means that the computation of the Euclidean hull is trivial. However,
the following result from [12] remarks that computing the Hermitian hull is more difficult
than computing the Euclidean hull in the affine case.

Proposition E.3.13. The codes’ inclusion RMd(q
2,m) ⊂ RM⊥h

d (q2,m) holds if, and only
if, 0 ≤ d ≤ m(q − 1)− 1.

Moreover, it is not hard to obtain a basis for the intersection of a Reed-Muller code
with the Hermitian dual of another Reed-Muller code.

149



Hulls of projective Reed-Muller codes over the projective plane

Definition E.3.14. Let 0 ≤ d1, d2 ≤ m(q2 − 1). We define

Ud1,d2 := {xa11 xa22 | 0 ≤ a1, a2 ≤ q2 − 1, a1 + a2 ≤ d1, qa1 + qa2 ≤ 2(q2 − 1)− d2 − 1}.

Proposition E.3.15. The image by the evaluation map over A2 of Ud1,d2 is a basis for

RMd1(q
2, 2) ∩ RM⊥h

d2
(q2, 2).

Proof. The monomials xa11 xa22 with 0 ≤ a1, a2 ≤ q2 − 1 have linearly independent eval-

uations over A2, and their evaluations generate Fq4

q2
(the full code). The evaluation of

a monomial xa11 xa22 with 0 ≤ a1, a2 ≤ q2 − 1 and a1 + a2 ≤ d1 is in RM⊥h
d2

(q2, 2)

if and only if xa11 xa22 ≡ (xb11 xb22 )q mod I(A2) for some 0 ≤ b1, b2 ≤ q2 − 1 such that

b1 + b2 ≤ 2(q2 − 1)− d2 − 1, where I(A2) = ⟨xq
2

1 − x1, x
q2

2 − x2⟩ (we have used the duality

from Theorem E.2.5 and the fact that RM⊥h
d2

(q2, 2) = (RM⊥
d2
(q2, 2))q). If ai ̸= 0 for some

i = 1, 2, then xa11 xa22 ≡ (xb11 xb22 )q mod I(A2) implies ai ≡ qbi mod q2−1 with bi ̸= 0, which
is equivalent to having bi = qai (recall Remark E.2.11). If ai = 0 for some i = 1, 2, then
xa11 xa22 ≡ (xb11 xb22 )q mod I(A2) implies bi = 0 = qai in this case as well. Therefore, in both
cases bi = qai, which finishes the proof.

Remark E.3.16. The previous result can be extended in the obvious way to the Reed-
Muller codes in m variables. For the Hermitian hull of affine Reed-Muller codes we only
need to consider Ud,d, but for projective Reed-Muller codes we will also consider Ud−1,d,
and that is why we expressed Proposition E.3.15 in full generality with two degrees d1 and
d2.

Using that C⊥h = (C⊥)q, if we consider (Ad
i )

q := {(xα)q | xα ∈ Ad
i } and d⊥ = 2(q2 −

1)− d, we have that the image by the evaluation map of (Ad⊥)q :=
⋃3

i=1(A
d⊥
i )q is a basis

for PRM⊥h
d (q2, 2) = (PRMd⊥(q

2, 2))q (if d ̸≡ 0 mod q2 − 1). Following the notation from
the previous section, we will denote by Sq

d⊥
/I(P 2) the vector space generated in S/I(P 2)

by
⋃3

i=1(A
d⊥
i )q.

To compute the dimension of the Hermitian hull of projective Reed-Muller codes it is
enough to consider the case with d ≤ q2−1. This is because if we assume d > q2−1, then

PRMd(q
2, 2) ∩ PRMq

d⊥
(q2, 2) = (PRMq

d(q
2, 2) ∩ PRMd⊥(q

2, 2))q,

and then at the right-hand side of the previous equality we have the Hermitian hull of a
projective Reed-Muller code of degree d⊥ < q2 − 1, to the power of q. Moreover, because
of Theorem E.2.2 we are going to avoid the case with d = q2−1 when giving results for the
Hermitian hull (for results about Sd/I(P

2)∩ Sq
d⊥

/I(P 2) we will still consider d = q2 − 1).

This is because in that case PRM⊥
d (q

2, 2) = PRMd⊥(q
2, 2) + ⟨(1, . . . , 1)⟩ ≠ PRMd⊥(q

2, 2),

and PRM⊥h
d (q2, 2) = (PRMd⊥(q

2, 2)+⟨(1, . . . , 1)⟩)q ̸= PRMq
d⊥

(q2, 2) ∼= Sq
d⊥

/I(P 2). Hence,

if d = q2 − 1 we do not have the isomorphism between PRM⊥h
d (q2, 2) and Sq

d⊥
/I(P 2), and

also this case is the least interesting for quantum codes because we do not have a bound
for the minimum distance of the dual code.

As a consequence of Proposition E.3.13 and Proposition E.3.15, we have the following
result.
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Lemma E.3.17. Let 1 ≤ d ≤ q2 − 1 and let U := {xd−a1−a2
0 xa11 xa22 | xa11 xa22 ∈ Ud−1,d} ⊂

Sd. Then, the classes of the monomials in U are contained in Sq
d⊥

/I(P 2). Moreover, if

d ≤ 2(q − 1), U = Ad
1.

Proof. Let 1 ≤ d ≤ q2−1, and let xa00 xa11 xa22 ∈ U . By definition, it is clear that xa00 xa11 xa22 ∈
Sq
d⊥

/I(P 2) because xa00 xa11 xa22 ≡ (xd
⊥−qa1−qa2

0 xqa11 xqa22 )q mod I(P 2), where qa1 + qa2 ≤
d⊥− 1 by the definition of Ud−1,d. If d ≤ 2(q− 1), we consider xa00 xa21 xa22 ∈ Ad

1. Therefore,
a1 + a2 ≤ d− 1 and we have that

qa1 + qa2 ≤ qa1 + qa2 ≤ q(d− 1) ≤ 2(q2 − 1)− 2(q − 1)− q ≤ 2(q2 − 1)− d− 1.

This means that Ad
1 ⊂ U in this case, and the other contention always holds.

Example E.3.18. We consider q = 3 and d = 7. Hence, we work over F32 and d >
2(q − 1) = 4 in this case. One can check that we have

U = A7
1 \ {x0x1x52, x0x21x42, x0x41x22, x0x51x2, x30x21x22, x40x1x22, x40x21x2},

where A7
1 is formed by all the monomials of degree 7 that are divisible by x0 in this case.

For instance, for the monomial x0x1x
5
2 we have a1 = 1, a2 = 5, and we check

qa1 + qa2 = 3 + 15 = 10 ̸≤ 9 = d⊥,

which implies x0x1x
5
2 ̸∈ U .

Remark E.3.19. To compute the dimension of the hull of projective Reed-Muller codes
we will need the size of the set U from Lemma E.3.17. We give a combinatorial formula for
|U | in Lemma E.5.1 of the Appendix. Moreover, it is possible to obtain a combinatorial
formula for |Ud,d| as well, as we note in Remark E.5.2, which gives the dimension of the
Hermitian hull for affine Reed-Muller codes in 2 variables.

In the following results we argue in a similar way to Section E.3.1 to show which poly-
nomials can be in Sd/I(P

2) ∩ Sq
d⊥

/I(P 2) depending on whether the monomials in the

support of these polynomials are contained in Ad
2 or if they have xd2 in their support (we

recall that Ad
3 = {xd2}). We restrict to the case 1 ≤ d ≤ 2(q − 1) in some results because

in that case we have U = Ad
1 by Lemma E.3.17, which is similar to what happens in the

Euclidean case. For the following results, recall that z is a representative of the class of z
modulo q2 − 1.

Lemma E.3.20. Let 1 ≤ d ≤ 2(q − 1). Let f ∈ Sd such that it only has monomials from
Ad

2 in its support, i.e., it can be expressed as

f =
∑

a1+a2=d,0<a1,0≤a2≤q2−1

λa1,a2x
a1
1 xa22 , λa1,a2 ∈ Fq2 .

Let T = {a2 | a2 < d, d⊥ > qa2 + (q2 − 1)} and Tf = {0 ≤ a2 ≤ q − 1 | λd−a2,a2 ̸= 0}.
Then f ∈ Sq

d⊥
/I(P 2) if and only if d ≡ 0 mod q − 1 or Tf ⊂ T .
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Proof. Assuming that f ∈ Sq
d⊥

/I(P 2), there is an expression

f ≡
∑

(x
α0
0 x

α1
1 x

α2
2 )q∈(Ad⊥ )q

µα0,α1,α2(x
α0
0 xα1

1 xα2
2 )q mod I(P 2), µα0,α1,α2 ∈ Fq2 . (E.3.9)

We have f(0, 0, 1) = 0, which means that µ0,0,d⊥ = 0. Following the proof of Lemma E.3.5,
we consider in(f) = xa11 xa22 , with a1 > 0, 0 ≤ a2 ≤ q2−1 and a1+a2 = d (since d ≤ 2(q−1),

we also have a1 ≤ q2 − 1). Because of (E.3.9) we must have some monomial in (Ad⊥)q

such that its expression in the basis from Lemma E.2.9 contains xa11 xa22 in its support.
Let γi = qai, for i = 1, 2, which implies that qγi ≡ ai mod q2 − 1. The only monomials
in (Ad⊥)q that contain xa11 xa22 in their expression in terms of the basis from Lemma E.2.9

are (xd
⊥−γ2

1 xγ22 )q if q(d⊥− γ2) ≡ a1 mod q2− 1, and (xγ00 xγ11 xγ22 )q if γ0 = d⊥− γ1− γ2 > 0.
In the first case, q(d⊥ − γ2) ≡ a1 mod q2 − 1 implies that qd⊥ ≡ d mod q2 − 1, which

happens if and only if d ≡ 0 mod q − 1. Taking into account that d ≤ 2(q − 1), we have

d⊥ > q2 − 1 ≥ γ2, and we have xa11 xa22 ≡ (xd
⊥−γ2

1 xγ22 )q mod I(P 2). Moreover, in this
situation we can do this for all the monomials from Ad

2 in the support of f .

If d ̸≡ 0 mod q − 1, the only monomial in (Ad⊥)q with xa11 xa22 in its expression in terms
of the elements of the basis from Lemma E.2.9 is (xγ00 xγ11 xγ22 )q with γ0 = d⊥ − γ1 − γ2, if
d⊥ − γ1 − γ2 > 0. This is because, by Lemma E.2.12, we have that

(xγ00 xγ11 xγ22 )q ≡ xa11 xa22 + (x0 − 1)(xa22 + x1 − 1) mod I(P 2),

if γ0 > 0. Hence, we must have µγ0,γ1,γ2 = λa1,a2 . If we denote by ((Ad⊥)q)(1) = (Ad⊥)q \
{(xγ00 xγ11 xγ22 )q}, we obtain

f (1) =f − λa1,a2x
a1
1 xa22

≡
∑

(x
α0
0 x

α1
1 x

α2
2 )q∈((Ad⊥ )q)(1)

µα0,α1,α2(x
α0
0 xα1

1 xα2
2 )q

+ µd⊥−qa1−qa2,qa1,qa2(x0 − 1)(xa22 + x1 − 1) mod I(P 2).

(E.3.10)

Arguing as in the proof of Lemma E.3.5, after l steps we get

0 ≡
∑

(x
α0
0 x

α1
1 x

α2
2 )q∈((Ad⊥ )q)(l)

µα0,α1,α2(x
α0
0 xα1

1 xα2
2 )q

+ (x0 − 1)
∑

a2∈Tf

µ
d⊥−q(d−a2)−qa2,q(d−a2),qa2

(xa22 + x1 − 1) mod I(P 2),
(E.3.11)

where Tf = {0 ≤ a2 ≤ q2 − 1 | λd−a2,a2 ̸= 0}. With this notation, we have that

((Ad⊥)q)(l) = (Ad⊥)q \
⋃

a2∈T {(x
γ0
0 xγ11 xγ22 )q, γ0 = d⊥ − γ1 − γ2, γ1 = q(d− a2), γ2 = qa2}.

If we express all the monomials in (E.3.11) in terms of the basis from Lemma E.2.9,
then we must have the coefficient of each element of the basis equal to 0. The monomials
from (E.3.11) in the second sum are already expressed in terms of the basis from Lemma
E.2.9. If we focus on the monomial xa22 for some a2 ∈ Tf with a2 > 0, we see that all the

monomials (xc00 xc11 xγ22 )q ∈ ((Ad⊥)q)(l) with 0 < c0, 0 < c1 ≤ q2−1, qc1 ̸≡ d−a2 mod q2−1,
and c0 + c1 + γ2 = d⊥, have xa22 in their expression in terms of the basis from Lemma
E.2.9:

(xc00 xc11 xγ22 )q ≡ xqc11 xa22 + (x0 − 1)(xa22 + x1 − 1) mod I(P 2).
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In fact, these are the only monomials from ((Ad⊥)q)(l) with xa22 in their expression (the one

with qc1 ≡ d−a2 mod q2−1 is not contained in ((Ad⊥)q)(l)). However, if we have µc0,c1,γ2 ̸=
0, some other monomial from ((Ad⊥)q)(l) must cancel the monomial xqc11 xa22 from (E.3.11).

The only other monomial in ((Ad⊥)q)(l) with xqc11 xa22 in its support when expressed in

terms of the basis from Lemma E.2.9 is (xc1+q2−1
1 xγ22 )q (we cannot use (xc11 xγ22 )q because

c1 + γ2 < d⊥), if c1 + γ2 + q2 − 1 = d⊥ (which implies c0 = q2 − 1). In our case, we always
have q2 − 1 < d⊥, but still we must also have d⊥ > γ2 + q2 − 1 to ensure c1 > 0.

Therefore, if d⊥ − γ2 − (q2 − 1) = c1 > 0, we can consider the following polynomial in
Sq
d⊥

/I(P 2):

(xq
2−1

0 xc11 xγ22 )q − (xc1+q2−1
1 xγ22 )q ≡ (x0 − 1)(xa22 + x1 − 1) mod I(P 2).

For every a2 ∈ Tf , we must have µq2−1,c1,γ2 = −µ0,c1+q2−1,γ2 = λd−a2,a2 to cancel the
polynomial (x0 − 1)(xa22 + x1 − 1) from (E.3.3). Thus, have seen that d⊥ > γ2 + (q2 − 1),
which implies that Tf ⊂ T .

These are necessary conditions, and now we show that they are sufficient. We assume
Tf ⊂ T , and for each a2 ∈ Tf , we denote γ1 = q(d− a2) as before. Then we have

xd−a2
1 xa22 ≡ (xd

⊥−γ2
1 xγ22 − xq

2−1
0 xd

⊥−γ2
1 xγ22 + xd

⊥−γ1−γ2
0 xγ11 xγ22 )q mod I(P 2). (E.3.12)

We note that if d⊥ = d⊥ − (q2 − 1) > γ2, then d⊥ > γ1 + γ2. The previous equality is
easy to check because both sides have the same evaluation at P 2 = [{1} × F2

q2 ] ∪ [{0} ×
{1}×Fq2 ]∪{[0 : 0 : 1]}. Hence, xd−a2

1 xa22 ∈ Sd/I(P
2)∩Sq

d⊥
/I(P 2) for each a2 ∈ Tf , which

implies that f ∈ Sd/I(P
2) ∩ Sq

d⊥
/I(P 2).

Lemma E.3.21. Let 1 ≤ d ≤ 2(q − 1). There is some f ∈ Sd with xd2 in its support and
such that f ∈ Sq

d⊥
/I(P 2) if and only if d ≡ 0 mod q − 1.

Proof. If d ≡ 0 mod q − 1, then we have xd2 ≡ xqd
⊥

2 mod I(P 2) because

d ≡ qd⊥ mod q2 − 1 ⇐⇒ (q + 1)d ≡ 0 mod q2 − 1 ⇐⇒ d ≡ 0 mod q − 1.

Therefore, we only have to prove the other implication.
Let f ∈ Sd. By Lemma E.3.17, we can assume that the support of f is contained in

(Ad⊥
2 )q ∪ (Ad⊥

3 )q, i.e., it can be expressed as

f =
∑

a1+a2=d,0<a1,0≤a2≤q2−1

λa1,a2x
a1
1 xa22 + λ0,dx

d
2, λa1,a2 ∈ Fq2 .

We assume that λ0,d ̸= 0. As in the previous result, we must have an expression

f ≡
∑

x
a0
0 x

a1
1 x

a2
2 ∈(Ad⊥ )q

µa0,a1,a2x
a0
0 xa11 xa22 mod I(P 2), µa0,a1,a2 ∈ Fq2 . (E.3.13)

The only monomials in (Ad⊥)q with xd2 in their expression in terms of the basis from

Lemma E.2.9 are (xβ0
0 xβ1

1 xβ2
2 )q, for some 0 < β0, 0 < β1 ≤ q2 − 1, 0 < β2 ≤ q2 − 1, such

that β0 + β1 + β2 = d⊥ and qβ2 ≡ d mod q2 − 1; and xd2 if d ≡ 0 mod q2 − 1. We assume
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now that d ̸≡ 0 mod q2 − 1, and we will arrive at a contradiction. Thus, we focus on the
first type of monomials, which by Lemma E.2.12 can be expressed as

(xβ0
0 xβ1

1 xβ2
2 )q ≡ xqβ1

1 xd2 + (x0 − 1)(xd2 + x1 − 1) mod I(P 2). (E.3.14)

The monomials xqβ1
1 xd2 have degree greater than d. Thus, they cannot be in the support

of f and they have to be cancelled in the expression from (E.3.13) if we consider some

monomial (xβ0
0 xβ1

1 xβ2
2 )q. The only other monomial in (Ad⊥)q with xqβ1

1 xd2 in its expression

from the basis from Lemma E.2.9 is (xβ1+q2−1
1 xβ2

2 )q if d⊥ = β1+β2+ q2−1, which implies

β0 = q2 − 1 and β1 = d⊥ − β2 − (q2 − 1). Thus, there is only one monomial in (Ad⊥)q that
we can consider, and we have

xd2 ≡ (xβ1+q2−1
1 xβ2

2 )q − (xβ0
0 xβ1

1 xβ2
2 )q + (x0 − 1)(x1 − 1) + x0x

d
2 mod I(P 2).

Similarly to the proof of Lemma E.3.5, we must have −µβ0,β1,β2 = µ0,β1+q2−1,β2
= λ0,d. We

can define in this case ((Ad⊥
2 )q)(1) = (Ad⊥

2 )q \{(xβ1
0 xβ1

1 xβ2
2 )q, (xβ1+q2−1

1 xβ2
2 )q}, and consider

f (1) =f − λ0,dx
d
2

≡
∑

x
a0
0 x

a1
1 x

a2
2 ∈((Ad⊥ )q)(1)

µa0,a1,a2x
a0
0 xa11 xa22 − λ0,d

(
(x0 − 1)(x1 − 1) + x0x

d
2

)
mod I(P 2).

(E.3.15)
Arguing as in Lemma E.3.5 and using Lemma E.3.17, we obtain that there must be a sum
of monomials in ((Ad⊥)q)(l) equal to λ0,d

(
(x0 − 1)(x1 − 1) + x0x

d
2

)
. This implies that we

have the evaluation of (x0 − 1)(x1 − 1) + x0x
d
2 in PRM⊥h

d (q2, 2). This is a contradiction

because we have the evaluation of (xd
⊥−β2

0 xβ2
2 )q in PRM⊥h

d (q2, 2), and (x0 − 1)(x1 − 1) +

x0x
d
2− (xd

⊥−β2
0 xβ2

2 )q ≡ (x0−1)(x1−1) mod I(P 2), whose evaluation has Hamming weight
1.

Let 1 ≤ d ≤ q2 − 1. In the next result we give a basis of Sd/I(P
2) ∩ Sq

d⊥
/I(P 2)

for 1 ≤ d ≤ 2(q − 1) using the previous results, and we give a linearly independent set
contained in Sd/I(P

2) ∩ Sq
d⊥

/I(P 2) for the case 2(q − 1) < d ≤ q2 − 1.
To state the next result, we use the following sets of polynomials. We recall that

U = {xd−a1−a2
0 xa11 xa22 | xa11 xa22 ∈ Ud−1,d}, where we consider Ud−1,d as in Definition E.3.14.

We define

V := {xd−a2
1 xa22 | a2 ∈ T},

where T is defined as in Lemma E.3.20. Finally, for the case 2(q − 1) < d ≤ q2 − 1 we
define

W := {xd−a2
1 xa22 + xd−qd⊥−a2−a2

0 xqd
⊥−a2

1 xa22 |q2 − 1 ≥ d⊥ − qa2 > q(d− a2)

and d− a2 > qd⊥ − a2}.

We are interested in W because of the following result.

Lemma E.3.22. We have W ⊂ Sd/I(P
2) ∩ Sq

d⊥
/I(P 2), and U ∪ V ∪ W is a linearly

independent set in S/I(P 2).
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Proof. If d⊥ − qa2 > q(d− a2) and d − a2 > qd⊥ − a2 (these conditions come from the
definition of W ), then

xd−a2
1 xa22 + xd−qd⊥−a2−a2

0 xqd
⊥−a2

1 xa22 ≡

(xd
⊥−qa2

1 xqa22 + x
d⊥−q(d−a2)−qa2
0 x

q(d−a2)
1 xqa22 )q mod I(P 2).

(E.3.16)
This equivalence can be checked by considering the evaluation of both polynomials at
P 2. Therefore, we have W ⊂ Sd/I(P

2) ∩ Sq
d⊥

/I(P 2). The condition q2 − 1 ≥ d⊥ − qa2
ensures U ∪ V ∪ W is linearly independent. Indeed, both of the monomials in the left
hand side of (E.3.16) are monomials from the basis of Lemma E.2.7 and are not in U ∪V .
The monomial xd−a2

1 xa22 from (E.3.16) is not in V because d⊥ ≤ qa2 − (q2 − 1) (see the

definition of T in Lemma E.3.20). For the monomial xd−qd⊥−a2−a2
0 xqd

⊥−a2
1 xa22 , it is not in

U because we have xqd
⊥−a2

1 xa22 ̸∈ Ud−1,d. To see this, we use the definition of Ud−1,d from

Definition E.3.14. First, d − a2 > qd⊥ − a2 means that this monomial satisfies the first
condition in the definition of Ud−1,d. For the second one, we would have to check if

q(qd⊥ − a2) + qa2 = d⊥ − qa2 + qa2 ≤ d⊥ − 1. (E.3.17)

If d⊥ − qa2 < d⊥ − qa2, we clearly have (E.3.17). However, if d⊥ − qa2 = d⊥ − qa2, we do
not have (E.3.17), and this happens if and only if q2−1 ≥ d⊥−qa2, which is the condition
we are using in the definition of W .

Now we can state the main result of this section.

Theorem E.3.23. Let 1 ≤ d ≤ q2 − 1, and U = {xd−a1−a2
0 xa11 xa22 | xa11 xa22 ∈ Ud−1,d},

where we consider Ud−1,d as in Definition E.3.14. Let V and W be as in the discussion
above. If d ≡ 0 mod q − 1, then U ∪ Ad

2 ∪ Ad
3 is a basis for Sd/I(P

2) ∩ Sq
d⊥

/I(P 2). For

d ̸≡ 0 mod q−1, if d ≤ 2(q−1), then U ∪V = Ad
1∪V is a basis for Sd/I(P

2)∩Sq
d⊥

/I(P 2).
Lastly, if 2(q − 1) < d ≤ q2 − 1, then U ∪ V ∪W is a linearly independent set contained
in Sd/I(P

2) ∩ Sq
d⊥

/I(P 2).

Proof. If d ≡ 0 mod q − 1 and d ≤ q2 − 1, reasoning as in the proofs of Lemmas E.3.17,
E.3.20 and E.3.21, we have U∪Ad

2∪Ad
3 contained in Sd/I(P

2)∩Sq
d⊥

/I(P 2). Let f ∈ Sd such

that f ∈ Sq
d⊥

/I(P 2) and whose support is contained in Ad
1 \ U . Then f has an expression

in terms of the monomials from (Ad⊥)q in S/I(P 2), and this expression only involves the

monomials from (Ad⊥
1 )q. This is because xqd

⊥

2 cannot be in the expression because it is

nonzero at [0 : 0 : 1] while f(0, 0, 1) = 0, and if there were monomials from (Ad⊥
2 )q, in

[{0} × {1} × Fq2 ] that expression would have the same evaluation as some polynomial in
x2 with degree less than or equal to q2 − 1, which cannot have q2 zeroes (f is equal to 0
in those points). We finish this case by using the affine case from Proposition E.3.15.
If d ̸≡ 0 mod q−1 and d ≤ 2(q−1), we have U = Ad

1 contained in Sd/I(P
2)∩Sq

d⊥
/I(P 2)

by Lemma E.3.17. Arguing as in the proof of Theorem E.3.9 and using Lemma E.3.20
and Lemma E.3.21, we obtain that U ∪ V is a basis for Sd/I(P

2) ∩ Sq
d⊥

/I(P 2).
Finally, in the case d ̸≡ 0 mod q − 1 and 2(q − 1) < d < q2 − 1, we have from Lemma

E.3.17 that U is contained in Sd/I(P
2) ∩ Sq

d⊥
/I(P 2). The fact that V is contained in

Sd/I(P
2) ∩ Sq

d⊥
/I(P 2) follows from (E.3.12). For W , by Lemma E.3.22, we have that

W ⊂ Sd/I(P
2) ∩ Sq

d⊥
/I(P 2) and U ∪ V ∪W is linearly independent in S/I(P 2).
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From Theorem E.3.23 we can obtain the exact dimension of Sd/I(P
2) ∩ Sq

d⊥
/I(P 2) if

d ≤ 2(q− 1) or d ≡ 0 mod q− 1. For 2(q− 1) < d ≤ q2 − 1, d ̸≡ 0 mod q− 1, we only have
a lower bound for the dimension of Sd/I(P

2) ∩ Sq
d⊥

/I(P 2). Note that a lower bound for
the dimension of the hull gives an upper bound for the parameter c of the corresponding
EAQECC, which is still interesting because it tells us how many maximally entangled pairs
are required at most for using that EAQECC. Equivalently, if we use as many maximally
entangled pairs as the bound specifies, then we can employ this EAQECC. Nevertheless,
in all cases we have checked, this is indeed the true value of the dimension of the hull,
which implies that U ∪ V ∪ W is also a basis for the hull in those cases. In particular,
this means that the Hermitian hull is not generated by monomials in general because of
W (we saw in the proof of Lemma E.3.22 that no monomial of the polynomials from W
is contained in U ∪ V ). We see this in the next example.

Example E.3.24. We continue with the setting from Example E.3.18. We have d = 7 >
2(q − 1) and d ̸≡ 0 mod q − 1. Therefore, by Theorem E.3.23, U ∪ V ∪ W is a linearly
independent set contained in Sd/I(P

2)∩Sq
d⊥

/I(P 2). In Example E.3.18 we computed the
set U , and we are going to compute the sets V and W now.
For V , we first obtain T = {7}. This is because d⊥ − (q2 − 1) = 1 in this case. Thus,

1 > qa2 implies a2 = 0, and we have V = {x71}.
Finally, for W , we have to consider 0 ≤ a2 ≤ 7 and check the conditions in the definition

of W . In this case, the only a2 that satisfies the conditions is a2 = 1, and we have
W = {x61x2 + x40x

2
1x2}.

It can be checked with Magma [4] that the image by the evaluation map of U ∪ V ∪W
is, in fact, a basis for the Hermitian hull in this case. We also see that the monomials
from the polynomial x61x2 + x40x

2
1x2 in the set W are not contained in V and U (see

Example E.3.18). Hence, we see that in this case the Hermitian hull cannot be generated
by monomials from Ad.

We have the following lemma, which gives us the size of the set T (which is the same
as the size of the set V as defined prior to Theorem E.3.23) and allows us to give more
explicit expressions for the dimension of Sd/I(P

2) ∩ Sq
d⊥

/I(P 2) in some cases.

Lemma E.3.25. Let 1 ≤ d ≤ q2 − 1, and let d = β0 + β1q be its q-adic expansion. Then

|T | = |V | = β1(q − 1− β1) + min{β0, q − 1− β1}+min{β1, q − 1− β0}.

Proof. Let a2 ∈ T , and we consider its q-adic expansion a2 = α0 + α1q. We must have
a2 < d and d⊥ > qa2 + q2 − 1 by the definition of T . It is easy to check that α1 + α0q is
the q-adic expansion of qa2. The condition a2 < d translates to the condition

α1 < β1 or α1 = β1 and α0 < β0. (E.3.18)

For the other condition, it is easy to check that q − 1 − β0 + (q − 1 − β1)q is the q-adic
expansion of d⊥ − (q2 − 1) = q2 − 1− d (using q2 = q− 1+ (q− 1)q). Then, the condition
d⊥ − (q2 − 1) > qa2 translates to

α0 < q − 1− β1 or α0 = q − 1− β1 and α1 < q − 1− β0. (E.3.19)

Now we count all the pairs 0 ≤ α0, α1 ≤ q − 1 that satisfy the conditions (E.3.18) and
(E.3.19). If α0 < q − 1− β1, all the values of α1 such that α1 < β1 satisfy the conditions.
We obtain β1(q − 1− β1) pairs in this way.
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If α0 < q − 1 − β1, we also have the possibility of having α1 = β1, but then we
must also have α0 < β0 by (E.3.18). Therefore, we obtain the pairs with α1 = β1, and
α0 = 0, 1, . . . ,min{β0−1, q−2−β1}, i.e., we obtain min{β0, q−1−β1} pairs of this type.

If α0 = q − 1− β1, we must have α1 < q − 1− β0 by (E.3.19). If we also have α1 < β1,
we satisfy (E.3.18) and we obtain min{β1, q − 1− β0} pairs. The last option would be to
have α0 = q − 1− β1 and α1 = β1, in which case we must also have α1 = β1 < q − 1− β0
by (E.3.19) and α0 = q − 1 − β1 < β0 by (E.3.18). But we cannot have β1 < q − 1 − β0
and q − 1 − β1 < β0 simultaneously, which means that this pair does not satisfy the
conditions.

Remark E.3.26. In the previous result, we have that β1 ≤ q − 1 − β0 ⇐⇒ β0 ≤
q − 1− β1 ⇐⇒ β0 + β1 ≤ q − 1. Hence, the size of the set T can also be expressed as

|T | =

{
β1(q − 1− β1) + β0 + β1 if β0 + β1 ≤ q − 1,

β1(q − 1− β1) + 2(q − 1)− β0 − β1 if β0 + β1 > q − 1.

Moreover, it is easy to check that these expressions can also be written in the following
way:

|T | =

{
d− β2

1 if β0 + β1 ≤ q − 1,

d− β2
1 − 2(β0 + β1 − (q − 1)) if β0 + β1 > q − 1.

We note that d ≤ 2(q − 1) = q + (q − 2) implies that β0 + β1 ≤ q − 1.

Example E.3.27. Continuing with the setting from Example E.3.24, we have that d =
7 = 1 + 2 · 3, which means that β0 = 1, β1 = 2. Thus, by Lemma E.3.25, we obtain

|T | = d− β2
1 − 2(β0 + β1 − (q − 1)) = 1,

which is what we obtained in Example E.3.24.

As a consequence of Lemma E.3.17, Theorem E.3.23 and Lemma E.3.25 we have the
following result about the dimension of the Hermitian hull. Note that |V | = |T |, and |U |
is computed in Lemma E.5.1.

Corollary E.3.28. Let 1 ≤ d < q2 − 1, and let d = β0 + β1q be its q-adic expansion. If
d ≡ 0 mod q − 1, we have

dim(PRMd(q
2, 2) ∩ PRM⊥h

d (q2, 2)) =

{
dim(PRMd(q

2, 2)) if d ≤ 2(q − 1),

|U |+ d+ 1 if d > 2(q − 1).

For the case d ̸≡ 0 mod q − 1: if d ≤ 2(q − 1), we have

dim(PRMd(q
2, 2) ∩ PRM⊥h

d (q2, 2)) = |U |+ d− β2
1 =

∣∣∣Ad
1

∣∣∣+ d− β2
1 ,

and if d > 2(q − 1), we have the lower bound

dim(PRMd(q
2, 2) ∩ PRM⊥h

d (q2, 2)) ≥ |U |+ |V |+ |W |.

Example E.3.29. We continue with the setting from Example E.3.24, where we saw that
U ∪ V ∪W was a basis for the Hermitian hull. Therefore, we have that the dimension of
the Hermitian hull is |U |+ |V |+ |W | (the bound from Corollary E.3.28 is, in fact, the true
dimension). From Example E.3.18 we obtain |U | = 28−7 = 21, and from Example E.3.24
we obtain |V | = |W | = 1. Hence, the dimension of the Hermitian hull in this case is 23.
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E.4 Quantum codes from projective Reed-Muller codes

This section is devoted to providing the parameters of the EAQECCs obtained by using
projective Reed-Muller codes over the projective plane P2. Note that, by Theorem E.2.1
and Theorem E.2.2, we know all the parameters of the projective Reed-Muller codes except
when d ≡ 0 mod q−1 (resp. d ≡ 0 mod q2−1 in the Hermitian case), in which case we do
not know the minimum distance of the dual code. Moreover, in this case the dimension of
the hull is not directly given by the computations made in the previous sections because we
would have to also consider the constant 1 when computing the intersection Sd1/I(P

2) ∩
Sd2/I(P

2) (resp. Sd/I(P
2) ∩ Sq

d⊥
/I(P 2) in the Hermitian case). Therefore, we avoid this

case in the results of this section.

E.4.1 Euclidean EAQECCs

Using the knowledge of the relative hull for two projective Reed-Muller codes, we can con-
struct asymmetric EAQECCs. Asymmetric EAQECCs arise after noting that in quantum
error-correction we consider two different types of errors, phase-shift and qudit-flip errors,
which are not equally likely to occur [15]. Asymmetric EAQECCs have two different er-
ror correction capabilities for each of the errors, which are expressed by two minimum
distances, δz and δx, whose meaning is that the corresponding asymmetric EAQECC can
correct up to ⌊(δz − 1)/2⌋ phase-shift errors and ⌊(δx − 1)/2⌋ qudit-flip errors.

Given a nonempty set U ⊂ Fn
q , we denote by wt(U) the number min{wt(v) | v ∈ U\{0}}.

To construct asymmetric EAQECCs, we can use the following result from [11].

Theorem E.4.1. Let Ci ⊂ Fn
q be linear codes of dimension ki, for i = 1, 2. Then, there

is an asymmetric EAQECC with parameters [[n, κ, δz/δx; c]]q, where

c = k1 − dim(C1 ∩ C⊥
2 ), κ = n− (k1 + k2) + c,

δz = wt
(
C⊥
1 \

(
C⊥
1 ∩ C2

))
and δx = wt

(
C⊥
2 \

(
C⊥
2 ∩ C1

))
.

Symmetric quantum codes can also be obtained from the previous construction by con-
sidering the minimum distance δ = min{δz, δx} instead of the two minimum distances δz
and δx.

If C1 ⊂ C⊥
2 , we have c = 0 and in that case we do not require entanglement assistance.

The asymmetric EAQECC from the previous result is called pure if δz = wt(C⊥
1 ) and

δx = wt(C⊥
2 ), and it is called impure otherwise. For the symmetric case, the code is called

pure if δ = min{wt(C⊥
1 ),wt(C⊥

2 )}, and impure otherwise.

Finding impure quantum codes is a difficult task in general. The following result sup-
ports this fact because it implies that the EAQECCs we obtain using projective Reed-
Muller codes are always pure.

Lemma E.4.2. Let 1 ≤ d1, d2 ≤ 2(q − 1), with d1 ̸≡ d2 mod q − 1. We have that

wt (PRMd1(2) \ (PRMd1(2) ∩ PRMd2(2))) = wt(PRMd1(2))

Proof. If d2 < d1, then wt(PRMd2(2)) > wt(PRMd1(2)). Therefore, there is a codeword
of Hamming weight wt(PRMd1(2)) in PRMd1(2) \ PRMd2(2).
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On the other hand, if d2 > d1, we consider two cases. If d1 ≤ q− 1, then the evaluation
of the polynomial

x2

d1−1∏
j=1

(λjx2 − x1),

where λi ̸= λj if i ̸= j, λj ∈ F∗
q , has Hamming weight q(q− d1+1) = wt(PRMd1(2)). This

is easy to check using the representatives [F2
q ×{1}]∪ [Fq ×{1}×{0}]∪{[1 : 0 : 0]} for P2.

This polynomial is not contained in Sd1/I(P
2) ∩ Sd2/I(P

2) because this vector space is

generated by Ad1
1 ∪

(⋃
a2∈Y {x

d1−a2
1 xa22 }

)
, which does not generate the monomial xd12 that

is in the support of the previous polynomial. Thus, the evaluation of this polynomial is a
codeword of Hamming weight wt(PRMd1(2)) in PRMd1(2) \ (PRMd1(2) ∩ PRMd2(2)).

If d1 ≥ q, we consider instead the polynomial

x1(x
q−1
2 − xq−1

1 )

d1−1∏
j=1

(λjx1 − x0), (E.4.1)

where λi ̸= λj if i ̸= j, λj ∈ F∗
q . As before, it is easy to check that the evaluation of this

polynomial has Hamming weight q−d1+1 = wt(PRMd1(2)). The monomial xd11 xq−1
2 in the

support of the previous polynomial is part of the basis from Lemma E.2.7. We have that

Sd2/I(P
2)∩Sd1/I(P

2) is generated in this case by Ad1
1 ∪

(⋃
a2∈Y {x

d1−a2
1 xa22 }

)
∪{Qd1,d2}.

All of these monomials, and Qd1,d2 , are expressed in terms of the basis from Lemma E.2.7.

Therefore, the only way to generate a polynomial with xd11 xq−1
2 in its support is to have

this monomial in the expression of some element of the basis of Sd1/I(P
2) ∩ Sd2/I(P

2)
in terms of the basis from Lemma E.2.7. By checking the definitions, we see that this
only happens if d2 = q − 1, because in that case this monomial appears in the expression
of Qd1,d2 . However, Qd1,d2 has the monomial xd12 in its support, and the polynomial

from (E.4.1) does not, and xd12 cannot be cancelled because no other monomial from the
basis of Sd1/I(P

2) ∩ Sd2/I(P
2) has this monomial in its support. Hence, the evaluation

of the polynomial from (E.4.1) gives a codeword of Hamming weight wt(PRMd1(2)) in
PRMd1(2) \ (PRMd1(2) ∩ PRMd2(2)).

Remark E.4.3. For d1 ≡ d2 mod q − 1, if d2 < d1, then

wt (PRMd1(2) \ (PRMd1(2) ∩ PRMd2(2))) = wt(PRMd1(2))

arguing as in the previous result. If d2 ≥ d1, then

PRMd1(2) \ (PRMd1(2) ∩ PRMd2(2)) = ∅.

Now we show the parameters of the asymmetric EAQECCs arising from Theorem E.4.1
when C1 and C2 are projective Reed-Muller codes. Note that the parameters of PRMd(2)
and RMd(2) are in Theorems E.2.1 and E.2.4, and for PRM⊥

d (2) we can use Theorem
E.2.2.

Theorem E.4.4. Let 1 ≤ d1 ≤ d2 < 2(q− 1), d1+d2 ̸≡ 0 mod q− 1, d1 ̸= q− 1 ̸= d2. Let
k1 = dimRMd1−1(2) and k2 = dimRMd⊥2 −1(2), where d⊥2 = 2(q − 1) − d2. Then we can
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construct an asymmetric EAQECC with parameters [[n, κ, δz/δx; c]]q, where n = q2+q+1,
κ = n − (dimPRMd1(2) + dimPRMd2(2)) + c, δz = wt(PRM⊥

d2
(2)), δx = wt(PRM⊥

d1
(2)),

and the value of c is the following:

1. If d1 + d2 < 2(q − 1):

c =

{
d1 + 1−min{d1, q − 1− d2} if d2 < q − 1,

d1 + 1 if q ≤ d2.

2. If d1 + d2 > 2(q − 1):

c =

{
k1 − k2 + d1 + 1 if d1 < q − 1,

k1 − k2 + q + 1−min{d⊥2 , d1 − (q − 1)} if q ≤ d1.

Moreover, this code is pure.

Proof. We consider C1 = PRMd1(2), C2 = PRMd2(2), and apply Theorem E.4.1. For the
parameter c, we use Corollary E.3.11 with d1 and d⊥2 = 2(q− 1)− d2, taking into account
that d1 + d2 ̸≡ 0 mod q − 1 implies that d1 ̸≡ 2(q − 1)− d2 mod q − 1, and Remark E.2.8.
We also note that if d1 + d2 < 2(q − 1), then d1 < d⊥2 , and if d1 + d2 > 2(q − 1), then
d⊥2 < d1.

A direct application of Theorem E.4.1 would give us a pure quantum code with δz =
wt(PRM⊥

d1
(2)) and δx = wt(PRM⊥

d2
(2)) due to Lemma E.4.2. However, it is easy to see

that if we exchange the roles of C1 and C2 in Theorem E.4.1, the resulting asymmetric
EAQECC has the same parameters, except that δz and δx are exchanged, which gives the
result.

Let d1 ̸≡ 0 mod q − 1, d2 ̸≡ 0 mod q − 1. If d1 + d2 = q − 1 or d1 + d2 = 2(q − 1),
we can obtain an EAQECC as in Theorem E.4.4 with c = 0 because dim(PRMd1(2) ∩
PRM⊥

d2
(2)) = dimPRMd1(2) by Lemma E.3.1. If d1+d2 = 3(q−1) or d1+d2 = 4(q−1), we

have c = dimPRMd1(2)− dimPRM⊥
d2
(2) instead, because dim(PRMd1(2) ∩ PRM⊥

d2
(2)) =

dimPRM⊥
d2
(2).

Example E.4.5. We consider Fq = F9, and we use Theorem E.4.4 with d1 = 3, d2 = 11.
The parameters for the corresponding affine and projective Reed-Muller codes are obtained
from Theorem E.2.4 and Theorem E.2.1, respectively. For the parameter c, we have
d1+d2 = 14 < 16 = 2(q− 1), and c = 3+1 = 4 in this case because q = 9 ≤ 11 = d2. The
asymmetric EAQECC that we obtain in this way has parameters [[91, 15, 45/5; 4]]9. With
affine Reed-Muller codes, it is possible to obtain an asymmetric EAQECC with parameters
[[81, 5, 45/5; 0]]9. If we define the rate as ρ := κ/n, and the net rate as ρ := (κ− c)/n, we
see that the projective code clearly has higher rate, but it also has higher net rate.

In [15] it is shown that the probability of phase-shift errors is between 10 and 100
times higher than the probability of qudit-flip errors, depending on the devices used for
constructing qubits. Hence, it is desirable to construct EAQECCs with a higher correction
capability for phase-shift errors, i.e., EAQECCs with δz ≫ δx. The EAQECCs arising from
Theorem E.4.4 automatically satisfy δz ≥ δx. We show now how to construct codes with
high asymmetry ratio δz/δx using projective Reed-Muller codes.
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Example E.4.6. Assume that for a certain application we want to correct 1 qudit-flip
error (and detect 2), for lengths lower than 200. Therefore, we want to obtain an asym-
metric EAQECC with δx = 3. If we assume that the probability of phase-shift errors
is between 10 and 100 times higher than the probability of qudit-flip errors, we want to
construct codes with δz between 30 and 300. If we consider the field Fq, using Theorem
E.4.4 it is easy to check that the asymmetric EAQECC with highest asymmetry ratio and
nonzero dimension that we can obtain has parameters

[[q2 + q + 1, 5, q(q − 1)/3; 2]]q,

which corresponds to d1 = 1 and d2 = 2(q−1)−2. By considering q = 9, 11, 13, we obtain
the parameters [[91, 5, 72/3; 2]]9, [[133, 5, 110/3; 2]]11, [[183, 5, 156/3; 2]]13, respectively. All
of the previous codes satisfy the required conditions about the asymmetry ratio and length,
and all of them surpass the quantum Gilbert Varshamov bound from [23].

With affine Reed-Muller codes we can obtain instead the parameters

[[q2, 3, q(q − 2)/3; 0]]q.

Hence, with projective Reed-Muller codes we can achieve a higher asymmetry ratio, at
the expense of getting a worse net rate with respect to the affine case. We can also obtain
the same asymmetry ratio as with affine Reed-Muller codes, and increase the net rate, by
using projective Reed-Muller codes as we saw in Example E.4.5.

It is not easy to compare the codes that we obtain with the literature because there
are not many references about asymmetric EAQECCs. However, we can use the quantum
Gilbert-Varshamov bound from [23] to argue that we are obtaining quantum codes with
good parameters. In Table E.1 we show some of the codes that we obtain that surpass
the quantum Gilbert-Varshamov bound from [23].

We turn our attention now to the symmetric case. Given a symmetric quantum code
obtained using the construction from Theorem E.4.1 with parameters [[n, κ, δ; c]]q, we
can define the rate and net rate as in Example E.4.5. Fixing the length and minimum
distance, if an EAQECC has better net rate than other EAQECC, while keeping the other
rate constant, we will say that the first code has better parameters than the second one.
In this sense, for the symmetric codes arising from Theorem E.4.4, the following result
shows that the best symmetric codes are obtained when d1 = d2.

Corollary E.4.7. We fix 1 ≤ d1 < 2(q−1), and let d1 ≤ d2 < 2(q−1) with d1 ̸= q−1 ̸= d2
and d1 + d2 ̸≡ 0 mod q − 1. Let k1 = dimRMd1−1(2) and k2 = dimRMd⊥2 −1(2), where

d⊥2 = 2(q−1)−d2. Then the best choice for d2 in Theorem E.4.4 for symmetric EAQECCs
is d2 = d1, which gives an EAQECC with parameters [[n, κ, δ; c]], where n = q2 + q + 1,
κ = n− 2(dimPRMd1(2)) + c, δ = wt(PRM⊥

d1
(2)), and

c =

{
d1 + 1−min{d1, q − 1− d1} if d1 < (q − 1),

k1 − k2 + q + 1−min{d⊥1 , d1 − (q − 1)} if d1 > (q − 1).

Proof. For d2 ≥ d1, we have that min{wt(PRM⊥
d1
(2)),wt(PRM⊥

d2
(2))} = wt(PRM⊥

d1
(2))

from Theorem E.2.2. Therefore, all the symmetric EAQECCs obtained from Theorem
E.4.4 in this setting have the same parameter δ. For d1 = d2, we obtain from Theorem
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Table E.1: Codes arising from Theorem E.4.4 surpassing the quantum Gilbert-Varshamov
bound from [23].

q d1 d2 n κ δx δz c

4 1 1 21 16 3 3 1
4 1 4 21 5 3 12 2
4 2 2 21 11 4 4 2
4 2 5 21 2 4 16 5
4 4 4 21 2 12 12 11
4 5 5 21 1 16 16 16
5 1 1 31 26 3 3 1
5 1 2 31 23 3 4 1
5 1 5 31 9 3 15 2
5 1 6 31 5 3 20 2
5 2 3 31 17 4 5 2
5 2 5 31 7 4 15 3
5 2 7 31 2 4 25 5
5 3 6 31 3 5 20 7
5 3 7 31 2 5 25 9
5 5 5 31 3 15 15 14
5 5 6 31 2 15 20 17
5 6 7 31 1 20 25 23
5 7 7 31 1 25 25 26
9 1 1 91 86 3 3 1
9 1 2 91 83 3 4 1
9 1 3 91 79 3 5 1
9 1 4 91 74 3 6 1
9 1 11 91 20 3 45 2
9 1 12 91 14 3 54 2
9 1 13 91 9 3 63 2

q d1 d2 n κ δx δz c

9 1 14 91 5 3 72 2
9 2 2 91 80 4 4 1
9 2 3 91 76 4 5 1
9 2 11 91 18 4 45 3
9 2 12 91 12 4 54 3
9 2 13 91 7 4 63 3
9 2 15 91 2 4 81 5
9 3 3 91 72 5 5 1
9 3 12 91 9 5 54 4
9 3 14 91 3 5 72 7
9 3 15 91 2 5 81 9
9 4 13 91 4 6 63 9
9 4 14 91 3 6 72 12
9 4 15 91 2 6 81 14
9 11 12 91 2 45 54 57
9 11 14 91 1 45 72 65
9 11 15 91 1 45 81 68
9 12 13 91 1 54 63 67
9 12 14 91 1 54 72 71
9 12 15 91 1 54 81 74
9 13 13 91 1 63 63 72
9 13 14 91 1 63 72 76
9 13 15 91 1 63 81 79
9 14 14 91 1 72 72 80
9 14 15 91 1 72 81 83
9 15 15 91 1 81 81 86

E.4.4 an EAQECC with the stated parameters. For d2 > d1 such that d2 ̸= q − 1 and
d2 < 2(q − 1), we will see that we obtain a worse code. We have that dimPRMd2(2) >
dimPRMd1(2) if d2 > d1, which decreases the dimension of the corresponding EAQECC
with respect to the one obtained with d1 = d2. From Theorem E.4.4, we also see that
c is either going to increase or be the same (if d1 + d2 ̸≡ 0 mod q − 1). Hence, in the
sense stated before, the corresponding EAQECC with d2 > d1 has worse parameters than
the one obtained with d1 = d2 because it has less dimension while not decreasing the
parameter c, which gives a worse rate and net rate.

E.4.2 Hermitian EAQECCs

In this subsection we construct EAQECCs using the following Hermitian construction
from [10].

Theorem E.4.8 (Hermitian construction). Let C ⊂ Fn
q2 be a linear code of dimension k

and C⊥h its Hermitian dual. Then, there is an EAQECC with parameters [[n, κ, δ; c]]q,
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where

c = k − dim(C ∩ C⊥h), κ = n− 2k + c, and δ = wt(C⊥h \ (C ∩ C⊥h)).

We see that we can use the knowledge of the Hermitian hull from Theorem E.3.23 and
Corollary E.3.28 to compute the parameter c of the EAQECCs obtained from the previous
result using projective Reed-Muller codes.

Theorem E.4.9. Let 1 ≤ d < q2−1. Then we can construct an EAQECC with parameters
[[n, κ, δ; c]]q, where n = q4+q2+1, κ = n−2(dimPRMd(q

2, 2))+c, δ ≥ wt(PRM⊥
d (q

2, 2)),
and the value of c is given by the following:

If d ≤ 2(q − 1):

c =


0 if d ≡ 0 mod q − 1,

1 if 1 ≤ d < q − 1,

2 if q − 1 < d < 2(q − 1).

If d > 2(q − 1) and d ≡ 0 mod q − 1, then

c = dimRMd−1(q
2, 2)− |U |,

and if d > 2(q − 1), d ̸≡ 0 mod q − 1, then we have the upper bound

c ≤ dimRMd−1(q
2, 2)− |U |+ d− |V | − |W |+ 1.

Proof. We consider C = PRMd(q
2, 2) and we use the Hermitian Construction from The-

orem E.4.8. We only need to prove the statements about the parameter

c = dimPRMd(q
2, 2)− dim(PRMd(q

2, 2) ∩ PRM⊥h
d (q2, 2)),

for which we will use Corollary E.3.28.
First, we recall that dimPRMd(q

2, 2) =
∣∣Ad

1

∣∣+ ∣∣Ad
2

∣∣+ ∣∣Ad
3

∣∣ = dimRMd−1(q
2, 2) + d+ 1

(see Remark E.2.8). If d ≡ 0 mod q−1, by Theorem E.3.23 we have that c =
∣∣Ad

1

∣∣−|U | =
dimRMd−1(q

2, 2) − |U |. For the case with 1 ≤ d ≤ 2(q − 1), we also have to consider
Lemma E.3.17.
Now we assume d ̸≡ 0 mod q − 1. If d ≤ 2(q − 1), by Corollary E.3.28 we would have

c = dimPRMd(q
2, 2)− |U | − |V | = 1 + β2

1 .

We have β1 = 0 for 1 ≤ d < q − 1 and β1 = 1 for q − 1 < d ≤ 2(q − 1), which completes
this case.

Finally, if d > 2(q − 1), we use Corollary E.3.28 to finish the proof.

Remark E.4.10. For 2(q − 1) < d ≤ q2 − 1, d ̸≡ 0 mod q − 1, we can write

dimRMd−1(q
2, 2)− |U |+ d− |V | − |W |+ 1 = dimPRMd(q

2, 2)− |U | − |V | − |W |.

We also note that |V |+ |W | ≥ |V | = |T |, but it is not necessarily equal (this would give a
worse upper bound than the one given in the result). The bound given in Theorem E.4.9
for c is sharp in all cases we have checked, but if we use |T | instead of |V |+ |W | the bound
is not always sharp. We also note that we have formulas for |V | = |T | and |U | in Lemma
E.3.25 and Lemma E.5.1 (in the Appendix), respectively.
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Example E.4.11. Let q = 3. For d = 1, 2, 3, using Theorem E.4.9 we obtain the pa-
rameters [[91, 85, 3; 1]]3, [[91, 79, 4; 0]]3 and [[91, 71, 5; 2]]3, respectively. All of these codes
surpass the quantum Gilbert Varshamov bound from [23]. Moreover, the code with c = 0
surpasses the quantum Gilbert-Varshamov bound from [9], which seems to be more diffi-
cult to surpass than the one from [23] for the case c = 0.

As we stated in Remark E.3.19, we are also able to compute the dimension of the
Hermitian hull for affine Reed-Muller codes in the case m = 2, therefore obtaining the
following result.

Theorem E.4.12. Let 0 ≤ d < q2 − 1. Then we can construct an EAQECC with param-
eters [[n, κ, δ; c]]q, where n = q4, κ = n− 2(dimRMd(q

2, 2)) + c, δ ≥ wt(RM⊥
d (q

2, 2)), and
the value of c is

c =

{
0 if d < 2(q − 1),

dimRMd(q
2, 2)− |Ud,d| if d ≥ 2(q − 1),

where |Ud,d| is given by the expression in Remark E.5.2.

Proof. This is a consequence of Proposition E.3.15 and Proposition E.3.13.

Remark E.4.13. By Remark E.5.2, |Ud,d| is given by the same expression as |U | in Lemma
E.5.1, but considering d = β0 + β1q instead.

E.5 Appendix

In this appendix we provide an explicit formula for |U |, which appears in the computation
of the dimension of the Hermitian hull of projective Reed-Muller codes from Corollary
E.3.23. This formula can also be used for the dimension of the Hermitian hull of affine
Reed-Muller codes (see Remark E.5.2).

Lemma E.5.1. Let 1 ≤ d < q2 − 1 with q-adic expansion d − 1 = β0 + β1q and let
d⊥ = 2(q2 − 1)− d. We also consider the q-adic expansion d⊥ = λ0 + λ1q + q2. Then, we
have

|U | = dimRMd−1(q
2, 2)−

4∑
i=1

Bi, (E.5.1)

where

B1 =

(
q − λ1 − 1

q − λ1 − 3

)(
β1

β1 − 2

)
, B2 = max

{
β1

[(
q − λ1 − 1

q − λ1 − 3

)
−
(
q − β0 − 1

q − β0 − 3

)]
, 0

}
,

B3 = max

{
(q − 1− λ1)

[(
β1

β1 − 2

)
−
(
λ0 + 1

λ0 − 1

)]
, 0

}
,

B4 = β1(q − 1− λ1)

(
β0 − λ1

β0 − λ1

)(
β1 − λ0 − 1

β1 − λ0 − 1

)
.

Proof. The number of monomials xa11 xa22 such that 0 ≤ a1, a2 ≤ q2− 1 and a1+a2 ≤ d− 1
is precisely dimRMd−1(2). Now we compute the number of monomials that do not satisfy
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the condition qa1 + qa2 ≤ d⊥ − 1, i.e., the monomials such that qa1 + qa2 ≥ d⊥,and by
subtracting this number from dimRMd(2) we obtain the cardinal of the set U .

Given xa11 xa22 with a1 + a2 ≤ d − 1 and 1 ≤ a1, a2 ≤ q2 − 1, we consider the q-adic
expansions a1 = α0+α1q and a2 = γ0+γ1q. Then we have a1+a2 = (α0+γ0)+(α1+γ1)q.
Moreover, it is easy to check that qa1 + qa2 = (α1 + γ1) + (α0 + γ0)q. However, these last
expressions for a1+a2 and qa1+qa2 are not their q-adic expansions in general. We separate
cases according to the different possible q-adic expansions for these integers, and in each
case we consider the monomials xa11 xa22 such that a1 + a2 ≤ d− 1 and qa1 + qa2 ≥ d⊥.

(a) If α0 + γ0 ≤ q − 1 and α1 + γ1 ≤ q − 1: we have the q-adic expansions a1 + a2 =
(α0 + γ0) + (α1 + γ1)q and qa1 + qa2 = (α1 + γ1) + (α0 + γ0)q. The condition
qa1+qa2 ≥ d⊥ cannot be satisfied in this case because qa1+qa2 < q2, while d⊥ ≥ q2

(because d < q2 − 1). Therefore, no monomial of this type satisfies qa1 + qa2 ≥ d⊥.

(b) If α0 + γ0 ≤ q − 1 and α1 + γ1 ≥ q: we have the q-adic expansion a1 + a2 =
(α0 + γ0)+ (α1 + γ1 − q)q+ q2, which implies a1 + a2 ≥ q2 > d, a contradiction with
the fact that a1 + a2 ≤ d− 1.

(c) If α0 + γ0 ≥ q and α1 + γ1 + 1 ≥ q: we have the q-adic expansion a1 + a2 =
(α0 + γ0 − q) + (α1 + γ1 + 1 − q)q + q2, which implies that a1 + a2 ≥ q2 > d, a
contradiction.

(d) If α0 + γ0 ≥ q and α1 + γ1 + 1 ≤ q − 1: we have the q-adic expansions a1 + a2 =
(α0 + γ0 − q) + (α1 + γ1 + 1)q and qa1 + qa2 = (α1 + γ1) + (α0 + γ0 − q)q + q2. In
this case, we can have monomials satisfying the required conditions.

Now we count the monomials that we consider in the case (d). The condition a1+a2 ≤ d−1
implies that α1 + γ1 + 1 < β1 or α1 + γ1 + 1 = β1 and α0 + γ0 − q ≤ β0. The condition
qa1 + qa2 ≥ d⊥ implies that α0 + γ0 − q > λ1 or α0 + γ0 − q = λ1 and α1 + γ1 ≥ λ0.
Hence, we have four possibilities, and we are going to compute the number of monomials
satisfying each of the four possible combinations of conditions.

1. If α1 + γ1 +1 < β1, α0 + γ0 − q > λ1: for each value α1 ∈ {0, . . . , q− 1}, γ1 can take
any value from {0, . . . , β1 − 2 − α1}. It is not hard to check that this gives

(
β1

β1−2

)
possible choices for the pair (α1, γ1). Similarly, for each value of α0 ∈ {1, . . . , q − 1}
(recall that we need to have α0 + γ0 ≥ q, and α0, γ0 ≤ q − 1), we have that γ0 can
take any value in {λ1 + q − α0 + 1, . . . , q − 1}. Similarly to the previous case, this
gives

(
q−λ1−1
q−λ1−3

)
possible choices for the pair (α0, γ0). Thus, we obtain

B1 =

(
q − λ1 − 1

q − λ1 − 3

)(
β1

β1 − 2

)
monomials in this case.

2. If α1 + γ1 + 1 = β1, α0 + γ0 − q ≤ β0, α0 + γ0 − q > λ1: we have β1 possible choices
for (α1, γ1), and for α0, γ0 we have the condition λ1 < α0 + γ0 − q ≤ β0. Note that
this can only happen if λ1 < β0. Assuming λ1 < β0, we can compute the number of
(α0, γ0) such that λ1 < α0 + γ0 − q, and subtract the number of (α0, γ0) such that
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β0 < α0 + γ0 − q. These numbers can be computed as in the previous case, and
multiplying by β1 (to take into account the possible (α1, γ1)) we obtain

β1

[(
q − λ1 − 1

q − λ1 − 3

)
−
(
q − β0 − 1

q − β0 − 3

)]
monomials for the case λ1 < β0, and 0 otherwise, which is precisely the number B2

in the statement.

3. If α1+γ1+1 < β1, α0+γ0− q = λ1, α1+γ1 ≥ λ0: we can argue in the same way as
the last case, taking into account that in this case we only obtain a nonzero amount
of monomials if λ0 < β1 − 1. Thus, we obtain

B3 = max

{
(q − 1− λ1)

[(
β1

β1 − 2

)
−
(
λ0 + 1

λ0 − 1

)]
, 0

}
monomials.

4. If α1+ γ1+1 = β1, α0+ γ0− q ≤ β0, α0+ γ0− q = λ1, α1+ γ1 ≥ λ0: in this case we
obtain β1(q − 1 − λ1) monomials, but only if β1 − 1 ≥ λ0 and λ1 ≤ β0. Therefore,
there are

B4 = β1(q − 1− λ1)

(
β0 − λ1

β0 − λ1

)(
β1 − λ0 − 1

β1 − λ0 − 1

)
monomials of this type. Note that the product of the combinatorial numbers that
appear in B4 is 1 when β0 − λ1 ≥ 0 and β1 − λ0 − 1 ≥ 0, and 0 otherwise.

Hence, the size of the set U is given by

dimRMd−1(q
2, 2)−

4∑
i=1

Bi.

Remark E.5.2. For the affine case, if d = β0 + β1q is the q-adic expansion of d instead
of d− 1, the proof of Lemma E.5.1 shows that

|Ud,d| = dimRMd(q
2, 2)−

4∑
i=1

Bi.

This gives the dimension of the Hermitian hull for affine Reed-Muller codes in 2 variables.
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EAQECCs from projective Reed-Muller codes and their hull variation problem

F.1 Introduction

Stabilizer quantum error-correcting codes (QECCs) can be defined from classical linear
codes. They can be defined from a pair of self-orthogonal classical linear codes with respect
to the Euclidean inner product, CSS construction, and from a self-orthogonal classical
linear code with respect to the Hermitian inner product, Hermitian construction [6,18,29].
Moreover, by sharing entanglement between encoder and decoder, it is possible to increase
the communication capacity and remove the self-orthogonality condition, giving rise to
entanglement-assisted quantum error-correcting codes (EAQECCs) [5]. For the CSS-like
construction, the minimum number of maximally entangled quantum states required is
equal to c := dimC1 − dimC1 ∩ C⊥

2 . Therefore, the dimension of the relative hull of
C1 with respect to C2, which is defined in [1] as HullC2(C1) := C1 ∩ C⊥

2 , determines the
parameter c. For the Hermitian construction, we only use one code C, and the parameter c
is given by dimC−dimC∩C⊥h , where C⊥h is the Hermitian dual of C. The Hermitian hull
of C is thus defined as HullH(C) := C ∩C⊥h . Moreover, both QECCs and EAQECCs can
be considered in an asymmetric fashion taking advantage of the asymmetry in quantum
errors since phase-shift errors are more probable than qudit-flip errors [11,16,27].

In this paper, we construct QECCs and EAQECCs from projective Reed-Muller codes,
which is a family of evaluation codes obtained by evaluating homogeneous polynomials of
a given degree at the projective space [19, 28]. In [19], it is shown that these codes can
outperform affine Reed-Muller codes in some instances. In general, one needs to require
entanglement assistance when working with evaluation codes over the projective space, in
particular, because the resulting families of codes are not necessarily nested. EAQECCs
from projective Reed-Muller codes have been studied in [13, 14, 24], and in [26] for the
few cases in which one has the nested condition. In Section F.3, we deal with asymmetric
quantum codes coming from the CSS construction, and, in Section F.4, we deal with
(symmetric) quantum codes coming from the Hermitian construction.

More concretely, we provide EAQECCs with a flexible amount of entanglement and
unassisted EAQECCs, that is, the parameter c is equal to zero, which simply corresponds
to the case of QECCs. We achieve this by considering equivalent linear codes whose
(relative) hull has different dimension, i.e., we consider the so-called hull variation problem
for projective Reed-Muller codes (following the terminology from [7]). We remark that
it is always possible to increase the parameter c one by one [1, 20], for q > 2, however,
one can only decrease the parameter c under certain conditions [1, 7], for q > 2. Note
that, by considering equivalent codes that give rise to a different parameter c, the rate
of the quantum code varies but the net rate is preserved (see Remark F.3.2 for details).
Having a rich family of codes with the same net rate but with a different minimum number
of entangled quantum states provides flexibility for practical applications. Moreover, the
unassisted case is especially interesting, c = 0, since it has a simpler implementation. This
corresponds to the case where the dimension of the relative hull is equal to dimC1 or the
dimension of the Hermitian hull is equal to dimC.

For both constructions, in Sections F.3 and F.4, we find conditions to obtain unassisted
QECC by using projective Reed-Muller codes, obtaining asymmetric and symmetric quan-
tum codes with good parameters, they surpass the Gilbert-Varhsamov bound [9,22]. More-
over, we show that the quantum codes obtained outperform the ones obtained from affine
Reed-Muller codes. On top of this, we consider quantum codes from the subfield subcodes
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of projective Reed-Muller codes. That is, given C ⊂ Fn
qs , we consider Cq := C ∩ Fn

q , its
subfield subcode with respect to the extension Fqs/Fq. We remark that this approach is
not usually fruitful for this family of codes since one does not have conditions for having
nested codes. Nevertheless, we are able to find certain technical conditions that allow us
to consider subfield subcodes and construct long quantum codes over small finite fields.

F.2 Preliminaries

Let Fq be the finite field with q elements. We denote by Pm the projective space over Fq.
We choose for Pm the standard representatives, i.e., the representatives whose leftmost
coordinate is equal to 1. If we regard the standard representatives as points in the affine

space Am+1, we obtain the set Pm := {Q1, . . . , Qn} ⊂ Am+1, where n = |Pm| = qm+1−1
q−1 .

Let S = Fq[x0, . . . , xm]. Given d a positive integer, we denote Sd ⊂ S the set of
homogeneous polynomials of degree d. We define the evaluation map

ev : Sd → Fn
q , f 7→ (f(Q1), . . . , f(Qn)) .

The image of ev is the projective Reed-Muller code of degree d, denoted by PRMd(q,m),
or PRMd(m) if there is no confusion about the field. For the minimum distance of a code
C ⊂ Fn

q , we use the notation wt(C). We have the following results about the parameters
of projective Reed-Muller codes and their duality from [28] (also see [12]).

Theorem F.2.1. The projective Reed-Muller code PRMd(q,m), 1 ≤ d ≤ m(q − 1), is an
[n, k]-code with

n =
qm+1 − 1

q − 1
,

k =
∑

t≡d mod q−1,0<t≤d

m+1∑
j=0

(−1)j
(
m+ 1

j

)(
t− jq +m

t− jq

) .

For the minimum distance, we have

wt(PRMd(q,m)) = (q − ℓ)qm−r−1, where d− 1 = r(q − 1) + ℓ, 0 ≤ ℓ < q − 1.

Theorem F.2.2. Let 1 ≤ d ≤ m(q − 1) and let d⊥ = m(q − 1)− d. Then

PRM⊥
d (q,m) = PRMd⊥(q,m) if d ̸≡ 0 mod (q − 1),

PRM⊥
d (q,m) = PRMd⊥(q,m) + ⟨(1, . . . , 1)⟩ if d ≡ 0 mod (q − 1).

With respect to affine Reed-Muller codes, we will denote them by RMd(q,m), or by
RMd(m) if there is no confusion about the field. We recall now the analogous results for
affine Reed-Muller codes [8, 17].

Theorem F.2.3. The Reed-Muller code RMd(q,m), 1 ≤ d ≤ m(q − 1), is an [n, k]-code
with

n = qm,

k =
d∑

t=0

m∑
j=0

(−1)j
(
m

j

)(
t− jq +m− 1

t− jq

)
.
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For the minimum distance, we have

wt(RMd(q,m)) = (q − ℓ)qm−r−1, where d = r(q − 1) + ℓ, 0 ≤ ℓ < q − 1.

Theorem F.2.4. Let 1 ≤ d ≤ m(q − 1). Then

RM⊥
d (q,m) = RMm(q−1)−d−1(q,m).

For comparisons between the projective case and the affine case, it is important to note
that wt(PRMd(q,m)) = wt(RMd−1(q,m)).

Regarding quantum codes, we will consider the CSS construction and the Hermitian
construction. For the CSS construction, we are considering asymmetric QECCs. In quan-
tum error-correction we may consider two different types of errors, phase-shift errors and
qudit-flip errors. As the likelihood of occurrence of each type of error is different [16],
it is desirable to have different error correction capabilities for each type of error, which
is what asymmetric QECCs accomplish. Asymmetric QECCs have two minimum dis-
tances, δz and δx, meaning that they can correct up to ⌊(δz − 1)/2⌋ phase-shift errors and
⌊(δx − 1)/2⌋ qudit-flip errors. We denote the parameters of an asymmetric EAQECC by
[[n, κ, δz/δx; c]]q, where n is the length, κ is the dimension, and c is the minimum number
of maximally entangled quantum qudit pairs required. We state now the CSS construction
for asymmetric EAQECCs [11].

Theorem F.2.5 (CSS Construction). Let Ci ⊂ Fn
q be linear codes of dimension ki, for

i = 1, 2. Then, there is an asymmetric EAQECC with parameters [[n, κ, δz/δx; c]]q, where

c = k1 − dim(C1 ∩ C⊥
2 ), κ = n− (k1 + k2) + c,

δz = wt
(
C⊥
1 \

(
C⊥
1 ∩ C2

))
and δx = wt

(
C⊥
2 \

(
C⊥
2 ∩ C1

))
.

Let δ∗z := wt(C⊥
1 ) and δ∗x := wt(C⊥

2 ). If δz = δ∗z and δx = δ∗x, we say that the corre-
sponding EAQECC is pure, and we say it is impure if δz > δ∗z or δx > δ∗x.

As we stated in the introduction, we are interested in constructing QECCs with a
flexible amount of entanglement and, in particular, without entanglement assistance. This
corresponds to pairs of codes C1, C2 such that dimHullC2(C1) = dimC1, equivalently,
C1 ⊂ C⊥

2 .

For the Hermitian construction, we need to consider codes defined over Fn
q2 and the

Hermitian product. For two vectors v, w ∈ Fn
q2 , their Hermitian product is

v ·h w :=

n∑
i=1

viw
q
i .

The Hermitian dual of a code C ⊂ Fn
q2 is defined as C⊥h := {v ∈ Fn

q2 | v·hw = 0, ∀ w ∈ C}.

Remark F.2.6. For a code C ⊂ Fn
q2 , we have that C⊥h = (C⊥)q, where we consider the

component wise power of q. This implies that the Euclidean dual and the Hermitian dual
codes have the same parameters.

We can state now the Hermitian construction for EAQECCs [5,10].
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Theorem F.2.7 (Hermitian construction). Let C ⊂ Fn
q2 be a linear code of dimension k

and C⊥h its Hermitian dual. Then, there is an EAQECC with parameters [[n, κ, δ; c]]q,
where

c = k − dim(C ∩ C⊥h), κ = n− 2k + c, and δ = wt(C⊥h \ (C ∩ C⊥h)).

From the Hermitian construction for EAQECCs we can only obtain symmetric EAQECCs,
that is, EAQECCs with δz = δx = δ. Thus, if we define δ∗ := wt(C⊥h), the corresponding
quantum code is impure if δ > δ∗, and pure otherwise.

For asymmetric QECCs (EAQECCs with c = 0), we will use the notation [[n, κ, δz/δx]]q
for their parameters. Analogously, for symmetric QECCs we will use [[n, κ, δ]]q. In all of
our results, we compute δ∗z and δ∗x (δ∗ respectively for the Hermitian construction), thus
obtaining lower bounds for the true minimum distance of the corresponding EAQECCs.

F.3 CSS construction

In this section, we focus on the QECCs obtained using the CSS Construction F.2.5 with
projective Reed-Muller codes. We do this by increasing the size of the relative hull via
equivalent codes. We give some preliminaries first. Given two vectors v, u ∈ Fn

q , we use
the following notation:

u ⋆ v := (u1v1, . . . , unvn) ∈ Fn
q .

For two codes C1, C2 in Fn
q , we consider

C1 ⋆ C2 := ⟨u1 ⋆ u2 | u1 ∈ C1, u2 ∈ C2⟩.

We say that C1 is monomially equivalent to C2 if there is some vector v ∈ Fn
q with

Hamming weight n such that C1 = ⟨v⟩⋆C2. In more generality, we will say that two codes
C and C ′ are equivalent if there exists a vector v ∈ Fn

q and a permutation σ such that

C = ⟨v⟩ ⋆ σ(C ′).

It is clear that equivalent codes have the same basic parameters. Moreover, due to
MacWilliam’s Theorem [21], every isometry on Fn

q with respect to the Hamming met-
ric can be obtained in this way for some vector v ∈ Fn

q and some permutation σ. The
following result from [1] allows us to increase the dimension of the relative hull of projective
Reed-Muller codes in some cases via equivalent codes.

Theorem F.3.1. For i = 1, 2, let Ci be [n, ki]q codes with q > 2. For any ℓ with
max{0, k1 − k2} ≤ ℓ ≤ maxwt((C1 ⋆ C2)

⊥)− n+ k1, there exists a code C1,ℓ equivalent to
C1 such that

dimHullC2(C1,ℓ) = ℓ.

In particular, if maxwt((C1 ⋆ C2)
⊥) = min{n, 2n − k1 − k2}, ℓ runs over all the possible

values of dimHullC2(C
′
1), where C ′

1 is a code equivalent to C1.

Remark F.3.2. For a quantum code C with parameters [[n, κ, δ; c]]q, the rate and net
rate are defined as ρ := κ/n and ρ := (κ − c)/n, respectively. If this code is constructed
with two codes C1, C2 using Theorem F.2.5, and we consider an equivalent code C1,ℓ as
in Theorem F.3.1, then the resulting quantum code has the same net rate. The same
happens with codes constructed with the Hermitian construction.
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The following lemma is key to study the orthogonality and will be used in the subsequent
results.

Lemma F.3.3. Let γ be a non-negative integer, and xγ ∈ Fq[x]. We have the following:

∑
z∈Fq

xγ(z) =

{
0 if γ = 0 or γ > 0 and γ ̸≡ 0 mod (q − 1),

−1 if γ > 0 and γ ≡ 0 mod (q − 1).

Proof. Let ξ ∈ Fq be a primitive element. Then Fq = {ξ0, ξ1, . . . , ξN−2} ∪ {0}. If γ = 0,
xγ = 1, and the sum is equal to |Fq| = q = 0 in Fq. If γ > 0 and γ ≡ 0 mod (q − 1),
then xγ(z) = 1 for all z ∈ F∗

q , and
∑

z∈Fq
xγ(z) = q − 1 = −1. Finally, if γ > 0 and

γ ̸≡ 0 mod (q − 1), we have

∑
z∈Fq

xγ(z) =

q−2∑
i=0

(ξi)γ =
ξγ(q−1) − 1

ξγ − 1
= 0.

Remark F.3.4. When working over the affine space Aℓ, for 1 ≤ ℓ ≤ m, if we consider
xα1
1 · · ·xαℓ

ℓ ∈ Fq[x1, . . . , xm], we have

∑
Q∈Aℓ

xα1
1 · · ·xαℓ

ℓ (Q) =

∑
z∈Fq

xα1
1 (z)

 · · ·

∑
z∈Fq

xαℓ
ℓ (z)

 .

Thus, we can use Lemma F.3.3 in order to obtain the result of this sum. In particular, if
we have αi < q − 1 for some 1 ≤ i ≤ ℓ, this sum is equal to 0.

To increase the dimension of the hull using Theorem F.3.1, we first note that, if Ci =
PRMdi(m), for i = 1, 2, then C1 ⋆C2 = PRMd1+d2(m). If k1+ k2 > n, from [23, Lem. 4.8]
we obtain that wt(C1 ⋆C2) = wt(PRMd1+d2(m)) = 1. By Theorem F.2.1, this implies that
d1 + d2 > m(q − 1) and in that case we have PRMd1+d2(m) = Fn

q (see [28]). Therefore,

(C1 ⋆C2)
⊥ = {0}. In other words, we can only have (C1 ⋆C2)

⊥ ̸= {0} if k1+k2 ≤ n for the
case of projective Reed-Muller codes. If k1 + k2 ≤ n, then, according to Theorem F.3.1,
we need to find a vector of Hamming weight n in (C1 ⋆ C2)

⊥. This code is a projective
Reed-Muller code if C1 and C2 are projective Reed-Muller codes (see Theorem F.2.2),
which motivates the following lemma.

Lemma F.3.5. Let 1 ≤ d < q−2. Then there is a vector of Hamming weight n = qm+1−1
q−1

in PRM⊥
d (m).

Proof. Let t be a monic polynomial of degree q−1−d such that t(z) ̸= 0 for every z ∈ Fq.
For example, we can choose t as a monic irreducible polynomial in Fq[x]. We consider
the vector v = (vQ)Q∈Pm ∈ Fn

q defined in the following way: if Q = (0, 0, . . . , 0, 1, z),
for some z ∈ Fq, we define vQ = t(z), and vQ = 1 otherwise. For 0 ≤ i ≤ q − 1 − d,
let ti be the coefficient of xi in t. We consider the following decomposition of Pm =
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({1} × Fm
q ) ∪ ({0} × {1} × Fm−1

q ) ∪ · · · ∪ {(0, 0, . . . , 0, 1)} = Bm ∪ Bm−1 ∪ · · · ∪ B0. Let
xα0
0 xα1

1 · · ·xαm
m = xα ∈ Fq[x0, . . . , xm]d. Then we have

v · ev(xα) =
∑

Q∈Bm

vQx
α(Q) +

∑
Q∈Bm−1

vQx
α(Q) + · · ·+

∑
Q∈B0

vQx
α(Q).

For 2 ≤ i ≤ m, we have vQ = 1 and∑
Q∈Bi

vQx
α(Q) =

∑
Q∈Bi

xα(Q) = 0

by Lemma F.3.3 and Remark F.3.4 because αj < q − 1 for 0 ≤ j ≤ m.
We study the sum over B1 now. If αj = 0 for every 0 ≤ j ≤ m− 2, we have

∑
Q=(0,0,...,1,z)∈B1

vQx
α(Q) =

∑
z∈Fq

t(z)xαm
m (z) =

q−1−d∑
l=0

tl
∑
z∈Fq

xαm+l
m (z). (F.3.1)

Taking into account that αm ≤ d, we have αm + l ≤ q − 1, and we can only have the
equality for some l ∈ {0, . . . , q − 1 − d} if αm = d. Therefore, by Lemma F.3.3, this sum
is equal to 0 unless αm = d, in which case it is equal to −tq−1−d = −1 (t is monic).
On the other hand, if we have αj > 0 for some 0 ≤ j ≤ m − 2, then the sum over

B1 in (F.3.1) is clearly equal to 0 because all the addends are equal to 0. For the sum
over B0, it is clear that this sum is equal to 0 unless αm = d, in which case it is equal
to 1. Hence, if αm ̸= d, all the sums are equal to 0 and we have v · ev(xα) = 0, and if
αm = d, all the sums are 0 besides the sums corresponding to B1 and B0, which are equal
to −1 and 1, respectively. Thus, if αm = d we also have v · ev(xdm) = 0. This implies that
v ∈ PRM⊥

d (m), and the fact that v has Hamming weight n follows from its definition.

Note that, for d ≡ 0 mod q − 1, d ≤ ⌊m(q − 1)/2⌋, we have (1, . . . , 1) in PRM⊥
d (m)

by Theorem F.2.2, which is a vector of Hamming weight n, and we also know that the
corresponding projective Reed-Muller code is contained in its dual [26, Cor. 10.3]. As a
consequence of Theorem F.3.1 and Lemma F.3.5, we obtain the following.

Proposition F.3.6. Let q > 2 and let 1 ≤ d1 ≤ d2 < q − 2. Let Ci = PRMdi(m), for
i = 1, 2. If d1 + d2 < q− 2, then, for any 0 ≤ ℓ ≤ dimC1, there is a code C1,ℓ monomially
equivalent to C1 such that

dimC1,ℓ ∩ C⊥
2 = ℓ.

Proof. We have that C1 ⋆ C2 = PRMd1+d2(m), with d1 + d2 < q − 2. By Lemma F.3.5,
there is a vector of Hamming weight n in (C1 ⋆C2)

⊥. Using Theorem F.3.1, we obtain the
result.

We can use Proposition F.3.6 and Theorem F.2.5 to construct asymmetric and symmet-
ric QECCs. The following result, for the case m = 2, allows us to vary the parameter c
from the codes arising in [24], thus giving more flexible parameters.

Theorem F.3.7. Let 1 ≤ d1 ≤ d2 < q−2 such that d1+d2 < q−2. Then we can construct
a quantum code with parameters [[n, κ + c, δz/δx; c]]q, for any 0 ≤ c ≤ dimPRMd1(m),

where n = qm+1−1
q−1 , κ = n− (dimPRMd1(m) + dimPRMd2(m)), δz ≥ wt(PRM⊥

d2
(m)) and

δx ≥ wt(PRM⊥
d1
(m)).
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The previous result can be used to obtain QECCs that outperform affine Reed-Muller
codes, as the next example shows.

Remark F.3.8. For 1 ≤ d1 ≤ d2 < q−2 such that d1+d2 < q−2, by Theorem F.2.3 and
Theorem F.2.1 (or directly by counting monomials in m variables of degree ≤ d and mono-
mials of degree d in m + 1 variables) we have dimRMdi(m) =

∑di
t=0

(
t+m−1

t

)
=
(
di+m
m

)
=

dimPRMdi(m), for i = 1, 2. Moreover, we have that wt(PRM⊥
di
(m)) = wt(PRMd⊥i

(m)) =

wt(RMd⊥i −1(m)) = wt(RM⊥
di
(m)), where d⊥i = m(q − 1) − di, for i = 1, 2. Therefore,

using Theorem F.2.5 with Ci = RMdi(m) for i = 1, 2, we get an asymmetric QECC with
parameters

[[qm, qm − (dimRMd1(m) + dimRMd2(m)),wt(RM⊥
d2(m))/wt(RM⊥

d1(m))]]q.

On the other hand, using Theorem F.3.7 with c = 0 we can get an asymmetric QECC
with parameters

[[qm+∆, qm+∆−(dimPRMd1(m)+dimPRMd2(m)),wt(PRM⊥
d2(m))/wt(PRM⊥

d1(m))]]q,

where ∆ = qm−1
q−1 . Taking into account the previous discussion, we see that both asym-

metric QECCs have the same minimum distances δz and δx, but the code obtained using
Theorem F.3.7 has gained ∆ units in length and dimension, which increases the code rate
and decreases the relative minimum distances. If we consider κ+δz

n (resp. κ+δx
n ) as a mea-

sure of how good a code is in terms of transmission rate and phase-shift error-correction
capability (resp. qudit-flip error-correction capability), we see that in this case we obtain
asymmetric QECCs with better performance using projective Reed-Muller codes (Theo-
rem F.3.7) than the asymmetric QECCs obtained using affine Reed-Muller codes.

The quantum Gilbert-Varshamov bound from [22] can be used to check the goodness of
the parameters of an asymmetric QECC.

Theorem F.3.9. Assume the existence of integers n ≥ 1, 1 ≤ l < n+ c, δx ≥ 1, δz ≥ 1,
0 ≤ c ≤ l/2 such that

q2n−l − ql−2c

q2n − 1

δx−1∑
i=0

(
n

i

)
(q − 1)i

δz−1∑
j=0

(
n

j

)
(q − 1)j − 1

 < 1.

Then there is an EAQECC with parameters [[n, n− l + c, δz/δx; c]]q.

Given a quantum Gilbert-Varshamov bound, like that one from Theorem F.3.9, we will
say that a code C surpasses it if the bound does not guarantee the existence of a code
with the parameters of C.

Example F.3.10. Let q = 8, m = 2, d1 = 1 and d2 = 4. We have d1 + d2 = 5 < q − 2,
and we can apply Theorem F.3.7 to obtain QECCs with parameters [[73, 55 + c, 6/3; c]]8,
for 0 ≤ c ≤ dimPRM1(2) = 3. All of these codes surpass the Gilbert-Varshamov bound
from Theorem F.3.9.

In some cases it is possible to obtain nested pairs of codes from subfield subcodes of
projective Reed-Muller codes, giving rise to QECCs, as we show in the next result.
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Proposition F.3.11. Let d1, d2 such that d1 + d2 = λ(qs − 1), with 1 ≤ λ ≤ m.
Then we have (PRMd1(q

s,m))q ⊂ ((PRMd2(q
s,m))q)

⊥, and we can construct a QECC

with parameters [[n, κ, δz/δx]]q, where n = qs(m+1)−1
qs−1 , κ = n − dim(PRMd1(q

s,m))q −
dim(PRMd2(q

s,m))q, δz ≥ wt(((PRMd2(q
s,m))q)

⊥) and δx ≥ wt(((PRMd1(q
s,m))q)

⊥).

Proof. By hypothesis we have d1 ≡ d⊥2 mod qs − 1 and d1 ≤ d⊥2 . By [26, Lem. 10.7],
PRMd1(q

s,m) ⊂ PRM⊥
d2
(qs,m). This implies

(PRMd1(q
s,m))q ⊂ (PRM⊥

d2(q
s,m))q ⊂ ((PRMd2(q

s,m))q)
⊥.

The parameters follow from Theorem F.2.5.

Remark F.3.12. In general, we do not know wt(((PRMdi(q
s,m))q)

⊥), for i = 1, 2. Nev-
ertheless, we can compute this minimum distance with Magma [4]. In some cases, the code
(PRMdi(q

s,m))q can be degenerate, that is, its generator matrix has a column of zeroes.
In that case, the minimum distance of its dual is equal to 1. This problem can easily be
avoided by considering the results from [25], where some particular degrees are considered
such that (PRMdi(q

s,m))q is nondegenerate. For those degrees, the resulting codes have
good parameters and we have formulas for the dimension of the subfield subcode (for the
case m = 2, one can also use the results from [14] for the dimension). In the next example,
we show how to use those results together with Proposition F.3.11.

Example F.3.13. Let m = 2 = s. From [25] (or [14]), if di ≡ 0 mod (qs−1)/(q−1), then
(PRMdi(q

s, 2))q is non degenerate, for i = 1, 2. If we set q = 2, from Proposition F.3.11
we obtain a code with parameters [[73, 19, 9/9]]2 with d1 = d2 = 7. For q = 3, we obtain
the parameters [[91, 73, 4/4]]3 with d1 = d2 = 4, and [[91, 12, 36/4]]2 with d1 = 4, d2 = 12.
All of them surpass the Gilbert-Varshamov bound from Theorem F.3.9.

F.4 Hermitian construction

In the Hermitian case, we can also obtain quantum codes with projective Reed-Muller
codes without entanglement assistance. Recall that in this case we have to consider codes
over Fq2 and the Hermitian product. The following result from [7, Thm. 2.1] is analogous
in part to Theorem F.3.1 for the Hermitian product.

Theorem F.4.1. Let C ⊂ Fq2 be a linear code. If there is a vector v ∈ ((C ⋆Cq)⊥)q with
wt(v) = n, then ⟨v⟩ ⋆ C ⊂ (⟨v⟩ ⋆ C)⊥h, i.e., ⟨v⟩ ⋆ C is self-orthogonal with respect to the
Hermitian product.

Note that, unlike Theorem F.3.1, the previous result does not cover all the possible
values of the dimension of the Hermitian hull, we go directly to the case HullH(C) = C.
The rest of the values are covered by the following result from [20].

Theorem F.4.2. Let q > 2 and let C ⊂ Fn
q2 with dimHullH(C) = ℓ. Then there exists a

monomially equivalent code Cℓ′ with dimHullH(Cℓ′) = ℓ′, for each 0 ≤ ℓ′ ≤ ℓ.

Therefore, using Theorem F.4.1 and Theorem F.4.2, if we find a vector v ∈ ((C ⋆Cq)⊥)q
with wt(v) = n, then we can find an equivalent code Cℓ such that dimHullH(Cℓ) = ℓ, for
0 ≤ ℓ ≤ dimC, if q > 2.
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EAQECCs from projective Reed-Muller codes and their hull variation problem

With respect to projective Reed-Muller codes, we start by determining some of these
codes which are self-orthogonal with respect to the Hermitian product, without considering
equivalent codes.

Proposition F.4.3. Let d = λ(q−1) with 1 ≤ λ ≤ m. Then PRMd(q
2,m) ⊂ PRM⊥h

d (q2,m).
As a consequence, if d ≡ 0 mod q − 1 and d ̸≡ 0 mod q2 − 1, we can construct a QECC

with parameters [[n, κ, δ]]q, where n = q2(m+1)−1
q2−1

, κ = n − 2(dimPRMd(q
2,m)) and δ ≥

wt(PRM⊥
d (q

2,m)).

Proof. We have

((PRMd(q
2,m) ⋆ PRMd(q

2,m)q)⊥)q ⊃ (PRM⊥
d+qd(q

2,m))q.

By Theorem F.2.2, if we have d(q + 1) ≡ 0 mod q2 − 1, with d(q + 1) ≤ m(q2 − 1), then
(1, . . . , 1) ∈ (PRM⊥

d+qd(q
2,m))q and we can apply Theorem F.4.1 with C = PRMd(q

2,m).
The parameters of the quantum code are deduced from Theorems F.2.1, F.2.2 and F.2.7.

With this construction (and, in general, with the results of this section) we manage to
construct very long codes over small finite field sizes. To check the performance of these
codes, we introduce now another quantum Gilbert-Varshamov bound from [9], which seems
to be more difficult to surpass for symmetric QECCs than the bound from Theorem F.3.9.

Theorem F.4.4. Suppose that n > κ, δ ≥ 2 and n ≡ κ mod 2. Then there exists a pure
stabilizer quantum code [[n, κ, δ]]q, provided that

qn−κ+2 − 1

q2 − 1
>

δ−1∑
i=1

(q2 − 1)i−1

(
n

i

)
.

Example F.4.5. Let q = 2 and m = 3. For d = q− 1 = 1 we can apply Proposition F.4.3
to obtain a QECC with parameters [[85, 77, 3]]2, which is optimal according to [15]. For
m = 4, we get a QECC with parameters [[341, 331, 3]]2.

Consider now q = 3 and d = q−1 = 2. Form = 2, we obtain the parameters [[91, 79, 4]]3,
and for m = 3 we obtain [[820, 800, 4]]3. All the codes in this example surpass the quantum
Gilbert-Varshamov bound from Theorem F.4.4.

When d ̸≡ 0 mod q − 1, we can use Theorems F.4.1 and F.4.2 to construct quantum
codes with a variable amount of entanglement using equivalent codes in some cases. The
idea of the proof of the following result can be regarded as an extension of the proof
from [2, Thm. 4] for projective Reed-Solomon codes.

Theorem F.4.6. Let 1 ≤ d < q−2. Then we can construct an EAQECC with parameters

[[n, κ + c, δ; c]]q, for any 0 ≤ c ≤ dimPRMd(q
2,m), where n = q2(m+1)−1

q2−1
, κ = n −

2(dimPRMd(q
2,m)) and δ ≥ wt(PRMd⊥(q

2,m)).

Proof. We use Theorems F.4.1 and F.4.2 with C = PRMd(q
2,m). First, we find w ∈

((C ⋆ Cq)⊥)q with wt(v) = n. Let t be a monic polynomial with coefficients in Fq2 of
degree q − 1 − d such that t(z) ̸= 0 for every z ∈ Fq2 , and v ∈ Fn

q2 as in Lemma F.3.5.

Then we consider w := vq+1, where the power is taken component wise. Clearly w ∈ Fn
q ,
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F.4. Hermitian construction

wt(w) = n, and we will prove that w ∈ (C ⋆ Cq)⊥. Let xα, xβ ∈ Fq2 [x0, . . . , xm]d. Using
the decomposition Pm = Bm ∪ Bm−1 ∪ · · · ∪ B0 from the proof of Lemma F.3.5 we have
that

w · (ev(xα) ⋆ ev(xqβ)) =
m∑
i=0

∑
Q∈Bi

vq+1
Q xα+qβ(Q).

For 2 ≤ i ≤ m, we have vQ = 1 and∑
Q∈Bi

vq+1
Q xα+qβ(Q) =

∑
Q∈Bi

xα+qβ(Q) = 0

because αj + qβj < q − 1 + q(q − 1) = q2 − 1 for 0 ≤ j ≤ m.

On the other hand, if αj = 0 for 0 ≤ j ≤ m− 2, we have

∑
Q=(0,0,...,1,z)∈B1

vq+1
Q xα+qβ(Q) =

∑
z∈Fq2

t(z)q+1zαm+qβm =

(q+1)(q−1−d)∑
l=0

rl
∑
z∈Fq2

zl+αm+qβm ,

(F.4.1)
where rl is the coefficient of xl in tq+1. Taking into account that l + αm + qβm ≤ (q +
1)(q− 1− d) + d+ qd = q2 − 1, we see that this sum is equal to 0 unless αm = βm = d, in
which case it is equal to −r(q+1)(q−1−d) = −1 (since t is monic), because of Lemma F.3.3
and Remark F.3.4. If we have αj > 0 for some 0 ≤ j ≤ m − 2, then all the addends in
(F.4.1) are equal to 0. For the sum over B0, it is clear that this sum is equal to 0 unless
αm = βm = d, in which case it is equal to 1.

Therefore, if αm ̸= d or βm ̸= d, all the sums are equal to 0 and we have w · (ev(xα) ⋆
ev(xqβ)) = 0, and if αm = βm = d, all the sums are 0 besides the sums corresponding to
B1 and B0, which are equal to −1 and 1, respectively. Thus, if αm = βm = d we also have
w·(ev(xα)⋆ev(xqβ)) = 0. This implies that w ∈ (C⋆Cq)⊥. Therefore, ⟨w⟩⋆C ⊂ (⟨w⟩⋆C)⊥h

by Theorem F.4.1, and we finish the proof by applying the Hermitian construction from
Theorem F.2.7 to ⟨w⟩ ⋆ C and considering Theorem F.4.2.

The argument in Remark F.3.8, changing q with q2 and d1 = d2 = d (note that d < q−2
implies 2d < q2 − 2), shows that, using the QECCs from Theorem F.4.6, we can obtain

QECCs with q2m−1
q2−1

extra length and dimension with respect to the affine case. In the
next example, we show some codes obtained from Theorem F.4.6 with good parameters.

Example F.4.7. We consider q = 4 and m = 2. Therefore, we work over the field F42

and we obtain codes of length q2(m+1)−1
q2−1

= 273. For d = 1 we can apply Theorem F.4.6 to

obtain a QECC with parameters [[273, 267, 3]]4. This code improves the parameters of the
code [[273, 265, 3]]4 from [3] and surpasses the quantum Gilbert-Varshamov from Theorem
F.4.4.

For q = 5,m = 2 and d = 1, 2, we obtain the parameters [[651, 645, 3]]5 and [[651, 639, 4]]5,
respectively. The first one improves the parameters [[651, 642, 3]]5 and [[652, 644, 3]]5 ob-
tained in [3], and the second one improves the parameters [[651, 636, 4]]5 and [[652, 638, 4]]5
from [3]. Both of them exceed the quantum Gilbert-Varshamov bound from Theorem
F.4.4.
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Similarly to the previous section, we can also use subfield subcodes of projective Reed-
Muller codes in some cases. For the Hermitian product, we consider projective Reed-Muller
codes over Fq2s such that their subfield subcodes with respect to the extension Fq2s/Fq2

are self-orthogonal with respect to the Hermitian product, which gives rise to QECCs over
Fq using the Hermitian construction from Theorem F.2.7.

Proposition F.4.8. Let d = λ(q2s−1)/(q+1) with 1 ≤ λ ≤ m. Then (PRMd(q
2s,m))q2 ⊂

((PRMd(q
2s,m))q2)

⊥h. As a consequence, we can construct a QECC with parameters
[[n, κ, δ]]q, where

n =
q2s(m+1) − 1

q2s − 1
, κ = n− 2(dim(PRMd(q

2s,m))q2) and δ ≥ wt(((PRMd(q
2s,m))q2)

⊥).

Proof. We have

(((PRMd(q
2s,m))q2 ⋆ ((PRMd(q

2s,m))q2)
q)⊥)q ⊃ ((PRMd(q

2s,m) ⋆ (PRMd(q
2s,m))q)⊥)q

⊃ (PRM⊥
d+qd(q

2s,m))q.

The rest of the proof follows as in the proof of Proposition F.4.3, changing q2 with q2s.

As we stated in Remark F.3.12, we can use the results from [25] to obtain QECCs with
good parameters, whose minimum distance can be computed using Magma [4]. We show
this in the next example.

Example F.4.9. By [25, Cor. 4.1 and Cor 4.2], if d ≡ 0 mod (q2s − 1)/(q2 − 1), then
we have recursive formulas for the dimension of (PRMd(q

2s,m))q2 , and we know that
(PRMd(q

2s,m))q2 is non degenerate (this is also seen recursively, using what we know for
the case m = 1 from [13]).

Let q = 2 and m ≥ 2. Then (q2s − 1)/(q + 1) = (q2s − 1)/(q2 − 1) = (4s − 1)/3.
Hence, by Proposition F.4.8, if we consider d = λ(4s − 1)/3, for some 1 ≤ λ ≤ m,
then we have (PRMd(4

s,m))q2 ⊂ ((PRMd(4
s,m))q2)

⊥h , and by the previous discussion
((PRMd(4

s,m))q2)
⊥h is non degenerate. For example, for m = s = 2, we can consider

λ = 1 and d = 5. The corresponding quantum code has parameters [[273, 255, 4]]2, which
improves the parameters [[274, 248, 4]]2 and [[273, 246, 4]]2 from [3]. If we consider m = 3
instead, we obtain the parameters [[4369, 4337, 4]]2. Both of the codes surpass the Gilbert-
Varshamov bound from Theorem F.4.4.

Remark F.4.10. If q > 2, one can also use Theorem F.4.2 with Proposition F.4.3 or
Proposition F.4.8 to obtain EAQECCs with a variable amount of entanglement.
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Eduardo Camps-Moreno, Hiram H. López, Gretchen L. Matthews, Diego Ruano,
Rodrigo San-José, Ivan Soprunov
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CSS-T codes were recently introduced as quantum error-correcting codes that respect a
transversal gate. A CSS-T code depends on a CSS-T pair, which is a pair of binary codes
(C1, C2) such that C1 contains C2, C2 is even, and the shortening of the dual of C1 with
respect to the support of each codeword of C2 is self-dual. In this paper, we give new
conditions to guarantee that a pair of binary codes (C1, C2) is a CSS-T pair. We define
the poset of CSS-T pairs and determine the minimal and maximal elements of the poset.
We provide a propagation rule for nondegenerate CSS-T codes. We apply some main
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An algebraic characterization of binary CSS-T codes and cyclic CSS-T codes

G.1 Introduction

The development of large-scale, reliable quantum computing relies on quantum error cor-
rection to guard against the adverse impact of noise and decoherence. Quantum error-
correcting codes were first discovered by Shor in 1995 [22]. Soon after that, independent
works by Calderbank and Shor [8] and Steane [23] outlined how classical linear codes could
be used to construct quantum error-correcting codes, now referred to as CSS codes. The
CSS construction uses a pair (C1, C2) of classical linear codes, where the code C1 contains
the code C2, to define a quantum stabilizer code. CSS codes are advantageous because
they allow one to combine two appropriate classical codes into a quantum stabilizer code.
CSS codes have some nice properties, including propagation rules (see [7, 14, 19] and the
survey [13]).

While generally not optimal, CSS codes are optimal among nondegenerate stabilizer
codes that support the transversal T gate; indeed it is demonstrated in [21] that for
any non-degenerate stabilizer code that supports a physical transversal T gate, there
is a CSS code with the same parameters that also does. CSS-T codes, introduced in
[20], are motivated by the need for quantum codes which respect the transversal T gate.
Transversal gates are essential in fault-tolerant quantum computation as they mitigate
the proliferation of errors. Transversals may be considered the most straightforward fault-
tolerant realizations because they split into gates that act on individual qubits.

A CSS-T code is formed using a pair (C1, C2) of classical linear codes such that C1

contains C2, all codewords of C2 are of even weight, and the shortening of the dual of C1

with respect to the support of each codeword c of C2 is self-dual. In this case, we say that
(C1, C2) is a CSS-T pair. It is not surprising that it remains an open question to determine
asymptotically good families of CSS-T codes [4]. CSS-T codes from Reed-Muller codes
have been explored in [2], and some general properties are laid out in [4].

In this paper, we study binary CSS-T pairs. Section G.2 introduces the basic properties
of CSS-T pairs. We give in Theorem G.2.3 several conditions to determine if a pair of
codes (C1, C2) is a CSS-T pair. The equivalences of Theorem G.2.3 allow us to see that
the minimum distance of a CSS-T code associated with (C1, C2) is lower bounded by the
minimum distance of C⊥

2 . In Section G.3, Corollary G.3.1 allows us to define a poset P
of CSS-T pairs relative to the order (C1, C2) ≤ (C ′

1, C
′
2) if and only if Ci ⊂ C ′

i for i = 1, 2.
We determine the minimal elements of P in Corollary G.3.3. Using a sequence of results
on properties of CSS-T pairs, we provide in Corollary G.3.9 a propagation rule for nonde-
generate CSS-T codes and characterize the maximal elements of P in Theorem G.3.11. In
Corollary G.3.13, we collect special cases when the conditions of Theorem G.3.11 can be
relaxed. As an application, we apply some results of Section G.3 to Reed-Muller codes. In
Section G.4, we restrict our attention to cyclic and extended cyclic codes. Theorem G.4.8
provides a characterization of cyclic CSS-T pairs in terms of the defining cyclotomic cosets,
and Corollary G.4.11 characterizes those that are maximal. We find cyclic and extended
cyclic codes that outperform binary Reed-Muller codes. In Section G.5 we compare our
codes with triorthogonal codes [6, 17]. A summary and open problems are included in
Section G.6. Examples are provided throughout the paper. We conclude this section with
a summary of results and a motivating example.
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G.1. Introduction

G.1.1 Summary of major results

In this subsection, we provide a guide to the major results of this paper.

• A primary contribution of this paper is the following more straightforward charac-
terization of CSS-T pairs, found in Theorem G.2.3: Given binary linear codes C1

and C2 of length n,

(C1, C2) is a CSS-T pair if and only if C2 ⊂ C1 ∩ (C⋆2
1 )⊥.

Among the consequences are the fact that

C2 is self-orthogonal for all CSS-T pairs (C1, C2).

• Another key result is that CSS-T pairs form a poset P. According to Corollary
G.3.1, given a CSS-T pair (C1, C2)

(C ′
1, C2) is a CSS-T pair ∀ C2 ⊂ C ′

1 ⊂ C1

and

(C1, C
′
2) is a CSS-T pair ∀ C ′

2 ⊂ C2.

• We demonstrate in Theorem G.3.11 that

(C1, C2) is a maximal CSS-T pair ⇔ C⊥
1 = C1 ⋆ C2 and C⊥

2 = C⋆2
1 .

Moreover, we determine minimal (Corollary G.3.3) and maximal (Proposition G.3.5
and Corollary G.3.10) elements of the poset P: (C1, C2) is a maximal CSS-T pair

– with respect to C2 if and only if

C2 = C1 ∩ (C⋆2
1 )⊥.

– with respect to C1 if and only if

C1 = C⊥
2 ∩ (C1 ⋆ C2)

⊥.

• Corollary G.3.9 contains a propagation rule for nondegenerate CSS-T codes: Given
a nondegenerate [[n, k, d]] CSS-T code from a CSS-T pair (C1, C2), for any y ∈
C⊥
2 ∩ (C1 ⋆ C2)

⊥ and y ̸∈ C1, we have that (C1 + ⟨y⟩, C2) is a nondegenerate CSS-T
pair with parameters [[n, k + 1, d]].

• In Theorem G.4.8, we prove that for cyclotomic cosets I1, I2 ⊂ Zn,

(C(I1), C(I2)) is a CSS-T pair if and only if I2 ⊂ I1 and n ̸∈ (I1 + I1 + I2).

The corresponding quantum code is a [[n, |I1| − |I2|,≥ n−Amp(J2) + 1]] code.
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An algebraic characterization of binary CSS-T codes and cyclic CSS-T codes

G.1.2 Motivating example

We conclude this section with an example to demonstrate the utility of some of the results
in the paper. In particular, we show how to apply them to the well known [[15, 1, 3]]
(punctured) quantum Reed-Muller code [1, 18]. Let m ≥ 1 and 0 ≤ d ≤ m− 1. Then the
d-th order binary Reed-Muller code is defined as

RMm(d) :=
{
(f(v))v∈Fm

2
: f ∈ F2[x1, . . . , xm], deg f ≤ d

}
.

Moreover, it is known that its dual code is RMm(d)⊥ = RMm(m − 1 − d). Let m = 4
and assume that we order the points in F4

2 so that (0, 0, 0, 0) corresponds to the first
coordinate of the corresponding Reed-Muller codes. We consider C1 = RM4(1)

{1}, that is,
the puncturing of the code RM4(1) in the coordinate corresponding to (0, 0, 0, 0). For C2,
we consider the simplex code of length 15. This corresponds to taking C2 = RM4(1){1}, the
shortening of RM4(1) in the first coordinate. The sets of monomials whose evaluation over
F4
2\{(0, 0, 0, 0)} generates C1 and C2 are {1, x1, x2, x3, x4} and {x1, x2, x3, x4}, respectively,

and we have C2 ⊂ C1. If we prove that C2 ⊂ (C⋆2
1 )⊥, then C2 ⊂ C1 ∩ (C⋆2

1 )⊥, and,
by Theorem G.2.3, we would have that (C1, C2) is a CSS-T pair. The Schur product
RMm(d1) ⋆ RMm(d2), for some 0 ≤ d1, d2 ≤ m − 1, corresponds to taking the code
generated by the evaluation of the products of the corresponding monomials. In this
example, C⋆2

1 = C1 ⋆ C1 is the code generated by the evaluation over F4
2 \ {(0, 0, 0, 0)} of

{1, x1, x2, x3, x4, x1x2, x1x3, x1x4, x2x3, x2x4, x3x4}.

This actually corresponds to the puncturing in the first position of RM4(2), that is, C
⋆2
1 =

RM4(2)
{1}. Since the dual of a puncturing is the corresponding shortening of the dual, we

obtain (C⋆2
1 )⊥ = RM4(1){1} = C2. Thus, (C1, C2) is a CSS-T pair. Analogously, one can

prove that C1 ⋆ C2 is generated by

{x1, x2, x3, x4, x1x2, x1x3, x1x4, x2x3, x2x4, x3x4},

that is, C1 ⋆ C2 = RM4(2){1} = C⊥
1 . We proved before that (C⋆2

1 )⊥ = C2, which implies

C⋆2
1 = C⊥

2 . By Theorem G.3.11, we have that the [[15, 1, 3]] (punctured) quantum Reed-
Muller code is maximal with respect to the CSS-T poset P.

G.2 Equivalent Definitions

In this section, we give equivalent conditions for a pair of binary codes (C1, C2) to be a
CSS-T pair.

We start by fixing some notations for the rest of the paper. For a positive integer n,
we write [n] := {1, . . . , n}. We denote by 1 the element (1, . . . , 1), where the number of
entries depends on the context. We say a binary code C of length n, dimension k, and
minimum Hamming distance d is an [n, k, d] code. Let C ⊂ Fn

2 be a code and i ∈ [n]. The
dual of C with respect to the Euclidean inner product is denoted by C⊥. The shortening
of C in {i}, denoted by C{i}, is the binary code

C{i} := {(c1, . . . , ci−1, ci+1, . . . , cn) : (c1, . . . , ci−1, 0, ci+1, . . . , n) ∈ C}.
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The puncturing of C in {i}, denoted by C{i}, is the binary code

C{i} := {(c1, . . . , ci−1, ci+1, . . . , cn) : (c1, . . . , ci−1, ci, ci+1, . . . , cn) ∈ C, for some ci ∈ F2}.

For S ⊂ [n], we write CS (resp. CS) for the successive shortening (resp. puncturing) of C
in the coordinates indexed by the elements in S.

The Schur product of two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn
2 is denoted

and defined by

x ⋆ y := (x1y1, . . . , xnyn).

The Schur product of two binary codes C1 and C2, denoted by C1 ⋆ C2, is defined as the
binary code generated by the vectors

{c1 ⋆ c2 : ci ∈ Ci} .

The t-fold Schur product of C with itself is C⋆t := C ⋆ · · · ⋆ C︸ ︷︷ ︸
t

, the t-th Schur power of C.

Note that for a binary code C, we always have C ⊂ C⋆2 since x ⋆ x = x for any binary
vector x ∈ Fn

2 .

Recall that a code is of even weight, or even-weighted, provided all of its codewords
have even Hamming weight. For x ∈ C, we use Z(x) to denote the set of positions of the
zero coordinates of x, i.e., Z(x) = [n] \ supp(x), where supp(x) is the support of x (set of
nonzero entries of x).

We use [[n, k, d]] to denote a quantum code that encodes k logical qubits into n physical
qubits and can correct up to d− 1 erasures. We recall the CSS construction [8, 23].

Theorem G.2.1 CSS Construction. Let Ci ⊂ Fn
2 be linear codes of dimension ki, for

i = 1, 2, such that C2 ⊂ C1. Then, there is an [[n, k1 − k2, d]] quantum code with

d = min
{
wt (C1 \ C2) ,wt

(
C⊥
2 \ C⊥

1

)}
.

Let d∗ := min{wt(C1),wt(C
⊥
2 )}. If d = d∗, the corresponding quantum code is said to

be nondegenerate, and it is called degenerate if d > d∗.

The following definition was given in [20].

Definition G.2.2. Let C2 ⊂ C1 be binary codes. Then (C1, C2) is a CSS-T pair if C2 is
even-weighted and for any x ∈ C2, the shortening (C⊥

1 )Z(x) contains a self-dual code.

Theorem G.2.3. Let C1 and C2 be binary codes of length n. The following are equivalent.

(1) (C1, C2) is a CSS-T pair.

(2) C2 ⊂ C1, C2 is even-weighted, and for any x ∈ C2 the code C
Z(x)
1 is self-orthogonal.

(3) C2 ⊂ C1 ∩ (C⋆2
1 )⊥.

(4) C⊥
1 + C⋆2

1 ⊂ C⊥
2 .

Moreover, if (C1, C2) is a CSS-T pair then C2 is self-orthogonal.
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Proof. The equivalence of (1) and (2) was proved in [2]. (See also [4] for the case of
arbitrary fields of characteristic 2.) Also, (3) and (4) are equivalent by taking the duals.

To show the equivalence of (2) and (3), note that for any x ∈ C2, the code C
Z(x)
1 is

self-orthogonal if and only if x ∈ (C⋆2
1 )⊥. Indeed, x ∈ (C⋆2

1 )⊥ if and only if
∑n

i=1 xiuivi = 0

for any u, v ∈ C1. As x is a binary vector, we can write this as
∑

i∈supp(x)

uivi = 0, i.e.,

u′ · v′ = 0 for any u′, v′ ∈ C
Z(x)
1 , that is C

Z(x)
1 is self-orthogonal. On the other hand, if

C2 ⊂ C1 ∩ (C⋆2
1 )⊥, then we have

C2 ⊂ C1 ⊂ C⋆2
1 ⊂ C⊥

2 .

Thus, C2 is even-weighted because it is self-orthogonal.

Remark G.2.4. Note that if (C1, C2) is a CSS-T pair then, by part (4) of Theorem G.2.3,
C⋆2
1 ⊂ C⊥

2 , which is equivalent to C1 ⋆ C2 ⊂ C⊥
1 . This observation previously appeared

in [20, Remark 3].

A CSS-T code is a code obtained via a CSS-T pair and Theorem G.2.1. The equivalences
of Theorem G.2.3 allow us to see some structural properties of CSS-T codes. In particular,
the minimum distance of a CSS-T code associated with (C1, C2) is lower bounded by the
minimum distance of C⊥

2 .

Corollary G.2.5. Let (C1, C2) be a CSS-T pair. Then

min{wt(C1),wt(C
⊥
2 )} = wt(C⊥

2 ),

and the parameters of the corresponding CSS-T code are

[[n, k1 − k2,≥ wt(C⊥
2 )]].

Moreover, if the code is nondegenerate, we have equality in the minimum distance.

Proof. From Theorem G.2.3 (4), we see that

wt(C⊥
2 ) ≤ wt(C⊥

1 + C⋆2
1 ) ≤ wt(C⋆2

1 ) ≤ wt(C1).

G.3 The poset of CSS-T pairs

Let (C1, C2) be a CSS-T pair. By Corollary G.2.5, the CSS-T code associated with the
pair (C1, C2) has parameters [[n, k1 − k2,≥ wt(C⊥

2 )]]. Thus, increasing the dimension of
C1 will increase the dimension of the associated CSS-T code, and the minimum distance
is still bounded by wt(C⊥

2 ). In particular, if the associated CSS-T code is nondegenerate,
then increasing the dimension of C1 does not change the minimum distance (see Corollary
G.2.5). On the other hand, increasing the dimension of C2 could improve the minimum
distance but decrease the dimension of the resulting CSS-T code.
The following Corollary allows us to define a partial order on the set of CSS-T pairs.

The result shows that all the CSS-T pairs are determined by those CSS-T pairs (C1, C2)
that cannot be extended to another CSS-T pair (C ′

1, C
′
2), where C1 = C ′

1 or C2 = C ′
2.
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Corollary G.3.1. Let (C1, C2) be a CSS-T pair. Then, the following hold.

(1) (C ′
1, C2) is a CSS-T pair for any C2 ⊂ C ′

1 ⊂ C1.

(2) (C1, C
′
2) is a CSS-T pair for any C ′

2 ⊂ C2.

Proof. (1) As C ′
1 ⊂ C1, then (C ′⊥

1 )Z(x) ⊃ (C⊥
1 )Z(x) for any x ∈ C2. Hence, if (C⊥

1 )Z(x)

contains a self-dual code, then (C ′⊥
1 )Z(x) also contains a self-dual code.

(2) It is a direct consequence of Theorem G.2.3 (2).

We are ready to define a partial order in the set of CSS-T pairs.

Definition G.3.2. We denote by P the poset of CSS-T pairs relative to the order
(C1, C2) ≤ (C ′

1, C
′
2) if and only if Ci ⊂ C ′

i for i = 1, 2.

From now on, we discard the trivial pairs (C1, {0}) from P. Denote by ⟨x⟩ the code
generated by an element x ∈ Fn

2 .

Corollary G.3.3. The set of minimal elements of P is

{(⟨u⟩, ⟨u⟩) : u even , u ∈ Fn
2} .

Proof. This is a consequence of Corollary G.3.1.

We are interested in the set of maximal elements of P.

Definition G.3.4. We say that (C1, C2) ∈ P is maximal in C1 if (C1, C2) ≤ (C ′
1, C2)

implies C1 = C ′
1. Similarly, (C1, C2) is maximal in C2 if (C1, C2) ≤ (C1, C

′
2) implies

C2 = C ′
2.

Note that a pair (C1, C2) is a maximal element of P if and only if (C1, C2) is maximal
in both C1 and C2. Some maximal elements in P are given by the pairs (C1, C2) where
C1 has codimension one. Indeed, by Theorem G.2.3 (4), C⋆2

1 ⊂ C⊥
2 . Since we assume

that C2 is nontrivial, we see that C⋆2
1 is a proper subspace of Fn

2 , obtaining thus that
C1 = C⋆2

1 = C⊥
2 . Hence, C2 is a one-dimensional subspace of C1 generated by an even-

weight vector. In fact, we show in Theorem G.3.11 that the property C⋆2
1 = C⊥

2 holds for
any maximal pair (C1, C2).

We start by describing pairs that are maximal in C2.

Proposition G.3.5. A pair (C1, C2) ∈ P is maximal in C2 if and only if C2 = C1∩(C⋆2
1 )⊥.

Proof. This is provided by Theorem G.2.3 (3).

The following proposition gives a criterion for extending a CSS-T pair (C1, C2) to a pair
(C ′

1, C2) with dimC ′
1 = dimC1 + 1.

Proposition G.3.6. Let (C1, C2) be a CSS-T pair and y ∈ Fn
2 . Then (C1 + ⟨y⟩, C2) is a

CSS-T pair if and only if C1 ⋆ y + ⟨y⟩ ⊂ C⊥
2 , or equivalently, y ∈ C⊥

2 ∩ (C1 ⋆ C2)
⊥.
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Proof. Define C ′
1 := C1 + ⟨y⟩. Note that C ′⊥

1 ⊂ C⊥
1 . Since (C1, C2) is a CSS-T pair, we

have C⊥
1 + C⋆2

1 ⊂ C⊥
2 by Theorem G.2.3 (4). Thus,

C ′⊥
1 ⊂ C⊥

1 ⊂ C⊥
1 + C⋆2

1 ⊂ C⊥
2 .

By Theorem G.2.3 (4), (C ′
1, C2) is a CSS-T pair if and only if C ′⊥

1 + C ′⋆2
1 ⊂ C⊥

2 . So, it
is enough to verify C ′⋆2

1 ⊂ C⊥
2 if and only if C1 ⋆ y + ⟨y⟩ ⊂ C⊥

2 . It remains to notice that
C ′⋆2
1 = C⋆2

1 + C1 ⋆ y + ⟨y⟩, as y ⋆ y = y.

Unlike Proposition G.3.5, Proposition G.3.6 does not allow us to find the maximal C1

for a given C2 to get a CSS-T pair as the next example shows.

Example G.3.7. Let C = ⟨(1, 1, 1, 1, 1, 1)⟩. By Proposition G.3.3, (C,C) ∈ P and
it is a minimal element. We have C⊥ ∩ (C⋆2)⊥ = C⊥. Let v = (1, 1, 1, 1, 0, 0), w =
(1, 0, 0, 0, 0, 1) ∈ C⊥. Thus (C + ⟨v⟩, C) ∈ P, but (C + ⟨v, w⟩, C) /∈ P, despite v, w ∈ C⊥.
We have:

C⊥ ∩ ((C + ⟨v⟩) ⋆ C)⊥ = ⟨(1, 1, 0, 0, 0, 0), (1, 0, 1, 0, 0, 0), (1, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 1)⟩.

We can take any non-zero element v′ different from (1, 1, 1, 1, 1, 1, 1) in this intersection
and we get that (C + ⟨v, v′⟩, C) is a CSS-T pair. Note that for v′ equal to (1, 1, 0, 0, 0, 0),
(1, 0, 1, 0, 0, 0), or (1, 0, 0, 1, 0, 0), we get a new CSS-T pair. However, we do not obtain a
new CSS-T for v′ = (0, 0, 0, 0, 1, 1) since v′ ∈ C + ⟨v⟩.

Remark G.3.8. Note that, if (C1, C2) is a CSS-T pair, then so is (C1 + ⟨1⟩, C2). This
follows from Theorem G.2.3 (3), the previous result, and the observation that C2 ⊂ ⟨1⟩⊥,
as C2 is even-weighted.

Proposition G.3.6 also provides the following propagation rule for nondegenerate CSS-T
codes.

Corollary G.3.9. Let (C1, C2) be a CSS-T pair such that the associated [[n, k, d]] CSS-T
code is nondegenerate. For any y ∈ C⊥

2 ∩ (C1 ⋆ C2)
⊥ and y ̸∈ C1, the pair (C1 + ⟨y⟩, C2)

is a nondegenerate CSS-T pair with parameters

[[n, k + 1, d]].

Proof. By Proposition G.3.6, (C1 + ⟨y⟩, C2) is a CSS-T pair, and the parameters follow
from Corollary G.2.5.

Corollary G.3.10. A pair (C1, C2) ∈ P is maximal in C1 if and only if C1 = C⊥
2 ∩ (C1 ⋆

C2)
⊥.

Proof. By Proposition G.3.6, (C1, C2) ∈ P is maximal in C1 if and only C⊥
2 ∩ (C1 ⋆

C2)
⊥ ⊂ C1. On the other hand, the pair (C1 + ⟨y⟩, C2) is CSS-T for each y ∈ C1, so by

Proposition G.3.6, C1 ⊂ C⊥
2 ∩ (C1 ⋆ C2)

⊥ as well.

We obtain the following theorem by combining the previous results on maximality in
C1 and C2.

Theorem G.3.11. Let C2 ⊂ C1 ⊂ Fn
2 be linear codes. The pair (C1, C2) is maximal in

P if and only if
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(1) C⊥
1 = C1 ⋆ C2 and

(2) C⊥
2 = C⋆2

1 .

Proof. Assume (C1, C2) is a maximal CSS-T pair. Note that we can assume 1 ∈ C1 by
Remark G.3.8, and we have C2 = ⟨1⟩ ⋆ C2 ⊂ C1 ⋆ C2. Now, by Corollary G.3.10, we have

C⊥
1 = C2 + C1 ⋆ C2 = C1 ⋆ C2,

which shows (1).

As C2 = C1 ∩ (C⋆2
1 )⊥ by Proposition G.3.5, we only need to show that (C⋆2

1 )⊥ ⊂ C1 in
order to prove (2). Since C2 ⊂ C1, we have C1 ⋆C2 ⊂ C⋆2

1 and (C⋆2
1 )⊥ ⊂ (C1 ⋆C2)

⊥. Also,
C2 ⊂ C1 ⊂ C⋆2

1 implies that (C⋆2
1 )⊥ ⊂ C⊥

2 . Therefore, by Corollary G.3.10, we get

(C⋆2
1 )⊥ ⊂ C⊥

2 ∩ (C1 ⋆ C2)
⊥ = C1.

Theorem G.2.3 (2) implies that (C1, C2) is a CSS-T pair. The maximality follows
directly from Proposition G.3.5 and Corollary G.3.10, using both (1) and (2).

The following example illustrates that the necessary condition (2) of Theorem G.3.11
for (C1, C2) to be maximal is not sufficient.

Example G.3.12. Define C2 := ⟨(1, 1, 0, 0, 0, 0)⟩ and C1 as the code whose generator
matrix is given by 

1 1 0 0 0 0
0 0 1 1 1 0
0 0 0 1 0 1
0 0 0 0 1 1

 .

It is not difficult to see using [3, 15] that a generator matrix for C⋆2
1 is given by

1 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Hence, (C⋆2
1 )⊥ = ⟨(1, 1, 0, 0, 0, 0)⟩ = C2, meaning that the pair (C1, C2) satisfies condition

(2) of Theorem G.3.11. But the pair (C1, C2) is not maximal in C1 because the extension
(C1 + ⟨1⟩, C2) satisfies (1)–(2) of Theorem G.3.11, meaning that it is maximal.

In the following Corollary, we collect special cases when the conditions of Theorem G.3.11
can be relaxed.

Corollary G.3.13. Let C be a binary code.

(1) The pair (C,C) is maximal in P if and only if C⋆2 = C⊥.

(2) If C⊥ ⊂ C, the pair (C,C⊥) is maximal in P if and only if C⋆2 = C. Equivalently,
C is generated by vectors with pair-wise disjoint support.
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Proof. (1) If the pair (C,C) is maximal in P, then C⋆2 = C⊥ by Theorem G.3.11 (2). If
C⋆2 = C⊥, then (C,C) is a CSS-T pair by Theorem G.2.3 (3). Also, the pair (C,C) is
maximal in P by Theorem G.3.11.

(2) If (C,C⊥) is a maximal CSS-T pair, then C = C⋆2 by Theorem G.3.11 (2). Con-
versely, assume that C = C⋆2. Theorem G.2.3 (3) verifies that (C,C⊥) is a CSS-T pair.
Proposition G.3.5 verifies that (C,C⊥) is maximal in C⊥. If (C+ ⟨y⟩, C⊥) is a CSS-T pair
for some y ∈ Fn

2 , then y ∈ C by Proposition G.3.6, meaning that (C,C⊥) is maximal in
C.

Example G.3.14. Assume 3d = m − 1 for some d,m ∈ N. For the binary Reed-Muller
code C := RMm(d), we have

C⊥ = RMm(d)⊥ = RMm(m− d− 1) = RMm(2d) = C⋆2.

Thus, (C,C) is a maximal pair by Corollary G.3.13 (1).

Observe that even if (C1, C2) is maximal in P, in principle, there can be a pair (D1, D2) ∈
P such that C2 ⊂ D2 or C1 ⊂ D1. We can give a complete characterization of such spaces.
First we need a lemma.

Lemma G.3.15. Let C ⊊ Fn
2 such that for any x ∈ C ∩ (C⋆2)⊥ we have C ⋆ x = C⊥.

Then (C⋆2)⊥ = ⟨y⟩, for some y ∈ C, or C = C⊥ and C⋆2 = ⟨1⟩⊥.

Proof. First observe that C ⋆ x = C⊥ ⊂ C⋆2 implies (C⋆2)⊥ ⊂ C and thus C ∩ (C⋆2)⊥ =
(C⋆2)⊥. Let y ∈ (C⋆2)⊥ be a minimal support codeword. If y = 1, then C ⋆ y = C = C⊥

and C⋆2 = ⟨1⟩⊥.
Assume now that wt(y) < n. Since C ⋆ y = C⊥ then ⟨ei : i /∈ supp(y)⟩ ⊆ C. If there

is another minimal codeword y ̸= x ∈ (C⋆2)⊥, the same arguments lead to the existence
of i ∈ supp(y) \ supp(x) such that ei ∈ C⋆2 and thus zi = 0 for any z ∈ (C⋆2)⊥, which
contradicts that yi ̸= 0. Thus, there are no more minimal codewords in (C⋆2)⊥ and we
have the conclusion.

The next example shows that the converse of the last lemma is not true.

Example G.3.16. Let C = ⟨(1, 1, 0, 0, 0), (0, 1, 1, 0, 0), (0, 0, 0, 1, 1)⟩. We have

C⋆2 = ⟨(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 1)⟩,

and (C⋆2)⊥ = ⟨(0, 0, 0, 1, 1)⟩. However,

C ⋆ (0, 0, 0, 1, 1) = (0, 0, 0, 1, 1) ⊊ C⊥ = ⟨(1, 1, 1, 0, 0), (0, 0, 0, 1, 1)⟩.

Proposition G.3.17. Let (C1, C2) ∈ P. Then

1. There is no (D1, D2) ∈ P with C1 ⊊ D1 if and only if C⊥
1 = C1 ⋆ y for any y ∈

C1 ∩ (C⋆2
1 )⊥.

2. There is no (D1, D2) ∈ P with C2 ⊊ D2 if and only if (C2, C2) is maximal.
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Proof. If there is no such D1, since for any y ∈ C1 ∩ (C⋆2
1 )⊥, (C1, ⟨y⟩) ∈ P but C1 cannot

be extended, then C1 = ⟨y⟩⊥∩(C1 ⋆y)
⊥ = (C1 ⋆y)

⊥ by Corollary G.3.10 (note that y ∈ C1

implies y ∈ C1 ⋆ y). On the other hand, assume C⊥
1 = C1 ⋆ y for any y ∈ C1 ∩ (C⋆2

1 )⊥,
and let C1 ⊂ D1 such that D1 is the largest code containing C1 with (D1, D) ∈ P for
some D. By the first part of this proof, the hypothesis and Lemma G.3.15 we have
(D⋆2

1 )⊥ ⊆ (C⋆2
1 )⊥ = ⟨y⟩ for some y ∈ C1. This implies D1 ∩ (D⋆2

1 )⊥ = ⟨y⟩ because
(D1, D) ∈ P. By the choice of D1 and the first part of the proof, D1 ⋆ y = D⊥

1 , and we
also have C1 ⋆ y = C⊥

1 . Thus,

C1 ⋆ y ⊂ D1 ⋆ y = D⊥
1 ⊂ C⊥

1 ⇒ D⊥
1 = C⊥

1 ,

and we get D1 = C1.

To prove (2), observe that (D1, D2) ∈ P is such that C2 ⊂ D2 if and only if there
is y /∈ C2 such that (C2 + ⟨y⟩, C2) ∈ P by Corollary G.3.1. This happens if and only
if y ∈ (C⊥

2 ∩ (C⋆2
2 )⊥) \ C2 by Proposition G.3.6. However, (C⋆2

2 )⊥ ⊂ C⊥
2 and thus,

y ∈ (C⋆2
2 )⊥ \ C2. If there is not such y, it means that (C⋆2

2 )⊥ = C2 and by Corollary
G.3.13 we have the conclusion.

Example G.3.18. Let

G =


1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0


and C be the code generated by G. We can check that C⋆2 = ⟨1⟩⊥, C = C⊥ and thus,

(C, ⟨1⟩) ∈ P and there is no other CSS-T pair (D1, D2) with C1 ⊊ D1.

Corollary G.3.19. If (C1, C2) ∈ P and there is no D1 ⊋ C1 and D2 such that (D1, D2) ∈
P, then for some y ∈ C1, C2 = ⟨y⟩ and (C1, C2) is maximal.

G.4 Cyclic codes

We now illustrate the results from the previous sections using cyclic codes (and extended
cyclic codes). We will review cyclic codes over Fq, but note that we restrict to the case
q = 2 whenever we refer to CSS-T codes.

Take an integer s > 1 and consider the field extension Fqs/Fq. We set n with n | qs − 1
and g ∈ Fq[x] such that g divides xn − 1. We denote by Cg the cyclic code with g as
its generator polynomial. Let β ∈ Fqs be a primitive n-th root of unity. For the set
Zn := Z/nZ, we will consider the representatives between 1 and n, i.e., Zn = {1, 2, . . . , n}.

Definition G.4.1. The defining set is given by J := {j ∈ Zn : g(βj) = 0} and the
generating set by I := {i ∈ Zn : g(βi) ̸= 0}.

Note that J = [n] \ I, and

g =
∏
j∈J

(x− βj) =
xn − 1∏

i∈I(x− βi)
.
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Define −I := {n − i : i ∈ I} ⊂ Zn. Let M ⊂ Z≥0 be a finite set. We consider the
Fqs-linear subspace

L(M) := ⟨xi : i ∈ M⟩ ⊂ Fqs [x].

Take a set of points X = {P1, . . . , P|X|} ⊂ Fqs . We can define the following evaluation
map associated to X:

evX : Fqs [x] → F|X|
qs

f 7→
(
f(P1), . . . , f(P|X|)

)
.

Let Xn := {1, β, . . . , βn−1}, i.e., Xn is the zero locus of xn − 1 in Fqs . We now consider
the associated evaluation code

B(M) := evXn(L(M)) = {(f(1), f(β), . . . , f(βn−1)) : f ∈ L(M)} ⊂ Fn
qs ,

and we define
C(I) := B(−I) ∩ Fn

q .

From [5], we obtain that Cg = C(I), i.e., we have a description of cyclic codes in terms of
subfield subcodes of evaluation codes.
The definitions clearly show that J and I are closed under multiplication by q, which

leads to the following definition.

Definition G.4.2. Given a subset I ⊂ Zn, denote q · I := {q · i : i ∈ I}. We say that I
is a cyclotomic coset if I = q · I. Let a ∈ Zn, the set Ia := {qj · a : j ≥ 0} ⊂ Zn is the
minimal cyclotomic coset associated to a.

Example G.4.3. Let q = 2, s = 4, and n = 15. Then, the minimal cyclotomic cosets are

I1 = {1, 2, 4, 8}, I3 = {3, 6, 12, 9}, I5 = {5, 10}, I7 = {7, 14, 13, 11}, I15 = {15}.

From [5], we have the following result about the dual of a cyclic code.

Theorem G.4.4. Let I ⊂ Zn be a cyclotomic coset. We have that

C(I)⊥ = C(−J).

This last result can be seen as a consequence of the following fact from [5]: If I is a
cyclotomic coset, then

(B(−I) ∩ Fn
q )

⊥ = (B(−I)⊥) ∩ Fn
q . (G.4.1)

The length of C(I) is n, and its dimension is |I|. For the minimum distance, we need
the following definition.

Definition G.4.5. The amplitude of a nonempty subset I ⊂ Zn is

Amp(I) := min{i ∈ N : ∃c ∈ Zn such that I ⊂ {c, c+ 1, . . . , c+ i− 1}}.

Then, the minimum distance of C(I) is greater than or equal to n − Amp(I) + 1; for
example, see [10]. Summarizing, C(I) has parameters

[n, |I|, ≥ n−Amp(I) + 1].
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Since Amp(−J) = Amp(J), we see that C(I)⊥ has parameters [n, |J |, ≥ n−Amp(J)+1].
Note that n − Amp(J) + 1 is equal to the usual BCH bound, i.e., it is equal to δ(I) + 1,
where δ(I) is the maximum number of consecutive elements in I.

Given I1, I2 ⊂ Zn, we consider their Minkowski sum

I1 + I2 := {i1 + i2 : i1 ∈ I1, i2 ∈ I2} ⊂ Zn. (G.4.2)

It is easy to check that if I1, I2 ⊂ Zn are cyclotomic cosets, then I1 + I2 is also a
cyclotomic coset. Following the previous notation, we will denote Ji = [n]\ Ii, for i = 1, 2.

Example G.4.6. Continuing with Example G.4.3, we consider

I1 = {1, 2, 4, 8, 15}, I2 = {1, 2, 4, 8}.

We compute the following Minkowski sums, which we will use in the following examples:

I1 + I2 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12}, I1 + I1 = (I1 + I2) ∪ {15}.

Note that I1 + I2 = I1 ∪ I3 ∪ I5, i.e., I1 + I2 is also a cyclotomic coset.

The following result from [11] shows that the sum and the Schur product of cyclic codes
is also a cyclic code.

Lemma G.4.7. Let I1 and I2 be cyclotomic cosets. Then

C(I1) + C(I2) = C(I1 ∪ I2),

C(I1) ⋆ C(I2) = C(I1 + I2).

As an application of Theorem G.2.3, we obtain the following criterion for a pair of cyclic
codes to be a CSS-T pair.

Theorem G.4.8. Let I1, I2 ⊂ Zn be cyclotomic cosets. Then (C(I1), C(I2)) is a CSS-T
pair if and only if:

(1) I2 ⊂ I1 and

(2) n ̸∈ (I1 + I1 + I2).

The parameters of the corresponding quantum code are [[n, |I1|−|I2|,≥ n−Amp(J2)+1]].

Proof. We use the third equivalent condition from Theorem G.2.3 with C1 = C(I1) and
C2 = C(I2). We have

C(I2) ⊂ C(I1) ⇐⇒ I2 ⊂ I1,

and

C(I2) ⊂ (C(I1)
⋆2)⊥ ⇐⇒ 1 ∈ (C(I1)

⋆2 ⋆ C(I2))
⊥ = C(I1 + I1 + I2)

⊥

⇐⇒ 1 ∈ B(−(I1 + I1 + I2))
⊥ ⇐⇒ n ̸∈ I1 + I1 + I2,

as follows from (G.4.1) and Lemma G.4.7. Also, the last equivalence follows from [12, Prop.
1]. We use Corollary G.2.5 for the parameters of the quantum code.

Remark G.4.9. Theorem G.4.8 also holds if we substitute condition (2) with
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(2’) I1 + I1 ⊂ −J2.

This is because

C(I2) ⊂ (C(I1)
⋆2)⊥ = C(I1 + I1)

⊥ ⇐⇒ I1 + I1 ⊂ −J2.

As I2 ⊂ I1, from Theorem G.4.8, we obtain the necessary condition n ̸∈ I2 for (C(I1), C(I2))
to be a CSS-T pair. This happens if and only if n ∈ −J2. Hence, if the pair I1, I2 satisfies
the conditions from Theorem G.4.8, then the pair I1 ∪ {n}, I2 also satisfies those condi-
tions. This is a translation of the following fact that we have seen in the previous section:
If (C1, C2) is a CSS-T pair, then (C1 + ⟨1⟩, C2) is also a CSS-T pair.

Example G.4.10. We consider I1, I2 as in Example G.4.6. Clearly I2 ⊂ I1. From the
computation of I1 + I2 in Example G.4.6, we obtain

I1 + I1 + I2 = [n− 1] = {1, 2, . . . , 14}.

By Theorem G.4.8, we have that (C(I1), C(I2)) is a CSS-T pair with parameters [[15, 1, 3]].
Note that we have recovered the (punctured) quantum Reed-Muller code mentioned in the
introduction.

In Section G.3, we studied conditions for a CSS-T pair to be maximal in each component.
The following result shows how we can translate those conditions to cyclic codes.

Corollary G.4.11. Let I1, I2 ⊂ Zn be cyclotomic cosets such that (C(I1), C(I2)) is a
CSS-T pair. Then the pair (C(I1), C(I2)) is maximal in C1 if and only if

−J1 = I2 ∪ (I1 + I2),

is maximal in C2 if and only if

−J2 = (−J1) ∪ (I1 + I1),

and is maximal if and only if

−J1 = I1 + I2 and − J2 = I1 + I1.

Proof. The conditions for maximality in C1 and C2 follow from Corollary G.3.10 and
Proposition G.3.5, respectively, taking into account Theorem G.4.4 and Lemma G.4.7.
The condition for maximality follows similarly from Theorem G.3.11.

Example G.4.12. Continuing with the setting from Example G.4.10, it is easy to check,
using Example G.4.6, that −J1 = I1 + I2 and −J2 = I1 + I1. Therefore, by Corollary
G.4.11, the CSS-T pair (C(I1), C(I2)) is maximal.

From Corollary G.2.5, we see that it is desirable to find CSS-T pairs (C1, C2) such that
C⋆2
1 has a large minimum distance. In [10], it is shown that the construction of cyclic

codes based on the notion of restricted weight can give rise to codes C such that both C
and C⋆2 have excellent parameters. It is, therefore, interesting to study when we can use
these codes for constructing CSS-T pairs. We briefly explain the construction from [10]
and then obtain CSS-T codes from this construction. In what follows, we assume that
n = qs − 1.
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Definition G.4.13. Let a ∈ [n] have q-ary representation (as−1, as−2, . . . , a0)q, and let
1 ≤ t ≤ s. The t-restricted weight of a is defined as

w(t)
q (a) := max

i∈{0,...,s−1}

t−1∑
j=0

ai+j ,

where we consider the sum i + j modulo s. In other words, it is the maximum num-
ber of nonzero elements for any sequence of t (cyclically) consecutive digits of the q-ary
representation of a.

The t-restricted weight is invariant under multiplication by q, and we can speak about
the t-restricted weight of a minimal cyclotomic coset. It is shown in [10, Prop. 11] that

w(t)
q (a) ≤ w(t)

q (b) + w(t)
q (c),

for b, c ∈ [n] and a = b + c mod n. Therefore, given cyclotomic cosets I1, I2 ⊂ Zn whose
elements have t-restricted weight at most µ1, µ2, respectively, the cyclotomic coset I1 + I2
will have t-restricted weight at most µ1 + µ2. Let It≤µ := {a ∈ Zn : w

(t)
q (a) ≤ µ}.

In [10, Prop. 13], it is proven that for a ∈ It≤µ, we have w
(s)
q (a) ≤ ⌊(µs)/t⌋. This

motivates the following construction.

Corollary G.4.14. Take 1 ≤ t ≤ s and 1 ≤ µ1, µ2 ≤ t. If µ2 ≤ µ1 and 2⌊(µ1s)/t⌋ +
⌊(µ2s)/t⌋ ≤ s− 1, then (C(It≤µ1

), C(It≤µ2
)) is a CSS-T pair.

Proof. We use Theorem G.4.8 with Ii = It≤µi
, for i = 1, 2. As µ2 ≤ µ1, we have I2 ⊂ I1.

We claim that n ̸∈ I1 + I1 + I2. Indeed, let z = a+ b+ c mod n, with a, b ∈ I1, c ∈ I2. By
the previous discussion,

w
(s)
2 (z) = w

(s)
2 (a+ b+ c) ≤ w

(s)
2 (a) + w

(s)
2 (b) + w

(s)
2 (c) ≤ 2⌊(µ1s)/t⌋+ ⌊(µ2s)/t⌋ ≤ s− 1.

Since w
(s)
2 (n) = s, we conclude that n ̸∈ I1 + I1 + I2, and the result follows from Theorem

G.4.8.

Note that, by Remark G.4.9, we can also consider C1 = C(It≤µ1
∪ {n}) for the previous

result. For the parameters of the corresponding CSS-T code, in [10], there are formulas
for the parameters of C(It≤µ) in some cases, and we can also use the usual bounds for
cyclic codes.

Example G.4.15. It is easy to check that I1 and I2 from Example G.4.6 are precisely

I1 = I4≤µ1
∪ {15} and I2 = I4≤µ2

with µ1 = µ2 = 1. Note that, for t = s = 4, the conditions from Corollary G.4.14 are
satisfied. Therefore, (C(I4≤µ1

), C(I4≤µ2
)) is a CSS-T pair, which implies that (C(I1), C(I2))

is a CSS-T pair (which we already knew by Example G.4.10).
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G.4.1 Extended cyclic codes

We define Ẑn := {0}∪Zn. We will adapt the definitions from the previous section for this
setting. Let I ⊂ Ẑn. We say that I is a cyclotomic coset if I = q · I. For I1, I2 ⊂ Ẑn, we
define I1+I2 as in (G.4.2), where we understand that i1+ i2 = 0 if and only if i1 = i2 = 0,
for i1 ∈ I1 and i2 ∈ I2, and the rest of the sums are computed as usual in Zn = {1, . . . , n}.
We denote by J := Ẑn \ I.

For M ⊂ {0, . . . , n}, we consider X̂n := {0} ∪Xn, the zero locus of xn+1 − x, and we
define

B̂(M) := evX̂n
(L(M)) = {(f(0), f(1), f(β), . . . , f(βn−1)) : f ∈ L(M)} ⊂ Fn+1

qs .

For I ⊂ Ẑn a cyclotomic coset, the extended cyclic code associated with I is

Ĉ(I) := B̂(I) ∩ Fn+1
q .

Note that in this case, we are not considering −I. With respect to the parameters, Ĉ(I)
has parameters [n+1, |I|,≥ n−max(I)+1], and Ĉ(I)⊥ has parameters [n+1, n+1−|I|,≥
δ(I) + 1], where δ(I) is the maximum number of consecutive elements in I as before (it is
a BCH-type bound for extended cyclic codes).

Although these codes are no longer cyclic, they still preserve some of the properties of
cyclic codes. The proof of the following result is analogous to the one in [10, Thm. 1].

Lemma G.4.16. Let I1, I2 ⊂ Ẑn be cyclotomic cosets. Then

Ĉ(I1) ⋆ Ĉ(I2) = Ĉ(I1 + I2).

As a consequence, one can check that Theorem G.4.8 and Corollary G.4.14 also hold
when we consider extended cyclic codes. Moreover, for extended cyclic codes, one may
also allow µ1 = 0 or µ2 = 0 in Corollary G.4.14. When considering the s-restricted
weight, in [10, Prop. 10], it is shown that Corollary G.4.14 for extended cyclic codes
corresponds to the family of CSS-T pairs obtained by using binary Reed-Muller codes
from [2]. Nevertheless, by considering the t-restricted weight, with t < s, we obtain
different families of CSS-T codes. Moreover, considering the general case from Theorem
G.4.8, it is clear that we obtain a much larger family of CSS-T pairs than by using binary
Reed-Muller codes, thus obtaining a wider range of parameters. In the following example,
we show that we can improve the parameters of the CSS-T codes obtained with binary
Reed-Muller codes in some cases. All the computations from the following examples were
done using SageMath [24].

Example G.4.17. We use a greedy construction to obtain CSS-T codes with cyclic codes,
and we compare them with the CSS-T codes obtained with binary Reed-Muller codes. Let
s > 1, n = 2s − 1, and we consider the cyclotomic cosets associated with the extension
F2s/F2. Assume that Zn = Ia1 ∪ Ia2 ∪ · · · ∪ Iaℓ , with 1 = a1 < a2 < · · · aℓ. We consider
the following greedy construction: let I2 := Ia1 ∪ Ia2 ∪ · · · ∪ Iat , for some t < ℓ such that

n ̸∈ I2 + I2 + I2, and let I
(0)
1 := I2. If I ′1 := I

(0)
1 ∪ Iat+1 satisfies n ̸∈ I ′1 + I ′1 + I2, we

set I
(1)
1 := I ′1, and we set I

(1)
1 := I

(0)
1 otherwise. Following this procedure until we cannot

add any more minimal cyclotomic cosets, we will get a cyclotomic coset I
(u)
1 , for some
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t ≤ u < ℓ, such that n ̸∈ I
(u)
1 + I

(u)
1 + I2. Therefore, by Theorem G.4.8 and Remark G.4.9,

we get that (C(I
(u)
1 ∪ {n}), C(I2)) is a CSS-T pair. Moreover, we have the BCH bound

wt(C(I2)
⊥) ≥ n−Amp(J2) + 1 = δ(I2) + 1 = at+1,

which bounds the minimum distance of the corresponding quantum code by Corollary
G.2.5. Note that this construction can be easily generalized to extended cyclic codes.
For s ≤ 6, the CSS-T codes obtained with the previous construction do not improve the

parameters of the CSS-T codes obtained with binary Reed-Muller codes. Nevertheless, for
s = 7, 8, 9, 10, we show in Table G.1 that we can obtain a broader range of parameters using
cyclic and extended cyclic codes, and some of these codes outperform the ones derived
from binary Reed-Muller codes. For all the codes in Tables G.1 and G.2 we have checked
that the bound for the minimum distance is sharp.

Table G.1: Parameters of the CSS-T codes obtained with binary Reed-Muller, cyclic, and
extended cyclic codes (using the greedy construction).

s Reed-Muller

7 [[128, 21, 4]]
8 [[256, 84, 4]]
9 [[512, 120, 4]]
9 [[512, 84, 8]]
10 [[1024, 375, 4]]
10 [[1024, 120, 8]]

s Cyclic

7 [[127, 29, 3]]
7 [[127, 15, 5]]
7 [[127, 8, 7]]
8 [[255, 85, 3]]
8 [[255, 39, 5]]
8 [[255, 21, 7]]
9 [[511, 148, 3]]
9 [[511, 112, 5]]
9 [[511, 103, 7]]
10 [[1023, 376, 3]]
10 [[1023, 213, 5]]
10 [[1023, 191, 7]]
10 [[1023, 161, 9]]
10 [[1023, 131, 11]]
10 [[1023, 116, 13]]
10 [[1023, 106, 15]]

s Extended cyclic

7 [[128, 28, 4]]
7 [[128, 14, 6]]
7 [[128, 7, 8]]
8 [[256, 84, 4]]
8 [[256, 36, 6]]
8 [[256, 20, 8]]
9 [[512, 147, 4]]
9 [[512, 111, 6]]
9 [[512, 102, 8]]
10 [[1024, 375, 4]]
10 [[1024, 210, 6]]
10 [[1024, 190, 8]]
10 [[1024, 160, 10]]
10 [[1024, 130, 12]]
10 [[1024, 115, 14]]
10 [[1024, 105, 16]]

Using Remark 3.13 from [4], it is easy to see that, for n even, if we consider ei, 1 ≤ i ≤ n,
the standard basis vectors in Fn

2 , and the code

C = ⟨e2i−1 + e2i, 1 ≤ i ≤ n/2⟩,

then (C, ⟨1⟩) is a CSS-T pair with parameters

[[n, n/2− 1, 2]]. (G.4.3)

This code has better parameters than the CSS-T codes with minimum distance 2 derived
from binary Reed-Muller, cyclic, or extended cyclic codes in the cases we have checked.
Therefore, we have omitted the codes with minimum distance 2 from Table G.1 and the
ones with dimension 0.
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For a direct comparison, we can see that the CSS-T codes obtained from binary Reed-
Muller codes with parameters [[128, 21, 4]], [[512, 120, 4]], [[512, 84, 8]] and [[1024, 120, 8]]
are outperformed by the CSS-T codes derived from extended cyclic codes with parameters
[[128, 28, 4]], [[512, 147, 4]], [[512, 102, 8]] and [[1024, 190, 8]], respectively.

Example G.4.18. Not all the codes from the previous example are maximal with respect
to C1. Therefore, it is possible to use our Corollary G.3.9 to increase the dimension of
the corresponding quantum code in some cases. For example, one can check that the
CSS-T code with parameters [[255, 21, 7]] from Table G.1 is not maximal with respect to
the first component using Corollary G.3.10. By Proposition G.3.6, this means that there
is some vector y ∈ C⊥

2 ∩ (C1 ⋆ C2)
⊥ such that y ̸∈ C1 and (C1 + ⟨y⟩, C2) is a CSS-T pair.

The parameters of the corresponding quantum code are [[255, 22, 7]] by Corollary G.3.9,
increasing the dimension of the quantum code by 1. By computer search, we have found a
vector y such that (C1 + ⟨y⟩, C2) is still not maximal with respect to the first component.
Hence, there is a vector y′ such that (C1 + ⟨y, y′⟩, C2) is a CSS-T pair with parameters
[[255, 23, 7]], increasing the dimension of the original quantum code by 2. In the cases
where we have found such y, y′, the pair (C1 + ⟨y, y′⟩, C2) is maximal with respect to the
first component, and we cannot continue to increase the dimension using Corollary G.3.9.
In Table G.2, we show the codes that can be derived from CSS-T codes using binary

Reed-Muller codes, cyclic codes, and extended cyclic codes (with the greedy construction
from Example G.4.17) by applying Corollary G.3.9 for length 2s, s = 4, . . . , 10 (2s − 1 for
cyclic codes). All the codes in Table G.2 are maximal with respect to the first component
of the CSS-T pair, although it might be possible to improve them further since there are
many choices for the vectors that we add to C1 in Corollary G.3.9. We note that the
CSS-T codes derived from cyclic and extended cyclic codes still outperform the improved
CSS-T codes arising from Reed-Muller codes. The parity check matrices of the classical
codes used to construct the quantum codes from Tables G.1 and G.2 can be found in the
GitHub repository RodrigoSanJose/Cyclic-CSS-T [9].

Table G.2: Parameters of improved CSS-T codes obtained with binary Reed-Muller, cyclic,
and extended cyclic codes (using the greedy construction).

s Reed-Muller

5 [[32, 4, 4]]
7 [[128, 26, 4]]
9 [[512, 133, 4]]
10 [[1024, 125, 8]]

s Cyclic

5 [[31, 4, 3]]
8 [[255, 23, 7]]
9 [[511, 149, 3]]
10 [[1023, 219, 5]]
10 [[1023, 193, 7]]
10 [[1023, 133, 11]]

s Extended cyclic

5 [[32, 4, 4]]
8 [[256, 22, 8]]
9 [[512, 148, 4]]
10 [[1024, 217, 6]]
10 [[1024, 192, 8]]
10 [[1024, 133, 12]]

G.5 Relation to triorthogonal codes

Another family of codes that is usually studied for fault-tolerant computation, and, in
particular, for magic state distillation, are triorthogonal codes [6, 17]. A binary matrix
G of size m × n is called triorthogonal if wt(Ga ⋆ Gb) = 0 mod 2, for all pairs of rows
1 ≤ a < b ≤ m, and wt(Ga ⋆Gb ⋆Gc) = 0 mod 2, for all triples of rows 1 ≤ a < b < c ≤ m.
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With such a matrix, by taking C1 to be the linear span of G and C2 the linear span
of the even weighted rows of G, one can construct a quantum code (which we will call
triorthogonal code) such that, when a transversal T gate is applied to it, it induces a
transversal T gate on the logical qubits, up to Clifford corrections. This is stronger than
having a CSS-T code, since the definition of CSS-T only requires the physical transversal
T to induce some logical operation on the logical qubits. If one wants to avoid the Clifford
corrections, some weight conditions have to be imposed on the classical codes used (see [21,
Thm. 4]). From our results, we can obtain the following.

Corollary G.5.1. If (C1, C2) is a CSS-T pair, then 1 ∈ (C⋆3
2 )⊥.

Proof. As C2 ⊆ C1, Corollary G.3.1 implies that (C2, C2) is a CSS-T pair. Thus, C⋆2
2 ⊂ C⊥

2

by Theorem G.2.3, meaning that 1 ∈ (C⋆3
2 )⊥.

Having 1 ∈ (C⋆3
2 )⊥ implies that C2 has a triorthogonal generator matrix, which is also

the case for triorthogonal codes due to the fact that, in that setting, the generator matrix
for C2 is a submatrix of a triorthogonal matrix.
Since the triorthogonality condition is stronger than being CSS-T, it may be possible

that CSS-T codes achieve better parameters than triorthogonal codes. To see this, we
consider the scaling exponent of the distillation protocol presented in [6]. They obtain
that

γ =
log2(n/k)

log2(d)
,

for an [[n, k, d]] triorthogonal code. Since the distillation overhead scales as O(logγ(1/ϵ)),
where ϵ is the output accuracy (see [6] for details), codes with lower γ are preferred. We
will use this value for CSS-T codes to compare the goodness of their parameters with some
of the triorthogonal codes in the literature. In [6], the authors find a family of triorthogonal
codes with parameters [[3k + 8, k,≥ 2]], where k is even. The CSS-T codes from (G.4.3)
have strictly better parameters. In particular, the scaling exponent γ tends to 1 for the
codes in (G.4.3), while the family from [6] has scaling exponent tending to log2(3) ≈ 1.585.
In [6] they also obtain a code with parameters [[49, 1, 5]], and γ = 2.418. If we compare
with the codes in our tables, in particular, the codes [[32, 4, 4]] and [[1024, 192, 8]] (to take
an example of a short code and a long code), we obtain for γ the values 1.5 and 0.805,
respectively.
In [17], the authors find triorthogonal codes with parameters [[35, 3, 3]] and [28, 2, 3]],

with scaling exponent equal to 2.236 and 2.402, respectively, which are higher values than
the one we obtained for [[32, 4, 4]]. Moreover, the authors in [17] prove that there is no
triorthogonal quantum code with minimum distance larger than 3 when n+ k ≤ 38, while
[[32, 4, 4]] satisfies these last two conditions (but it is not triorthogonal, only CSS-T).
Furthermore, in [16], triorthogonal codes with γ < 1 are found, but they require at least
≈ 258 qubits. With CSS-T, codes it is possible to find codes with γ < 1 and a much lower
number of qubits, for example the code [[1024, 192, 8]] we showed before. The shorter
CSS-T code that we find with γ < 1 is the code with parameters [[256, 84, 4]], which has
γ = 0.804. This shows that one can indeed obtain better parameters by relaxing the
conditions on the classical codes and requiring them to be CSS-T instead of triorthogonal.
We reiterate that this discussion is purely in terms of parameters, since triorthogonal codes
implement the logical T gate, while for CSS-T codes we only require that they support a
transversal T gate.
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G.6 Conclusion

In this paper, we considered binary CSS-T codes, which are quantum stabilizer codes that
respect a transversal gate. We provided a straightforward characterization of binary CSS-T
codes and used it to demonstrate that CSS-T codes form a poset. We determined maximal
and minimal elements of this poset as well as elements which are maximal with respect
to one code in a CSS-T pair. We demonstrated a propagation rule for nondegenerate
CSS-T codes. We used cyclotomic cosets to characterize CSS-T pairs from cyclic codes.
Moreover, we obtained quantum codes with better parameters than those in the literature,
using cyclic and extended cyclic codes. A number of related open problems remain, such
as determining a similar characterizations of q-ary CSS-T codes and considering other
families of classical codes to construct CSS-T codes.
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About the generalized Hamming weights of matrix-product codes

H.1 Introduction

The generalized Hamming weights (GHWs) of a linear code were introduced by Wei in [22],
and they are a generalization of the minimum distance. As such, they give finer infor-
mation about the code, and, in terms of applications, they characterize its performance
on the wire-tap channel of type II and as a t-resilient function [22], and they also have
applications to list decoding [7, 8]. These applications have motivated the study of these
parameters for well known families of codes, such as Reed-Muller codes [9], Cartesian
codes [2], hyperbolic codes [4], and algebraic geometry codes [1, 17], among others. Nev-
ertheless, the computation of the GHWs of a code is, in general, a difficult problem, and
they are still unknown for many families of codes.

Matrix-product codes (MPCs) were introduced by Blackmore and Norton in [3]. These
codes have been object of study for many different applications [5, 6, 14, 15]. From the
properties of the constituent codes, one can derive properties of the corresponding MPC.
Most notably, one can obtain a lower bound for the minimum distance of the MPC from the
minimum distance of the constituent codes [3], but one can also derive self-orthogonality
properties for some matrices [6, 13,16] or decoding algorithms [10–12].

The aim of this work is to study the GHWs of a MPC in terms of those of its constituent
codes. By doing this, one can consider families of codes with known GHWs, and derive
different codes with bounded GHWs using the MPC construction. This allows us to
substantially expand the families of codes for which we have bounds for their GHWs. In
Section H.3, we focus on the case of 2×2 matrices, without requiring the constituent codes
to be nested. We give a lower bound for the GHWs of the corresponding MPC in terms
of the GHWs of the constituent codes, and their sum and intersection. In Section H.4, by
requiring the constituent codes to be nested, we generalize the techniques from Section
H.3 to obtain a lower bound for the GHWs of an MPC for an arbitrary non-singular
by columns (NSC) matrix, and, in Subsections H.4.1 and H.4.2, we describe it explicitly
for the cases of two and three constituent codes. To complement these lower bounds, in
Section H.5 we provide an upper bound for the GHWs of MPCs, which is reminiscent of
the bound obtained for the minimum distance in [3]. In Section H.6, we apply our results
for specific families of codes. In particular, we obtain the GHWs of the MPCs obtained
by considering two Reed-Solomon codes and a 2×2 NSC matrix. We also test our bounds
with Reed-Muller codes, which are sharp in all the cases we have checked with this family
of codes.

H.2 Preliminaries

Let Fq be the finite field of q elements, where q is a power of a prime p. We start by
defining MPCs as in [3].

Definition H.2.1. Let C1, . . . , Cs ⊂ Fn
q be linear codes of length n, which we call con-

stituent codes, and let A = (aij) ∈ Fs×h
q be an s×hmatrix, with s ≤ h. The matrix-product

code associated to A and C1, . . . , Cs is denoted C = [C1, . . . , Cs] · A, and is the set of all
matrix products [v1, . . . , vs] ·A, where vi = (v1i, . . . , vni)

t ∈ Ci is an n× 1 column vector,
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for i = 1, . . . , s. Thus, the codewords of C are n× h matrices

c =

v11a11 + · · ·+ v1sas1 · · · v11a1h + · · ·+ v1sash
...

. . .
...

vn1a11 + · · ·+ vnsas1 · · · vn1a1h + · · ·+ vnsash

 .

We regard C as a code of length nh by reading the entries of the matrix in column-major
order. Hence, the codewords of C can be viewed as vectors of length nh

c =

 s∑
j=1

aj1vj , . . . ,

s∑
j=1

ajhvj

 ∈ Fnh
q . (H.2.1)

For each vector c ∈ C, we have a natural subdivision of the coordinates in h blocks of
length n, i.e.,

c = (c1, c2, . . . , ch), ci ∈ Fn
q .

Definition H.2.2. We denote by ei, 1 ≤ i ≤ h, the standard vectors of Zh
2 . Let y ∈ Zh

2 .
Then we define

C(y) := {c ∈ C | ci = 0 for each i ∈ supp(y)}.

In other words, C(y) is similar to a shortening at the blocks given by supp(y), but without
puncturing those coordinates.

Note that we are using subindices for vectors to express different things: to stress that
a vector vi belongs to Ci, to denote the i-th block ci of a codeword c ∈ C, and to denote
the standard vectors ei of Zh

2 . We will use different letters (v, c and e), which, together
with the context, will help to clear any possible confusion.

With respect to the parameters of MPCs, it is clear that the length is nh, and the
dimension is k = k1 + · · ·+ ks, where ki = dimCi, 1 ≤ i ≤ s, if A has full rank. In what
follows, we always assume that A has full rank. For the minimum distance, we have to
introduce some notation. Let us denote by Ri = (ai,1, . . . , ai,h) the element of Fh

q given by
the i-th row of A, for 1 ≤ i ≤ s. We denote by δi the minimum distance of the code CRi

generated by ⟨R1, . . . , Ri⟩ in Fh
q . In [19] it is proven that

d1(C) ≥ min{d1(C1)δ1, . . . , d1(Cs)δs}, (H.2.2)

where d1(D) denotes the minimum distance the code D. Moreover, in [11], the authors
prove that the previous bound is sharp if Cs ⊂ · · · ⊂ C1.

When working with MPCs, it is usual to consider the following condition, introduced
in [3].

Definition H.2.3. Let A be an s×h matrix, and let At be the matrix formed by the first t
rows of A. For 1 ≤ ji < · · · < jt ≤ h, we denote by A(j1, . . . , jt) the t× t matrix consisting
of the columns j1, . . . , jt of At. A matrix A is non-singular by columns if A(j1, . . . , jt) is
non-singular for each 1 ≤ t ≤ s and 1 ≤ j1 < · · · < jt ≤ h. In particular, an NSC matrix
has full rank.
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Example H.2.4. Let Fq = {β1, . . . , βq}. For 1 ≤ s ≤ q, the Vandermonde matrix

Vm =


1 · · · 1
β1 · · · βq
...

. . .
...

βs−1
1 · · · βs−1

q


is an NSC matrix. Also VM (j1, . . . , jh) is NSC for any s ≤ h ≤ q and 1 ≤ j1 < · · · < jh ≤ q.

In [3] it is shown that, if A is NSC, then the codes CRi are MDS, for 1 ≤ i ≤ s. This
implies that the bound (H.2.2) becomes

d1(C) ≥ min{hd1(C1), (h− 1)d1(C2), . . . , (h− s+ 1)d1(Cs)} (H.2.3)

for the case of an NSC matrix.
One of the goals of this work is to generalize the bounds (H.2.2) and (H.2.3) to the case

of the GHWs of C, which we introduce now. Let D ⊂ C be a subcode. The support of
D, denoted by supp(D), is defined as

supp(D) := {i | ∃ u = (u1, . . . , unh) ∈ D, ui ̸= 0}.

Note that, in this case, ui is just the i-th coordinate of u, not the i-th block of length n
of u. The r-th generalized Hamming weight of C, denoted by dr(C), is defined as

dr(C) := min{|supp(D)| | D is a subcode of C with dimD = r}.

Throughout the paper, we will denote d0(C) = 0.

Remark H.2.5. Given a basis B = {b1, . . . , bk} for a subcode D, we have that

supp(D) =
k⋃

i=1

supp(bi).

The GHWs satisfy the following general properties for any linear code C, as shown
in [22].

Theorem H.2.6 (Monotonicity). For an [n, k] linear code C with k > 0 we have

1 ≤ d1(C) < d2(C) < · · · < dk(C) ≤ n.

Corollary H.2.7 (Generalized Singleton Bound). For an [n, k] linear code C we have

dr(C) ≤ n− k + r, 1 ≤ r ≤ k.

We say that a code C is t-MDS if dt(C) = n− k + t, for some 1 ≤ t ≤ dimC. If a code
is t-MDS for t < dimC, it is also (t + 1)-MDS by Theorem H.2.6 and Corollary H.2.7.
Thus, one usually studies what is the first t such that C is t-MDS.

Remark H.2.8. For an MDS code C, by Theorem H.2.6 and Corollary H.2.7 we have

dr(C) = n− k + r,

for all 1 ≤ r ≤ k.
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Going back to MPCs, the block structure that we have allows us to divide the support
of the code as follows.

Definition H.2.9. Let C ⊂ Fnh
q . Then we define

suppi(C) := supp(C) ∩ {(i− 1) · n+ 1, . . . , i · n}, 1 ≤ i ≤ h.

It is clear that

supp(C) =
h⋃

i=1

suppi(C),

where the union is disjoint. This implies that

|supp(C)| =
h∑

i=1

|suppi(C)|. (H.2.4)

H.3 A bound for the GHWs of the MPCs with 2×2 matrices

In this section, we give a lower bound for the GHWs of MPCs obtained with a 2×2 matrix
A, which we also assume to be NSC. If we denote

A =

(
a11 a12
a21 a22

)
,

since A is NSC, we have a1j ̸= 0, 1 ≤ j ≤ 2. Moreover, we also cannot have a21 = a22 = 0.
Since exchanging the order of the columns of A produces a permutation equivalent MPC
code, we will assume that a22 ̸= 0. We give now the main result of the section, bounding
from below the GHWs of a MPC in terms of the GHWs of sums and intersections of the
constituent codes.

Theorem H.3.1. Let C1, C2 ⊂ Fn
q , and let C = [C1, C2] · A, with A as above. Let

1 ≤ r ≤ dimC and consider

Y =

(α1, α2) :
max{r − dim(C1 + C2), 0} ≤ α1 ≤ min{dimC2, r}

max{r − dim(C1 + C2), 0} ≤ α2 ≤ min{dim(C1 ∩ C2), r}
α1 + α2 ≤ r

 .

Then
dr(C) ≥ min

(α1,α2)∈Y
Bα1,α2 ,

where

Bα1,α2 = max{dr−α1(C1 + C2), dα2(C1 ∩ C2)}+max{dr−α2(C1 + C2), dα1(C2)}.

Proof. Let D ⊂ C with dimD = r. We will associate a pair (α1, α2) to D, and we will see
that

|supp(D)| ≥ Bα1,α2 .

We consider the following subcodes of D (recall Definition H.2.2):

D1 = D(e1), D2 = D(e2), and D3 = D/(D(e1) +D(e2)),
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whereD3 is regarded as a subcode ofD by fixing some set of representatives of the quotient
vector space. It is clear that

D = D1 ⊕D2 ⊕D3.

If we denote α1 = dimD1 and α2 = dimD2, we have that dimD3 = r − α1 − α2 ≥ 0.
Moreover, by (H.2.4), we have

|supp(D)| =
2∑

i=1

|suppi(D)|.

Now we will bound |suppi(D)| from below, for 1 ≤ i ≤ 2. Let i = 1 (it is analogous for
i = 2). We consider a basis B for D given by the union of some bases for D1, D2 and D3,
which we denote by B1, B2 and B3, respectively. We can use Remark H.2.5, and notice
that

supp1(D1) =
⋃
b∈B1

suppi(b) = ∅.

Therefore, supp1(D) = supp1(D2⊕D3). Now we have two ways to bound |supp1(D2 ⊕D3)|:

(a) We consider the set

B′ := {c1 | c = (c1, c2) ∈ B2 ∪ B3},

that is, the set formed by the first block of the vectors in B2 ∪ B3, which has size
r − α1. From the definition of MPCs (see (H.2.1)), B′ ⊂ C1 + C2. Moreover, B′ is a
linearly independent set because, otherwise, we would have a linear combination of
vectors of B2 ∪ B3 in D1, a contradiction. Thus,

|supp1(D)| = |supp1(D2 ⊕D3)| ≥ dr−α1(C1 + C2).

(b) We consider the set

B′′ = {c1 | c = (c1, c2) ∈ B2}.

As the vectors of B2 are linearly independent and they have c2 = 0, the vectors in
B′′ are linearly independent. Let c1 ∈ B′′. Then

(c1, 0) = [v1, v2] ·A = (a11v1 + a21v2, a12v1 + a22v2),

for some v1 ∈ C1, v2 ∈ C2. Hence,

0 = a12v1 + a22v2 =⇒ v1 = (−a22/a12)v2,

since a12 ̸= 0. We are assuming a22 ̸= 0, which implies v1, v2 ∈ C1 ∩ C2. Therefore,
c1 = a11v1 + a21v2 ∈ C1 ∩ C2 and B′′ ⊂ C1 ∩ C2. We have obtained

|supp1(D)| = |supp1(D2 ⊕D3)| ≥ dα2(C1 ∩ C2).

Using both bounds, we get

|supp1(D)| ≥ max{dr−α1(C1 + C2), dα2(C1 ∩ C2)}.
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An analogous argument applies to supp2(D), taking into account that a21 can be zero.
This means that in (b) we can only argue that v1, v2 ∈ C2. We obtain the bound

|supp2(D)| ≥ max{dr−α2(C1 + C2), dα1(C2)}.

Thus,

|supp(D)| = |supp1(D)|+ |supp2(D)| ≥ Bα1,α2 .

For any subcode D, from the arguments in (a) and (b) we deduce that the parameters
α1 = dimD(e1) and α2 = dimD(e2) satisfy (α1, α2) ∈ Y , which concludes the proof.

We have given the bound in the most general form. However, depending on whether
a21 is zero or not, it is possible to improve the bound from the previous result, as we show
next.

Corollary H.3.2. With the notation as before, if a21 ̸= 0, we can consider

Y =

{
(α1, α2) :

max{r − dim(C1 + C2), 0} ≤ αi ≤ min{dimC1 ∩ C2, r}, 1 ≤ i ≤ 2
α1 + α2 ≤ r

}
.

Then

dr(C) ≥ min
(α1,α2)∈Y

Bα1,α2 ,

where

Bα1,α2 = max{dr−α1(C1 + C2), dα2(C1 ∩ C2)}+max{dr−α2(C1 + C2), dα1(C1 ∩ C2)}.

On the other hand, if a21 = 0, we can consider instead

Y =

(α1, α2) :
max{r − dim(C1), 0} ≤ α1 ≤ min{dimC2, r}

max{r − dim(C1 + C2), 0} ≤ α2 ≤ min{dimC1 ∩ C2, r}
α1 + α2 ≤ r

 .

Then

dr(C) ≥ min
(α1,α2)∈Y

Bα1,α2 ,

where

Bα1,α2 = max{dr−α1(C1), dα2(C1 ∩ C2)}+max{dr−α2(C1 + C2), dα1(C2)}.

Proof. In both cases we follow the proof from Theorem H.3.1. If a21 ̸= 0, then in (b) we
have v1, v2 ∈ C1 ∩ C2 for both blocks i = 1, 2. If a21 = 0, then for any c ∈ C, we have
c1 ∈ C1, improving the bound obtained in (a) for the first block.

Remark H.3.3. The ideas in this section are a generalization of the ideas from [21],
where the author considers a particular generator matrix for any subcode of a projective
Reed-Muller code that is given by two parameters, α and γ. Those parameters play the
role of r − α2 and α1, respectively, in this section.

211



About the generalized Hamming weights of matrix-product codes

Note that, if C2 ⊂ C1, then all the bounds given in this section coincide. However,
as we show in the next example, if we do not have this nested condition, then we can
obtain different bounds in Corollary H.3.2. Moreover, in the next example we also show
that, if the codes are not nested, our bounds can refine the usual bounds for the minimum
distance of the (u, u+ v) and (u+ v, u− v) constructions by considering d1(C1 +C2) and
d1(C1 ∩ C2).

Example H.3.4. Let q = 3, and consider

G1 =

 0 1 0 0 0 1 1 0
−1 1 0 1 −1 1 0 1
−1 1 −1 1 1 1 1 0

 , G2 =

(
−1 0 1 1 −1 1 −1 0
1 1 0 1 −1 −1 −1 −1

)
.

Let C1 and C2 be the linear codes whose generator matrices are G1 and G2. Then, one
can check that C1 ∩ C2 = {0}, and the GHWs of C1, C2 and C1 + C2 are given in Table
H.1.

Table H.1: GHWs of C1, C2 and C1 + C2

GHWs\r 1 2 3 4 5

dr(C1) 3 6 8 - -
dr(C2) 5 8 - - -

dr(C1 + C2) 3 5 6 7 8

Now consider the matrices

A1 =

(
1 1
0 1

)
, A2 =

(
1 1
1 −1

)
,

which correspond to the (u, u + v) and (u + v, u − v) constructions, respectively. Let
D1 = [C1, C2] · A1, D2 = [C1, C2] · A2. The usual bounds for the minimum distance of
D1 and D2 would give min{2d1(C1), d1(C2)} = 5 (see [20, Thm. 2.1.32 & Prop. 2.1.39]).
However, our bounds from Corollary H.3.2 give the values from Table H.2.

Table H.2: Lower bounds from Corollary H.3.2

Bound\r 1 2 3 4 5

Lower bound for D1 5 8 11 14 16
Lower bound for D2 6 10 12 14 16

Note that the bound for d1(D2) has been improved to 6. Also, notice that the bounds
obtained from Corollary H.3.2 are different in this case for A1 and A2. This is noteworthy
since, as we said before, the usual bounds for the minimum distance of the (u, u + v)
construction and the (u + v, u − v) construction are the same. The true values of the
GHWs are given in Table H.3, showing that our bounds are sharp in this case, except in
the case r = 4 for D2.
In this case, since C1∩C2 = {0}, the lower bounds from Corollary H.3.2 are particularly

easy to compute. Indeed, if a21 ̸= 0 (the case of A2), we have Y = {(0, 0)}. Thus, the
bound is just

dr(D2) ≥ B0,0 = 2dr(C1 + C2).
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Table H.3: GHWs of D1 and D2

GHWs\r 1 2 3 4 5

dr(D1) 5 8 11 14 16
dr(D2) 6 10 12 15 16

For the case a21 = 0, we obtain Y = {(α1, 0) | max{r − 3, 0} ≤ α1 ≤ min{2, r}}, and

dr(D1) ≥ min
(α1,0)∈Y

Bα1,0 = min
(α1,0)∈Y

{dr−α1(C1) + max{dr(C1 + C2), dα1(C2)}}.

For example, for r = 3, we have Y = {(0, 0), (1, 0), (2, 0)}, and

d3(D1) ≥ min{8 + max{3, 0}, 6 + max{6, 5}, 3 + max{6, 8}} = 11.

H.4 A bound for the GHWs of nested MPCs with NSC
matrices

In this section, we will show how to obtain a lower bound for the GHWs of MPCs with
s constituent codes. We will assume that the codes are nested, i.e., Cs ⊂ · · · ⊂ C1 ⊂ Fn

q .
We consider A an s × h NSC matrix over Fq with s ≤ h. By [3, Prop. 3.3], this implies
that h ≤ q. Let C = [C1, . . . , Cs] · A. Let D ⊂ C be a subcode of dimension r, for some
1 ≤ r ≤ dim(C) =

∑s
i=1 dim(Ci). From [15, Lem. 6] we have the following result.

Lemma H.4.1. Let Cs ⊂ · · · ⊂ C1 ⊂ Fn
q and A an s × h NSC matrix over Fq. Let

C = [C1, . . . , Cs] · A and c ∈ C. We consider the h blocks of length n of c, that is,
c = (c1, . . . , ch). Let 0 ≤ ℓ ≤ s − 1. If there are exactly ℓ zero vectors among the blocks
c1, . . . , ch, then cj ∈ Cℓ+1, for every 1 ≤ j ≤ h. If the number of zero vectors among
c1, . . . , ch is greater than s− 1, then c = 0.

Using this result, we will bound |suppi(D)| for each 1 ≤ i ≤ h, thus giving a bound
for |supp(D)| (see (H.2.4)), as we did in the previous section,. For each block i, we can
provide bounds looking at different subcodes of D. In what follows we fix some 1 ≤ i ≤ h.
First, let us consider

D/D(ei).

We consider a basis for this quotient vector space, and fix representatives to obtain a set
Bi
0 ⊂ D which is linearly independent with size dimD/D(ei) = r − dimD(ei). Moreover,

let
Bi
0,i := {bi | b ∈ Bi

0},

that is, the set formed by the i-th blocks of the vectors in Bi
0. Note that Bi

0,i is linearly
independent as well, since, if it were linearly dependent, then we would obtain a linear
combination of vectors from Bi

0 in D(ei), a contradiction because their classes are linearly
independent in D/D(ei). Moreover, by Lemma H.4.1 (or the definition of MPCs), we have
Bi
0,i ⊂ C1. Thus,

|suppi(D)| ≥

∣∣∣∣∣∣
⋃
b∈Bi

0

suppi(b)

∣∣∣∣∣∣ ≥ dr−dimD(ei)(C1) = d|Bi
0|(C1).
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For this bound, we have considered codewords of D such that their i-th block is nonzero.
Next, we consider codewords of c ∈ D with ci ̸= 0 which can be generated by codewords
with at least one zero block. This leads to considering

(
h∑

j=1

D(ei))/D(ei). (H.4.1)

As before, we consider Bi
1 ⊂ D a set of representatives for a basis of this quotient vector

space, and we can assume that each representative is in some D(ej), j ̸= i. Indeed, since

the union of the bases of D(ei) is a generating set for
∑h

j=1D(ei), the classes of the cor-
responding vectors form generating set of the quotient (H.4.1), and we can extract a basis
from this generating set. In this way, we obtain a set of

∣∣Bi
1

∣∣ = dim(
∑h

j=1D(ei))/D(ei) =

dim(
∑h

j=1D(ei)) − dimD(ei) linearly independent vectors, and each vector is in some
D(ej), j ̸= i, that is, it has at least one zero block. Moreover, arguing as before, if we
restrict these vectors to the i-th block (the corresponding set is denoted Bi

1,i), they are

still linearly independent, and by Lemma H.4.1, we have Bi
1,i ⊂ C2. Hence, we obtain a

second bound

|suppi(D)| ≥

∣∣∣∣∣∣
⋃
b∈Bi

1

suppi(b)

∣∣∣∣∣∣ ≥ d|Bi
1|(C2).

We can iterate this and obtain more bounds as follows. For 0 ≤ j ≤ s−1, we can consider
the codewords c with ci ̸= 0 and which can be generated by codewords with at least j zero
blocks. In other words, we considerD(ei) +

∑
y∈Zh

2 , wt(y)=j

D(y)

/D(ei). (H.4.2)

Indeed, since D(y) ⊂ D(ei) if yi = 1, we have

D(ei) +
∑

y∈Zh
2 , wt(y)=j

D(y) = D(ei) +
∑

y∈Zh
2 , wt(y)=j, yi=0

D(y).

Thus, we can consider a basis for this last vector space where every vector is either in some
D(y), with wt(y) = j, yi = 0, or in D(ei). The classes of these vectors in (H.4.2) form
a generating set, from which we can extract a basis Bi

j (regarded in Fhn
q by fixing some

representatives) where every vector is in some D(y), with wt(y) = j, and is not contained
in D(ei). That is, each vector of Bi

j has at least j zero blocks, and its i-th block is nonzero.
The size of this set is

∣∣Bi
j

∣∣ = dim

D(ei) +
∑

y∈Zh
2 , wt(y)=j

D(y)

/D(ei).

= dim

 ∑
y∈Zh

2 , wt(y)=j

D(y)

− dim

D(ei) ∩

 ∑
y∈Zh

2 , wt(y)=j

D(y)

 .

(H.4.3)
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Moreover, the vectors in Bi
j are linearly independent, and, arguing as before, the set of

their i-th blocks, denoted Bi
j,i, is also linearly independent. By Lemma H.4.1, Bi

j,i ⊂ Cj+1,
and

|suppi(D)| ≥

∣∣∣∣∣∣∣
⋃
b∈Bi

j

suppi(b)

∣∣∣∣∣∣∣ ≥ d|Bi
j|(Cj+1).

Therefore, in this way we obtain s lower bounds for the i-th block. We can repeat this for
every block i, 1 ≤ i ≤ h, obtaining the bound

|supp(D)| ≥
h∑

i=1

max{d|Bi
j|(Cj+1), 0 ≤ j ≤ s− 1}. (H.4.4)

To bound the minimum of |supp(D)| for every D ⊂ C with dimD = r, the strategy we

followed in Section H.3 was to determine all the possible values of
∣∣∣Bi

j

∣∣∣ (which can be

obtained from Y in Theorem H.3.1), and compute the minimum of the right hand side of
(H.4.4) over all those values. The resulting bound would be

dr(C) ≥ min
D⊂C, dimD=r

(
h∑

i=1

max{d|Bi
j|(Cj+1), 0 ≤ j ≤ s− 1}

)
. (H.4.5)

Remark H.4.2. For the case r = 1, this bound generalizes the bound from (H.2.3).

Indeed, let D ⊂ C with dimD = 1, and consider i, j such that
∣∣∣Bi

j

∣∣∣ = 1 (since r = 1,
∣∣∣Bi

j

∣∣∣
is either 0 or 1, and if all of them are 0, this would correspond to the subcode D = {0}).
This means that D is generated by a vector c with at least j zero blocks, and with a
nonzero i-th block. Let

j′ := |{k | ck = 0}|,

that is, the number of zero blocks of c. Then
∣∣∣Bi

j′

∣∣∣ = 1 since we can assume Bi
j′ = {c}. It

follows from the definitions that, in this case, we have∣∣Bi
k

∣∣ = 1 ⇐⇒ k ≤ j′, ci ̸= 0,

and, thus,
∣∣Bi

k

∣∣ = 0 otherwise. Then, for any i such that ci ̸= 0, we have

max{d|Bi
j|(Cj+1), 0 ≤ j ≤ s− 1} = max{d1(C1), . . . , d1(Cj′+1)} = d1(Cj′+1).

Since c has exactly h− j′ nonzero blocks, we obtain

h∑
i=1

max{d|Bi
j|(Cj+1), 0 ≤ j ≤ s− 1} = (h− j′)d1(Cj′+1),

which shows that the bound from (H.4.5) simplifies to (H.2.3) in this case.

The relations between the sizes of the Bi
j become increasingly more involved when con-

sidering greater values of s, which is what we need to determine Y . The main problem that
arises is the fact that there is no inclusion-exclusion principle formula for the dimension
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of the sum of vector spaces (e.g., note (H.4.3)). This means that there is no direct way to
express the dimensions of the Bj

i in terms of the dimensions of the D(y), for y ∈ Zh
2 , as

we did in Section H.3.

By introducing extra parameters corresponding to the dimension of sums of the D(y)
and their intersections with some other D(y′), y, y′ ∈ Zh

2 , and by taking into account the
relations between these parameters, it is possible, in principle, to obtain a lower bound
for any s and h (s ≤ h), but the number of parameters required increases exponentially.

Since the cases that are more used for applications of MPCs involve only two or three
codes, in the next subsections we show how to use these ideas to derive a more manageable
lower bound for the GHWs of C when s = 2 or s = 3. The approach is the following. We
will consider a set Y , and family of bounds {Bv}v∈Y , such that for any subcode D ⊂ C
with dimD = r, we have

h∑
i=1

max{d|Bi
j|(Cj+1), 0 ≤ j ≤ s− 1} = Bv,

for some v ∈ Y . Therefore, from (H.4.5) we obtain

dr(C) ≥ min
D⊂C, dimD=r

(
h∑

i=1

max{d|Bi
j|(Cj+1), 0 ≤ j ≤ s− 1}

)
≥ min

v∈Y
Bv. (H.4.6)

H.4.1 The case h = 2

With the arguments from above, for the case s = h = 2 we can recover what we obtained
in Section H.3 for the nested case.

Corollary H.4.3. Let C2 ⊂ C1 ⊂ Fn
q , C = [C1, C2] · A, for some 2 × 2 NSC matrix A.

Consider 1 ≤ r ≤ dimC1 + dimC2, and let

Y =

{
(α1, α2) :

max{r − dimC1, 0} ≤ αi ≤ min{dimC2, r}, 1 ≤ i ≤ 2
α1 + α2 ≤ r

}
.

We consider

Bα1,α2 = max{dr−α1(C1), dα2(C2)}+max{dr−α2(C1), dα1(C2)}.

Then

dr(C) ≥ min
(α1,α2)∈Y

Bα1,α2 .

Proof. Let D ⊂ C with dimD = r. We apply the general argument that led to (H.4.5),
considering αi = dimD(ei), 1 ≤ i ≤ 2, and taking into account that

∣∣Bi
0

∣∣ = r − αi+1

(we consider i + 1 mod 2 for the subindex),
∣∣Bi

1

∣∣ = αi. The first set of conditions about

αi, 1 ≤ i ≤ 2, follow from the fact that Bi
j,i ⊂ Cj+1 and

∣∣∣Bi
j

∣∣∣ = ∣∣∣Bi
j,i

∣∣∣, for j = 0, 1. The

condition α1+α2 ≤ r arises from the fact thatD(e1)+D(e2) ⊂ D, andD(e1)∩D(e2) = {0}.
Therefore, by (H.4.6), we obtain the result.

216
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H.4.2 The case h = 3

We now apply our techniques to the case s = h = 3. Throughout this section, when a
subindex is greater than 3, we consider its reduction modulo 3. For instance, for i = 2,
we have ei+1 + ei+2 = e3 + e1. We denote Z3,3,1 := Z3

≥0 × Z3
≥0 × Z≥0.

Theorem H.4.4. Let C3 ⊂ C2 ⊂ C1 ⊂ Fn
q and C = [C1, C2, C3] · A, for some 3× 3 NSC

matrix A. Consider 1 ≤ r ≤
∑3

i=1 dimCi, and let

Y =


(α, γ, β) ∈ Z3,3,1 :

0 ≤ γi ≤ dimC3, 1 ≤ i ≤ 3
max{r − dimC1, γi+1 + γi+2} ≤ αi, 1 ≤ i ≤ 3

αi+1 + αi+2 − γi ≤ β, 1 ≤ i ≤ 3

β ≤ min

{
3∑

i=1

(αi − γi), dimC2 +min{αi, 1 ≤ i ≤ 3}, r

}


.

For (α, γ, β) ∈ Y , we consider

Bα,γ,β =
3∑

i=1

max{dr−αi(C1), dβ−αi
(C2), dγi(C3)}.

Then we have

dr(C) ≥ min
(α,γ,β)∈Y

Bα,γ,β.

Proof. Let D ⊂ C with dimD = r. We consider αi = dimD(ei), γi = dimD(ei+1 + ei+2)
and β = dim(

∑3
j=1D(ej)), for 1 ≤ i ≤ 3. We claim

∣∣Bi
j

∣∣ =

dimD/D(ei) = r − αi if j = 0,

dim(
∑3

k=1D(ek))/D(ei) = β − αi if j = 1,

dim(D(ei) +
∑

k<ℓD(ek + eℓ))/D(ei) = γi if j = 2.

(H.4.7)

The cases j = 0 and j = 1 are straightforward. For j = 2, we have

D(ei) +
∑
k<ℓ

D(ek + eℓ) = D(ei) +D(ei+1 + ei+2)

since D(ei+ ej) ⊂ D(ei), for any j ̸= i. Taking into account that D(ei)∩D(ei+1+ ei+2) =
D((1, 1, 1)) = {0}, we have

dim(D(ei) +
∑
k<ℓ

D(ek + eℓ))/D(ei) = dim(D(ei) +D(ei+1 + ei+2))− dimD(ei) = γi.

Let α = (α1, α2, α3), and γ = (γ1, γ2, γ3). Now we check that (α, γ, β) ∈ Y (we want to

use (H.4.6)). It is clear that 0 ≤ γi, and, since γi =
∣∣Bi

2

∣∣ = ∣∣∣Bi
2,i

∣∣∣ and Bi
2,i ⊂ C3, we have

γi ≤ dimC3, for 1 ≤ i ≤ 3. Similarly, we have r−αi =
∣∣Bi

0

∣∣, which implies r−αi ≤ dimC1,
i.e., r − dimC1 ≤ αi, for 1 ≤ i ≤ 3. Now we note that

D(ei + ei+2) +D(ei + ei+1) ⊂ D(ei).
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Taking into account that D(ei + ei+2)∩D(ei + ei+1) = D((1, 1, 1)) = {0}, we deduce that
γi+1 + γi+2 ≤ αi, 1 ≤ i ≤ 3. Regarding the first condition for β in Y , we note that

β = dim

(
3∑

i=1

D(ei)

)
≥ dim(D(ek+1) +D(ek+2)) = αk+1 + αk+2 − γk,

for 1 ≤ k ≤ 3. It is clear that β ≤ r, and, since β − αi =
∣∣Bi

1

∣∣ = ∣∣∣Bi
1,i

∣∣∣ and Bi
1,i ⊂ C2, we

have β−αi ≤ dimC2, 1 ≤ i ≤ 3. The last condition we need to prove is β ≤
∑3

i=1(αi−γi).
Note that, using the formula for the dimension of the sum of vector spaces twice, we have

dim

(
3∑

i=1

D(ei)

)
=

3∑
i=1

αi − γk − dim(D(ek) ∩ (D(ek+1) +D(ek+2))),

for any 1 ≤ k ≤ 3. Since D(ek + ek+1) +D(ek + ek+2) ⊂ D(ek)∩ (D(ek+1) +D(ek+2)), we
conclude

β = dim

(
3∑

i=1

D(ei)

)
≤

3∑
i=1

αi − γk − (γk+2 + γk+1) =

3∑
i=1

(αi − γi).

Thus, we have proved that (α, γ, β) ∈ Y and, if we note the expressions in (H.4.5) and
(H.4.7), we have also proved that

3∑
i=1

max{d|Bi
j|(Cj+1), 0 ≤ j ≤ 3− 1} = Bα,γ,β,

for some (α, γ, β) ∈ Y . We obtain the result by (H.4.6).

Remark H.4.5. As we have seen in the proof of the previous result, we have codified
some of the relations between the dimensions of D(ei), D(ei+1 + ei+2) and

∑3
k=1D(ek),

for 1 ≤ i ≤ 3, using αi, γi and β, respectively. In fact, many of the relations between these
dimensions that one could expect can be derived from the ones included in the definition
of Y . For example, we have

dim(D(ei)) + dim(D(ei+1 + ei+2)) = dim(D(ei) +D(ei+1 + ei+2)) ≤ dim(
3∑

i=1

D(ei)).

This means that we should have αi + γi ≤ β, for 1 ≤ i ≤ 3. This is a consequence of the
conditions we gave for Y because

β ≥ αi+1 + αi+2 − γi ≥ αi+1 + γi+1, 1 ≤ i ≤ 3,

since we also impose the condition αi+2 ≥ γi + γi+1.

Theorem H.4.4 can also be used to give a bound for the GHWs in the case s = 2, h = 3,
as the next result shows. In this case, we denote Z3,1 = Z3

≥0 × Z≥0.
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Corollary H.4.6. Let C2 ⊂ C1 ⊂ Fn
q , C = [C1, C2] · A, for some 2 × 3 NSC matrix A.

Let

Y =

(α, β) ∈ Z3,1 :

max{r − dimC1, 0} ≤ αi, 1 ≤ i ≤ 3
αi+1 + αi+2 ≤ β, 1 ≤ i ≤ 3

β ≤ min

{
3∑

i=1

αi,dimC2 +min{αi, 1 ≤ i ≤ 3}, r

}
 .

For (α, β) ∈ Y we consider

Bα,β =

3∑
i=1

max{dr−αi(C1), dβ−αi
(C2)}.

Then we have
dr(C) ≥ min

(α,β)∈Y
Bα,β.

Proof. This can be obtained directly from Theorem H.4.4 by setting C3 = {0}.

Example H.4.7. Let q = 4 and n = 4. In this example (and throughout the rest of the
paper) we denote by RS(k) the Reed-Solomon code of length n and dimension k. Note that,
by Remark H.2.8, we know the GHWs of Reed-Solomon codes. Let k1 = 3 and k2 = 1.
We will compute the bound from Corollary H.4.6 for the code C = [RS(k1),RS(k2)] · A
and r = 2, where

A =

(
1 a 1
1 1 0

)
,

and where a is a primitive element of F4. We start by computing Y . First, we have
0 ≤ αi ≤ r = 2, for 1 ≤ i ≤ 3. For β, we have the conditions αi+1 + αi+2 ≤ β, for
1 ≤ i ≤ 3, and β ≤ min{

∑3
i=1 αi, 1 + min{αi, 1 ≤ i ≤ 3}, 2}. It is straightforward

to check that {(0, 0, 0)} × {0} ∈ Y . If we consider α = (1, 0, 0), then, looking at the
conditions for β, this implies β = 1, and we have {(1, 0, 0)} × {1} ∈ Y . Similarly, we have
{(0, 1, 0)} × {1}, {(0, 0, 1)} × {1} ∈ Y . Finally, if we consider α = (1, 1, 1), this implies
β = 2 and {(1, 1, 1)} × {2} ∈ Y . In fact, one can check that these are all the elements
of Y . For example, if we consider α = (1, 1, 0), then we must have α1 + α2 = 2 ≤ β,
but also β ≤ 1 + min{αi, 1 ≤ i ≤ 3} = 1, a contradiction. A similar reasoning applies to
α = (1, 0, 1) or α = (0, 1, 1), and also for the cases where αi = 2 for some 1 ≤ i ≤ 3.

Therefore, we have

Y = {{(0, 0, 0)} × {0}, {(1, 0, 0), (0, 1, 0), (0, 0, 1)} × {1}, {(1, 1, 1)} × {2}}.

Now we compute Bα,β, for each (α, β) ∈ Y :

B(0,0,0),0 = 3d2(RS(k1)) = 3(n− k1 + 2) = 9,

B(1,0,0),1 = B(0,1,0),1 = B(0,0,1),1 = d1(RS(k1)) + 2max{d2(RS(k1)), d1(RS(k2))} = 10,

B(1,1,1),1 = 3d1(RS(k2)) = 3(n− k2 + 1) = 12.

Hence, we obtain
d2(C) ≥ min

(α,β)∈Y
Bα,β = 9.

It can be checked with a computer that this is the true value of d2(C).
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H.5 An upper bound for the GHWs

In this section we give an upper bound for the GHWs of MPCs, complementing the
previous section, as this will allow us to ensure that our bound is sharp when both bounds
coincide. For this result, we do not require A to be NSC. We recall that Ri = (ai,1, . . . , ai,h)
is the i-th row of A, for 1 ≤ i ≤ s; δi is the minimum distance of the code CRi generated
by ⟨R1, . . . , Ri⟩; and Ai is the matrix formed by the first i rows of A. The proof of the
following result is a generalization of the proof in [11, Thm. 1] for the minimum distance.

Proposition H.5.1. Let Cs ⊂ · · · ⊂ C1 ⊂ Fn
q , and C = [C1, . . . , Cs] · A, where A ⊂ Fs×h

q

has full rank. Let 1 ≤ r ≤ dimC1 and let 1 ≤ i ≤ s be such that r ≤ dimCi. Then

dr(C) ≤ dr(Ci)δi.

Proof. Let 1 ≤ i ≤ s be such that r ≤ dimCi. We will obtain a subcode D ⊂ C
with dimD = r and |supp(D)| = dr(Ci)δi. First, we consider a subcode Di ⊂ Ci with
dimDi = r and |supp(Di)| = dr(Ci). We also consider f =

∑i
j=1 λjRj , with λj ∈ Fq, a

codeword of CRi with wt(f) = δi. Then we claim that

D := {[λ1v1, . . . , λivi, vi+1, . . . , vs]·A | v1 = v2 = · · · = vi ∈ Di, vi+1 = vi+2 = · · · = vs = 0}

is a subcode of C with dimD = r and |supp(D)| = dr(Ci) · δi. It is clear that D ⊂ C
because Di ⊂ Ci ⊂ · · · ⊂ C1, and dimD = r since A has full rank. Let v ∈ Di, then

[λ1v, . . . , λiv] ·Ai =

 i∑
j=1

aj1λjv, . . . ,
i∑

j=1

ajhλjv

 = (vf1, . . . , vfh),

where f = (f1, . . . , fh) ∈ Fh
q , that is, fi is the i-th coordinate of f , for 1 ≤ i ≤ h. Hence,

D = {(vf1, . . . , vfh) ∈ C | v ∈ Di}.

From this expression and the fact that |supp(Di)| = dr(Ci), we obtain

∣∣suppj(D)
∣∣ = {dr(Ci) if fj ̸= 0,

0 if fj = 0.

Since wt(f) = δi, we have |supp(D)| = dr(Ci) · δi.

Remark H.5.2. In the previous result, if A is NSC, then by [3, Prop. 7.2] we have
δi = (h− i+ 1), 1 ≤ i ≤ h. Moreover, if A is triangular (that is, a column permutation of
an upper triangular matrix), then the previous result holds even if the codes are not nested
(this was already known to be true for the minimum distance [3, Thm. 3.7]). Indeed, we
just need to consider

D′ := {[v1, . . . , vs] ·A | vi ∈ Di, vj = 0 if j ̸= i},

where we consider Di as in the proof of Proposition H.5.1. Since A is triangular, we have

D′ = {(ai1v, . . . , aihv) | v ∈ Di},

where aij is nonzero for exactly h− i+1 values of j, which implies |supp(D)| = dr(Ci) · δi.
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Note that the previous result does not provide any upper bound if r > dimC1, and,
when r = dimC1, it only gives dr(C) ≤ h · n = N , which cannot be sharp if dimC2 ≥ 1
due to the monotony of the GHWs. This contrasts with the case of the minimum distance
(r = 1), where one gets that the minimum of the bounds provided in Proposition H.5.1 is
always sharp [11, Thm. 1]. Nevertheless, for lower values of r, this bound performs well,
as we see in the following example (and as we will see in Theorem H.6.1).

Example H.5.3. Using the setting from Example H.4.7, from Proposition H.5.1, we
obtain

d2(C) ≤ 3d2(RS(k1)) = 9.

Thus, from this we can also deduce that the bound given in Example H.4.7 is sharp.

H.6 Examples for particular families of codes

We start by considering Reed-Solomon codes RS(k) with dimension k and length n ≤ q,
for which we know the GHWs from Remark H.2.8. In what follows, we denote

dr(RS(k)) =


0 if r = 0

n− k + r if 1 ≤ r ≤ k,

∞ if k < r.

(H.6.1)

Theorem H.6.1. Let 1 ≤ k2 ≤ k1 ≤ n ≤ q, let A ⊂ F2×2
q be a NSC matrix, and let

RS(k1, k2) := [RS(k1),RS(k2)] ·A. For 1 ≤ r ≤ dimRS(k1, k2) = k1 + k2, we have

dr(RS(k1, k2)) =

{
2n+ r − (k1 + k2) if r > max{k1 − k2, k2},
min{2dr(RS(k1)), dr(RS(k2))} if r ≤ max{k1 − k2, k2}.

Proof. Let αi ̸= 0, αi ̸= r, for 1 ≤ i ≤ 2. First, we give a lower bound for dr(RS(k1, k2))
using Corollary H.4.3. By (H.6.1) we have

Bα1,α2 =
2∑

i=1

max{n− k1 + r − αi, n− k2 + αi+1},

where i+ 1 is understood to be i+ 1 mod 2. This can be expressed as

Bα1,α2 =

{
2(n− k1 + r)− (α1 + α2) if r ≥ k1 − k2 + α1 + α2,

2(n− k2) + α1 + α2 if r < k1 − k2 + α1 + α2.
(H.6.2)

We now study the minimum of Bα1,α2 for all (α1, α2) ∈ Y , with αi ̸= 0, αi ̸= r, using this
expression. Let ξ := r − (k1 − k2), and z = α1 + α2. Consider (α1, α2) ∈ Y with αi ̸= 0,
αi ̸= r. Then we can rewrite (H.6.2) as

B(z) := Bα1,α2 =

{
2(n− k2) + z if z > ξ,

2(n− k1 + r)− z if z ≤ ξ.
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As a function of z, we see that B(z) is an increasing function for z > ξ and a decreasing
function for z ≤ ξ. Thus, the minimum for (α1, α2) ∈ Y , αi ̸= 0, αi ̸= r, is always greater
than or equal to

B(ξ) = 2n+ r − (k1 + k2).

Now we study the minimum of Bα1,α2 for (α1, α2) ∈ Y , α1 = 0, 0 < α2 < r. As before,
we can write

B0,α2 =

{
2(n− k1 + r)− α2 if r ≥ k1 − k2 + α2,

2n+ r − (k1 + k2) if r < k1 − k2 + α2.

As a function of α2, this is constant for α2 > r − (k1 − k2), and it is decreasing for
α2 ≤ r − (k1 − k2). The minimum over α2, with 0 < α2 < r, is greater than or equal to

B0,r−(k1−k2) = 2n+ r − (k1 + k2) = B(ξ)

The only cases left to check are (α1, α2) = (0, 0) and (α1, α2) = (0, r), if they are in Y
(the rest of the cases are also covered by symmetry between α1 and α2). We have

B0,0 = 2(n− k1 + r) = 2dr(C1), B0,r = n− k2 + r = dr(C2).

Note that (0, 0) ∈ Y if and only if r − k1 ≤ 0, and (0, r) ∈ Y if and only if r − k1 ≤ 0 and
r ≤ k2 (this last condition implies r ≤ k1). It is straightforward to check that B(ξ) ≤ B0,0

if and only if r ≥ k1 − k2, B0,r ≤ B(ξ) always (but (0, r) ∈ Y only if r ≤ k2), and
B0,0 ≤ B0,r if and only if r ≤ k1 − k2 − (n− k1). Therefore, by Corollary H.4.3, we obtain

dr(RS(k1, k2)) ≥



B(ξ) if r > max{k1 − k2, k2},
dr(C2) if k1 − k2 ≤ k2 and k1 − k2 < r ≤ k2,

2dr(C1) if k1 − k2 > k2 and k2 < r ≤ k1 − k2,

dr(C2) if k1 − k2 − (n− k1) < r ≤ min{k1 − k2, k2},
2dr(C1) if r ≤ k1 − k2 − (n− k1).

(H.6.3)

It is straightforward to check that this lower bound is equal to the formula in the statement
of the result (with the notation from (H.6.1)). By Proposition H.5.1 and Corollary H.2.7,
the previous bound is sharp for 1 ≤ r ≤ dimRS(k1, k2).

Remark H.6.2. Note that the previous result shows that RS(k1, k2) is t-MDS, for t =
max{k1 − k2, k2}.

In a similar way, we can consider other families of nested codes for which we know the
GHWs, for example Hermitian codes [1] or Cartesian codes [2]. However, obtaining an
explicit result like Theorem H.6.1 seems out of reach since the expressions of the GHWs
of these families of codes are more involved than those of Reed-Solomon codes.

We turn our attention now to the family of Reed-Muller codes, which is closely related
to MPCs, as we see next. We denote by RMq(ν,m) the Reed-Muller code of degree ν in
m variables over Fq. We take Fq = {α1, . . . , αq}. Let(

αj

αi

)
:=

(αj − α1) · · · (αj − αi−1)

(αi − α1) · · · (αi − αi−1)
,

222



H.6. Examples for particular families of codes

where we understand that if i = 1 or i = j then
(
αj
αi

)
= 1, and

(
αj
αi

)
= 0 if and only if

1 ≤ j ≤ i− 1. We consider the matrix

GRMq :=


(
α1

α1

) (
α2

α1

)
· · ·

(
αq

α1

)(
α1

α2

) (
α2

α2

)
· · ·

(
αq

α2

)
...

...
. . .

...(
α1

αq

) (
α2

αq

)
· · ·

(
αq

αq

)
 .

In [3, Section 5], the authors prove that GRMq is NSC, and they also prove the following
result.

Theorem H.6.3. The Reed-Muller codes can be recursively defined by

RMq(ν, 0) =

{
{0} if r < 0,

Fq if r ≥ 0,

and for m ≥ 1

RMq(ν,m) = [RMq(ν,m− 1), · · · ,RMq(ν − q + 1,m− 1)] ·GRMq . (H.6.4)

For q = 2 and q = 3, we get

GRM2 =

(
1 1
0 1

)
, GRM3 =

1 1 1
0 1 2
0 0 1

 .

In particular, this recovers the well-known result that binary Reed-Muller codes can be
constructed recursively using the (u, u+ v) construction.
Another important aspect of Reed-Muller codes in this context is that their GHWs are

known [9]. Therefore, they provide a family in which to test our bounds, in particular
Corollary H.4.3 and Theorem H.4.4. For example, for q = 2, we can bound the GHWs of
RM2(ν,m) with Corollary H.4.3 using the GHWs of RM2(ν,m−1) and RM2(ν−1,m−1),
and we can check if the bound is sharp because we know the true values of the GHWs of
RM2(ν,m). We can proceed similarly for the case of q = 3 using Theorem H.4.4. Note that
we can apply our results since GRMq is NSC and RMq(ν1,m) ⊂ RMq(ν2,m) if ν1 ≤ ν2,
i.e., the codes in (H.6.4) are nested.
For 2 ≤ m ≤ 10, we have computed the bound from Corollary H.4.3 for RM2(ν,m),

0 ≤ ν ≤ m(q − 1), and we have checked that the bound coincides with the corresponding
GHW. This not only shows that the bound from Corollary H.4.3 is sharp in this case, but
also showcases the fact that it can be computed efficiently even for large codes.
For the case q = 3, we have computed the bound from Theorem H.4.4 for 2 ≤ m ≤ 3

variables, which also gives the true value of the corresponding GHW of RM3(ν,m), 1 ≤
ν ≤ m(q − 1). Since this bound is more computationally intensive to compute than the
one from Corollary H.4.4, is not feasible to compute it for every possible degree for a
larger number of variables. Notwithstanding the foregoing, we have tested a wide range
of degrees for 4 and 5 variables, and the bound is sharp for all of them.
Another family of codes which can be constructed recursively using the MPC construc-

tion is the family of Berman codes [18], which are nested, similarly to Reed-Muller codes.
However, the matrices corresponding to these codes are not NSC. Thus, it would be in-
teresting to see if some of the results from Section H.4 could be generalized to the case of
general matrices A, but keeping the nested condition on the component codes.
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Conclusion

In this thesis we have studied several interactions between Commutative Algebra and
Coding Theory, with an emphasis in applications. In particular, we have studied how
to compute the homogeneous vanishing ideal of any finite set of points of the projective
space using the saturation in Paper A. The same can be achieved by saturating with
respect to the ideal generated by a polynomial that does not vanish at any of the points
considered. Therefore, it would be interesting to study which polynomials do not vanish
at some particular sets of points for computing the corresponding vanishing ideal.

We have also studied the vanishing ideal of the set of fixed representatives of a set of
projective points in Papers B and C. By obtaining Gröbner bases of these ideals, we have
obtained bases for the subfield subcodes of projective Reed-Solomon codes and projective
Reed-Muller codes, which have been used to construct EAQECCs with good parameters.
Using these Gröbner bases, we obtain the hulls of projective Reed-Muller codes over the
projective plane in Paper F. This Gröbner basis approach may be used in the future to
study other aspects of projective Reed-Muller codes, such as their weight distribution,
which has been an extensive object of study for the affine case.

A different approach to study projective Reed-Muller codes is given in Paper D, where a
recursive construction is given. With this construction, we also obtain bases for the subfield
subcodes of projective Reed-Muller codes for some particular degrees. Moreover, this
recursive construction also provides bounds for the GHWs of projective Reed-Muller codes,
allowing the exact determination thereof in many examples. Such recursive constructions
have been used for the affine case to obtain decoding algorithms and results about their
weight distribution. Moreover, another topic of future research is to investigate whether
similar constructions can be obtained for similar families of codes, such as nested projective
Cartesian codes [27].

Another topic covered by this thesis are the hulls of projective Reed-Muller codes, which
have been determined for the case of the projective plane in Paper E. Furthermore, in Paper
F we have also explored ways to change the dimension of the hull by using monomially
equivalent codes, giving rise to EAQECCs with flexible amounts of entanglement. As
before, a future research agenda would be to study if this computations can be carried out
for other families of codes.

As we have mentioned in the previous paragraphs, one of the main contributions of this
thesis is to fill some of the gaps in knowledge between affine and projective Reed-Muller
codes, in particular with respect to their subfield subcodes, hulls and generalized Hamming
weights. Nevertheless, some of these topics are still wide open, such as the determination
of the hulls for arbitrary projective Reed-Muller codes, and the exact determination of
their generalized Hamming weights.
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In Paper H we have given lower and upper bounds for the GHWs of MPCs, focusing on
the cases with two and three constituent codes. As an application of these bounds, we get
the exact value of the GHWs of the MPCs obtained by using two Reed-Solomon codes. The
techniques used are inspired by the ones considered with the recursive construction from
Paper D for projective Reed-Muller codes. Some of these techniques can be generalized
to obtain bounds for the relative generalized Hamming weights of matrix-product codes,
which could have applications for secret sharing schemes and quantum codes.
Finally, with respect to quantum fault-tolerant computing, we have given a manageable

characterization of CSS-T quantum codes in Paper G. With this new view on CSS-T
codes, we have obtained a propagation rule and we have determined the pairs of cyclic
codes that give rise to CSS-T codes. This opens the path to considering other families
of binary codes to construct CSS-T codes. A more ambitious project would be to obtain
similar conditions for a certain non-Clifford operator (analogous to the T gate) in the
p-ary case (instead of binary). This would greatly increase the families of classical codes
we can consider to construct codes suitable for fault-tolerant computing, which in turn
may give better parameters. Triorthogonal codes are a particular case of CSS-T codes
which has aroused a lot of attention recently. Finding alternative characterizations for
these codes, and obtaining new constructions using cyclic codes (or subfield subcodes of
evaluation codes) is also a natural future research project.
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[25] E. Camps-Moreno, H. H. López, G. L. Matthews, D. Ruano, R. San-José, and
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[60] M. González-Sarabia, J. Mart́ınez-Bernal, R. H. Villarreal, and C. E. Vivares. Gen-
eralized minimum distance functions. J. Algebraic Combin., 50(3):317–346, 2019.

234



Global bibliography
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