
Irene Márquez-Corbella

Combinatorial Commutative Algebra
Approach to Complete Decoding

Institute of Mathematics, University of Valladolid

April 2013

Departamento de Álgebra, Análisis Matemático,
Geometría y Topología

A Combinatorial Commutative Algebra
Approach to Complete Decoding

Presentada por Irene Márquez-Corbella para optar al grado de
doctora por la Universidad de Valladolid

DIRIGIDA POR:

Dr. D. Antonio Campillo López
Dr. D. Edgar Martínez-Moro

19 de Abril, 2013

Labor omnia vincit

Contents

Acknowledgments 1

Summary (Spanish) 3

Summary (English) 11

Notations 19

1 Preliminaries 23
1.1 Coding Theory . 24

1.1.1 Basics of Linear Codes . 26
1.1.2 Generator matrices of modular codes 30
1.1.3 The general decoding problem . 32

1.2 Gröbner Bases and Border Bases . 36
1.2.1 Gröbner Bases . 39
1.2.2 Border Bases . 42
1.2.3 The relation between Gröbner Bases and Border Bases 45

1.3 Matroids . 47

2 Binary codes: Gröbner representation and related structures 49
2.1 Gröbner representation of a binary code 50
2.2 Computing coset leaders . 53
2.3 Computing leader codewords . 62

2.3.1 Leader codewords and zero neighbours 66
2.4 Gradient descent decoding . 69

2.4.1 An algebraic view to gradient descent decoding 72

3 Modular codes and the set of codewords of minimal support 79
3.1 Relationship to integer linear programming 81

3.1.1 Integer linear programming approach to decoding binary codes 87
3.1.2 A note on Graver basis . 88

3.2 The lattice ideal associated with a modular code 90
3.2.1 Minimal support codewords . 90

3.3 Computation of the Gröbner basis . 94
3.4 Decomposition of modular codes . 101

i

ii Contents

3.4.1 Direct sum of modular codes . 105
3.4.2 1-gluing of modular codes . 109
3.4.3 3-gluing of modular codes . 117
3.4.4 General case . 122

4 Linear codes: Applications 125
4.1 The ideal associated to any linear code . 126
4.2 Computing a Gröbner representation . 133
4.3 Decoding linear codes . 139

4.3.1 Reduced Gröbner basis . 139
4.3.2 Reduced and Border basis . 142
4.3.3 Gradient Descent Decoding . 144

4.4 FGLM technique to compute a Gröbner basis 146
4.5 Set of codewords of minimal support . 164
4.6 Applications to other classes of codes . 169

4.6.1 Modular codes . 169
4.6.2 Multiple Alphabets . 173
4.6.3 Additive codes . 175

5 A semigroup approach 177
5.1 Overview of semigroups . 178
5.2 The semigroup associated with a modular code 181

5.2.1 Another representation for modular codes 183
5.2.2 Identify equivalent representations 186

5.3 The semigroup associated with a linear code 186
5.3.1 Another representation for linear codes 189
5.3.2 Identify equivalent representations 192

5.4 Some conclusions . 193

Bibliography 197

Index 207

Índice

Agradecimientos 1

Resumen (en español) 3

Resumen (en inglés) 11

Notación 19

1 Preliminares 23
1.1 Teoría de Códigos . 24

1.1.1 Conceptos básicos de códigos lineales 26
1.1.2 Matrices generatrices de códigos modulares 30
1.1.3 Problema general de descodificación 32

1.2 Bases de Gröbner y Bases del Borde . 36
1.2.1 Bases de Gröbner . 39
1.2.2 Bases del Borde . 42
1.2.3 Relación entre Bases de Gröbner y Bases del Borde 45

1.3 Matroides . 47

2 Códigos binarios: representación de Gröbner y estructuras relacionadas 49
2.1 Representación de Gröbner de un código binario 50
2.2 Cálculo del conjunto de líderes de una clase 53
2.3 Cálculo de palabras líderes y conjuntos de prueba 62
2.4 Descodificación por gradiente . 69

2.4.1 Enfoque algebraico de la descodificación por gradiente como
reducción . 72

3 Códigos modulares: conjunto de palabras de soporte minimal 79
3.1 Relación con la programación lineal entera 81

3.1.1 Aproximación a la descodificación utilizando técnicas de la pro-
gramación lineal entera . 87

3.1.2 Nota sobre Bases de Graver . 88
3.2 Ideal asociado a un código modular . 90

3.2.1 Conjunto de palabras de soporte minimal 90
3.3 Utilización de técnicas FGLM para el cálculo de Bases de Gröbner . . 94

iii

iv Índice

3.4 Descomposición de códigos modulares 101
3.4.1 Suma directa de códigos modulares 105
3.4.2 Fusión de códigos modulares en 1 variable 109
3.4.3 Fusión de códigos modulares en 3 variables 117
3.4.4 Caso general . 122

4 Códigos lineales: Aplicaciones 125
4.1 Ideal asociado a cualquier código lineal 126
4.2 Representación de Gröbner . 133
4.3 Descodificación completa . 139

4.3.1 Con Bases de Gröbner reducidas 139
4.3.2 Con Bases reducidas o Bases del Borde 142
4.3.3 Con métodos de descodificación por gradiente 144

4.4 Técnicas FGLM para el cálculo de Bases de Gröbner 146
4.5 Cálculo del conjunto de palabras de soporte minimal 164
4.6 Aplicación a otras clases de códigos . 169

4.6.1 Códigos modulares . 169
4.6.2 Alfabetos múltiples . 173
4.6.3 Códigos aditivos . 175

5 Enfoque con semigrupos 177
5.1 Introducción de semigrupos . 178
5.2 Semigrupo asociado a un código modular 181

5.2.1 Otra representación para códigos modulares 183
5.2.2 Identificar representaciones equivalentes 186

5.3 Semigrupo asociado a un código lineal 186
5.3.1 Otra representación para códigos lineales 189
5.3.2 Identificar representaciones equivalentes 192

5.4 Algunas conclusiones . 193

Bibliografía 205

Índice general 207

Acknowledgments

En primer lugar quiero expresar mis más sinceros agradecimientos a mis directores,
Dr. Antonio Campillo López y Dr. Edgar Martínez-Moro, por todo su apoyo, con-
fianza en mi trabajo y sabios consejos. Han sido un referente no solamente para el
desarrollo de esta tesis sino en mi formación, ofreciéndome una visión más amplia
del mundo académico y permitiéndome descubrir cuánto me motiva.

I would also like to express my sincere gratitude to Prof. Ruud Pellikaan for his fun-
damental role in my work during the last four years. Prof. Ruud Pellikaan provided
me with the guidance, the assitance and the expertise that I needed during my doc-
toral time. It has been a pleasure to work with him and I hope we will continue our
collaboration in future projects.

Al Ministerio de Educación que ha financiado esta tesis a través de una beca de For-
mación de Profesorado Universitario (FPU) con referencia AP2008-01598. Y al Minis-
terio de Ciencia e Innovación por su contribución económica a través del proyecto
Geometría algebraica de las singularidades, computación e información con referencia
MTM2007-64704.

Me gustaría dar las gracias de manera especial a todos mis profesores de la ULL por
su inestimable ayuda y, lo más importante, por enseñarme que con trabajo todo es
posible.

A toda mi familia, a mis padres, a mi hermana y a Franchy, por su paciencia, por su
apoyo incondicional y por su ayuda al equilibrar la balanza. Gracias porque nunca
me he sentido lejos, por perder el miedo a viajar y por buscar conmigo soluciones a
las adversidades.

Y por último, aunque no por ello menos importante, a mis amigos, que han sabido
disculpar mis ausencias y siempre han tenido una palabra de ánimo. Si de algo
puedo presumir es de haber hecho grandes amigos en todas mis paradas, soy muy
afortunada.

Last but not least I want to thank my friends who have been able to excuse all my
absences and always had a word of encouragement. If I can presume of something is
to have made great friends in all my stops, I’m very lucky.

1

2 Acknowledgments

Pour terminer, mais non moins important, à mes amis qui ont excusé toutes mes
absences et qui ont toujours trouver un mot d’encouragement. S’il est une chose
que je peux affirmer, c’est d’avoir noué de belles amitiés partout où je suis allée, j’ai
beaucoup de chance.

Ed infine, ma non per importanza, ai miei amici, i quali sono sempre stati comprensivi
quando non ho potuto essere presente e mi hanno sempre incoraggiata nei momenti
piú difficili. Se posso vantarmi di qualcosa, è di aver stretto grandi amicizie durante
questo percorso di studio e di questo mi ritengo molto fortunata.

Tot slot, maar zeker niet onbelangrijk, voor mijn vrienden, die in staat zijn geweest mij
te vergeven voor mijn afwezigheid en altijd een bemoedigend woord hadden. Ik prijs
mezelf gelukkig dat ik goede vrienden heb gemaakt tijdens al mijn verblijven.

Und nicht zuletzt danke ich meinen Freunden, die mir mein Fehlen immer verziehen und
mich stets ermutigt haben. Wenn ich mit Recht behaupten kann, dass ich während aller
meiner Aufenthalte wunderbare Freunde gefunden habe, so kann ich mich sehr glücklich
schätzen.

Summary (Spanish)

Esta tesis pretende explorar el nexo de unión que existe entre la estructura algebraica
de un código lineal y el proceso de descodificación completa. Sabemos que el proceso
de descodificación completa para códigos lineales arbitrarios es NP-completo [6], in-
cluso si se admite preprocesamiento de los datos [23]. Nuestro objetivo es realizar
un análisis algebraico del proceso de la descodificación, para ello asociamos diferen-
tes estructuras matemáticas a ciertas familias de códigos. Desde el punto de vista
computacional, nuestra descripción no proporciona un algoritmo eficiente pues nos
enfrentamos a un problema de naturaleza NP. Sin embargo, proponemos algoritmos
alternativos y nuevas técnicas que permiten relajar las condiciones del problema re-
duciendo los recursos de espacio y tiempo necesarios para manejar dicha estructura
algebraica.

A partir de ahora denotamos por �, �s, � y �q, respectivamente, al anillo de enteros,
al anillo de enteros módulo s, a un cuerpo arbitrario y a un cuerpo finito con q
elementos donde q es potencia de un primo.

La descodificación completa tiene diversas aplicaciones no sólo en teoría de códigos
sino también en distintas áreas asociadas a la seguridad de la información:

• La Teoría de Códigos tiene como objetivo enviar un mensaje con la mayor
eficiencia y verosimilitud posible. En este campo, una de las principales apli-
caciones de nuestra investigación consiste en definir el conjunto de palabras
de soporte minimal de un código lineal. Este problema ha sido resuelto para
ciertas familias de códigos lineales, como los códigos Hamming o los códi-
gos Reed-Muller binarios de segundo orden. También ha habido intentos de
caracterizar este subconjunto de palabras en los códigos BCH y en los códigos
Reed-Muller de orden r, véanse [19] y las referencias que se proporcionan en
este artículo. En general, se trata de un problema de complejidad NP pues está
relacionado con la descodificación completa.

• La Criptografía posee un objetivo distinto y, en cierto sentido, opuesto, ya
que pretende hacer confusa la información, de forma que, si un mensaje es
interceptado, sea imposible comprenderlo. En particular, nuestra investigación
tiene aplicaciones en esquemas para compartir secretos. Un esquema para com-
partir secretos es un protocolo criptográfico que, como su nombre indica, di-
vide un determinado secreto en fragmentos repartidos entre los participantes,

3

4 Resumen

de forma que sólo ciertos conjuntos autorizados lo pueden reconstruir. A la fa-
milia de los conjuntos de participantes que nos permite recuperar el secreto se
le denomina estructura de acceso. Existen diferentes formas de definir esque-
mas para compartir secretos utilizando códigos lineales (véanse [31, 81, 83,
84, 96]). Las palabras de soporte minimal de un código determinan de forma
completa la estructura de acceso de estos esquemas.

• La Esteganografía se define como la ciencia de ocultar la información de tal
forma que, aparte del emisor y receptor, nadie pueda detectar la existencia del
mensaje. Con el fin de encubrir un mensaje necesitamos principalmente dos
factores. Por una parte, la elección de un medio inocuo x, como puede ser una
imagen digital; y, por otra, el diseño de algoritmos que nos permitan incrustar
nuestro mensaje m en el medio elegido (función de modificación), sin que el
medio apenas se altere y permita luego recuperar el contenido oculto en la
misma (función de recuperación).

En 1998, Crandall [36] propone crear modelos esteganográficos utilizando
códigos lineales. La idea es modificar el medio de tal forma que el síndrome del
medio alterado coincide con el mensaje que queremos enviar. Dado un código
lineal � de parámetros [n, k] definido en el cuerpo �q, del que conocemos un
algoritmo de descodificación completo por mínimas distancias, y sea H una
matriz de control de dicho código, consideremos que x ∈ �n

q es un vector ex-
traído del medio y que m ∈ �k

q es el mensaje que queremos enviar. La función
de modificación consiste en transformar el vector x en un vector y ∈ �n

q tal que
Hy = m, dicho con otras palabras, introducimos errores en el medio con la
característica de que y sea una de las palabras con síndrome m más cercanas
al vector x. Mientras que la función de recuperación consiste en calcular el
síndrome del vector y, i.e. Hy=m.

Observemos que la función de descodificación se utiliza de diferente forma
en Teoría de Códigos y en Esteganografía. En la primera el objetivo es corregir
errores, por lo que es necesario garantizar que la palabra enviada y la que se ob-
tiene del proceso de descodificación coincidan; sin embargo, en Esteganografía
el objetivo es introducir errores (los menos posibles), así que la unicidad de la
palabra más cercana no es importante, si existe más de una opción elegimos
una de ellas de forma aleatoria. De ahí que los métodos de descodificación
completa desempeñen un papel importante en esta ciencia (véanse [89] y las
referencias que se dan en este texto).

Iniciamos la tesis con un capítulo de preliminares, una breve introducción a los temas
de investigación, indispensable para comprender los resultados que se exponen en
los siguientes capítulos. Incluimos en este apartado una breve descripción de la
Teoría de Códigos, herramientas algebraicas como las Bases de Gröbner y las Bases
del Borde, así como una sección que pone de manifiesto la relación entre Códigos
lineales y Matroides que se pueden representar en un cuerpo finito.

Resumen 5

El Capítulo 2 está dedicado en exclusiva a códigos binarios, es decir a subespacios
vectoriales de �n

2. El objetivo es profundizar y generalizar los trabajos previos [11, 13,
14, 15, 16] sobre la representación de Gröbner de los códigos binarios. Demostramos
que se trata de una estructura esencial en el proceso de descodificación pues resuelve
el problema subyacente del cálculo del conjunto de líderes de un código.
Denotaremos por

�
e1, . . . ,en
�

a la base canónica de �n
2. Una representación de Gröb-

ner de un código binario � es un par (� ,φ) donde� está formado por un conjunto
de representantes de las clases de equivalencia de �n

2/� y φ es una aplicación en el
dominio � × �ei

�n
i=1, de tal forma que la imagen de cada par (n,ei) es el repre-

sentante en � de la clase n + ei . La palabra Gröbner no es casual. De hecho, si
consideramos un orden ≺ compatible con el peso de Hamming, el ideal binomial
asociado a un código I(�) =

�
Xa −Xb | a− b ∈ �

�
⊆ �[X] y calculamos � una

base de Gröbner reducida de I(�) respecto de ≺, entonces, los vectores asociados
a las formas normales de � representan el conjunto � , mientras que la función φ
puede verse como una tabla de multiplicación entre las variables Xi y las formas
normales en el anillo �[X]/I(�). Por lo tanto, la representación de Gröbner de
un código se puede obtener con una adaptación del algoritmo FGLM, tal y como se
muestra en [11]. En el Capítulo 2 se presenta una modificación de este algoritmo
que nos permite no sólo obtener la representación de Gröbner de un código binario,
sino también nos aporta el conjunto de todos los vectores líderes e, incluso, un con-
junto de prueba para nuestro código. Además, sin coste adicional, el algoritmo se
puede adaptar para obtener otros parámetros del código, como por ejemplo el radio
de Newton y el radio de recubrimiento.
Es sabido que un conjunto de prueba de un código � es un subconjunto de palabras
�� ⊆ � , de forma que cualquier palabra recibida y, o bien es un elemento líder de
� , o bien existe un elemento t ∈ �� tal que wH(y− t)≤ wH(t), donde wH(·) denota
el peso Hamming de un vector.
Al final del segundo capítulo presentamos un enfoque unificado, a través de la re-
presentación de Gröbner de un código, de los dos algoritmos de descodificación por
gradientes que se conocen para códigos binarios, y que fueron presentados de forma
independiente por Liebler [71] y por Ashikhmin y Barg [2]. De estos algoritmos
se decía que tenían diferente naturaleza, sin embargo demostramos que se trata de
dos formas de entender la reducción de un monomio módulo el ideal asociado a un
código binario.

En el Capítulo 3 trabajamos con códigos modulares definidos en �q, es decir con

subgrupos abelianos de
�
�n

q ,+
�

. A lo largo de este capítulo utilizamos las siguientes
aplicaciones de cambio de característica:

� : �s −→ �s
q y � �s

q −→ �s

donde s se determina por el contexto. Ambas aplicaciones actúan coordenada a coor-
denada sobre vectores y matrices. La aplicación � se corresponde con la reducción
módulo q mientras que � sustituye la clase de los elementos 0,1, . . . , q − 1 por el

6 Resumen

mismo símbolo considerado como un entero. De esta forma podemos trabajar con
monomios con exponentes en �q como si fueran monomios con exponentes enteros.
Consideramos una matriz A∈ �m×n

q (llamada matriz de coeficientes), el vector b ∈ �m
q

y el vector de costes w ∈ �n. El problema de programación lineal entero modular aso-
ciado, que denotamos por IPA,w,q(b), se define como un problema de programación
lineal en aritmética modular cuyo objetivo es encontrar un vector u ∈ �n

q que minimi-
ce la función de costos w ·�u y que verifique que AuT = b mod q. Si expresamos
este problema de forma esquemática se corresponde a:

IPA,w,q(b) =





Minimizar: w ·�u

Sujeto a:

�
AuT ≡ b mod q
u ∈ �n

q

Es bien conocido que, en el caso binario, el método de Descodificación por Mínima
Distancia (MDD) se puede ver como un problema de programación lineal entero
modular. El método MDD (uno de los más utilizados como algoritmo de descodifi-
cación) consiste en, recibido un vector, encontrar una palabra del código que minimi-
ce la distancia de Hamming con la palabra recibida. En otros términos, resolver el
problema modular IPH,w,2 es equivalente a la descodificación completa de la palabra
b en � , donde H es una matriz de paridad de nuestro código binario � y w es el
vector (1, . . . , 1).
En 2002 Ikegami y Kaji [60], adaptando las ideas de Conti y Traverso [33], pro-
pusieron un algoritmo eficiente para resolver el problema anterior utilizando Bases
de Gröbner. En términos generales, el algoritmo define un ideal I(A) asociado a la
familia de problemas modulares cuya matriz de coeficientes es A, es decir IPA,w,q, de
forma que los binomios de la Base de Gröbner reducida de dicho ideal respecto de
un orden adecuado (compatible con el vector peso w) proporcionan un conjunto de
prueba para la familia de problemas IPA,w,q.
Un conjunto de prueba para un problema entero modular IPA,w,q(b) es un subconjunto
de �q con la propiedad de que, para cada solución u no óptima del problema, existe
un elemento t en dicho conjunto, tal que u+ t nos aporta una nueva solución con
mejor valor en la función objetivo del problema.
En resumen, estos conceptos en el caso binario nos describen un método para calcular
un conjunto de prueba del código asociado. Además, resulta que la Base de Graver
del ideal I(A) proporciona un conjunto de prueba universal que, al interpretarlo en el
correspondiente código modular, conduce a un conjunto que contiene el conjunto de
palabras de soporte minimal.
Este resultado es el eje principal del Capítulo 3 en el que, además, se presentan al-
gunas soluciones para mejorar la eficacia del algoritmo propuesto. Por una parte,
se propone utilizar la filosofía expuesta por Di Biase-Urbanke en [38] para reducir
el número de variables. La reducción que se formula es una generalización al caso
modular no binario del artículo [11]. Además, como debemos calcular una Base de
Gröbner de un ideal del que conocemos sus generadores, se recomienda utilizar téc-
nicas FGLM. La complejidad de este algoritmo es �

�
n2qn−k
�

, donde k es el número

Resumen 7

de filas de una matriz generatriz del código y n es la longitud del código, es decir, el
número de variables involucradas en nuestro ideal. El procedimiento que se propone
posee las siguientes ventajas:

• Todos los pasos se pueden llevar a cabo utilizando eliminación gaussiana sobre
una matriz con elementos en �q.

• El problema del crecimiento de los coeficientes no tiene que ser considerado
pues, como toda la información del código se encuentra en los exponentes de
los binomios que definen el ideal, podemos considerar como cuerpo base el
cuerpo binario �2.

• El problema de crecimiento del grado total de los binomios tampoco tiene que
ser tenido en cuenta, pues el grado total de los binomios involucrados está
acotado por n× q.

Otra forma de reducir la complejidad de los algoritmos definidos en el Capítulo 3 es
utilizar la descomposición de un código como códigos de menor longitud. Para ello
hacemos uso de la teoría de descomposición de matroides representables. Buscamos
un procedimiento que:

1. Encuentre una descomposición especial, que llamamos m-gluing, de cualquier
código como códigos de menor longitud.

2. Calcule el conjunto de palabras de soporte minimal de cada uno de los códigos
que aparecen en esta descomposición.

3. Y deduzca, finalmente, el conjunto de palabras de soporte minimal del código
original utilizando los conjuntos obtenidos en el paso anterior.

Observemos que, en el segundo apartado de este procedimiento, todos los cálculos
son independientes. Por lo tanto resulta adecuado utilizar computación paralela
en cada componente, reduciendo el tiempo de ejecución del algoritmo. En el caso
binario, un proceso similar se puede definir para calcular conjuntos de prueba.

En el Capítulo 4 abordamos los problemas tratados en los capítulos anteriores para un
código lineal arbitrario. Para ello es fundamental una nueva definición de nuestras
funciones de cambio de característica planteadas ahora sobre los cuerpos finitos �q.
Considerando que α es un elemento primitivo de dicho cuerpo y que

�
e1, . . . ,eq−1

�

es una base estándar del anillo de enteros �q−1, definimos:

∇ : {0, 1}q−1 −→ �q y ∆ : �n
q −→ {0, 1}q−1

La aplicación ∆ reemplaza la clase del elemento a = α j ∈ �∗q por el vector e j y
el elemento cero por el vector cero en �q−1, mientras que la aplicación ∇ recu-
pera el elemento j1α+ . . . jq−1α

q−1 de �q de la (q − 1)-tupla de elementos binarios�
j1, . . . , jq−1

�
.

8 Resumen

Supongamos que X denota n variables vectores X1, . . . , Xn y que cada variable Xi se
puede descomponer en q − 1 componentes: xi1, . . . , xiq−1. Dada una n-tupla a =
(a1, . . . , an) de elementos en �q, fijamos la siguiente notación:

Xa = X a1
1 · · ·X an

n =
�

x11 · · · x1q−1

�∆a1 · · ·
�

xn1 · · · xnq−1

�∆an .

Esta relación nos permite trabajar con monomios de exponentes enteros, aunque sus
exponentes sean elementos de �q. Además, con esta representación todo elemento
a ∈ �n

q verifica que deg(Xa) = wH(∆a). Es decir, un orden compatible con el peso
en �n

q se puede ver como un orden compatible con el grado en �[X]. Esta es la idea
clave de la generalización que realizamos en el Capítulo 4 y que pasamos a detallar
en las siguientes líneas. Sea � un código lineal cualquiera definido en el cuerpo �q:

1. Probamos que el ideal binomial asociado a � , que denotamos por I+(�), está
generado por un conjunto finito de binomios definidos por las filas de una
matriz generatriz de nuestro código y las relaciones dadas por la tabla aditiva
del cuerpo �q.

2. Calculamos la representación de Gröbner de � .

3. Mostramos que una base de Gröbner reducida del ideal I+(�) respecto de un
orden compatible con el grado nos define un conjunto de prueba de nuestro
código. Es decir, a través de la representación de Gröbner de un código lineal
podemos definir dos procesos de reducción que nos permiten definir dos algo-
ritmos de descodificación por gradiente similares a los dos algoritmos conoci-
dos para códigos binarios.

4. Adaptamos el algoritmo FGLM para calcular una base de Gröbner reducida del
ideal I+(�) respecto de un orden compatible con el grado. Se trata de una
generalización de las técnicas FGLM presentadas en [11] para el caso bina-
rio. Además hacemos un estudio exhaustivo de la complejidad del algoritmo
propuesto.

5. Proporcionamos un algoritmo para calcular las palabras de soporte minimal
del código � .

Aparte de esto, los resultados obtenidos en el Capítulo 4 se pueden generalizar para
otra clase de códigos, como los códigos modulares, los códigos definidos en múltiples
alfabetos o los códigos aditivos. Los códigos modulares ya fueron tratados en el
capítulo anterior pero, con esta nueva aproximación, podemos calcular no sólo el
conjunto de palabras de soporte minimal sino también un conjunto de prueba.

El último capítulo de la tesis ofrece un nuevo enfoque utilizando técnicas de semi-
grupos. El objetivo es asignar un conjunto de generadores al semigrupo relacionado
con ciertas familias de códigos. La construcción que realizamos establece una fuerte
conexión entre geometría tórica y códigos correctores de errores. Constituye, por
tanto, una forma de aplicar resultados de la Teoría de Semigrupos para resolver

Resumen 9

problemas de la Teoría de la Información. Estudiaremos con detalle diferentes re-
presentaciones del semigrupo asociado a códigos modulares y lineales, para concluir
que la elección de representaciones digitales es la más adecuada para llevar a cabo
la descodificación completa. Entendemos por representaciones digitales un conjunto
de generadores

�
n1, . . . ,nr
�

de nuestro semigrupo S que nos permite escribir cada
palabra m ∈ S de la forma

r�

i=1

aini con a1, . . . , ar ∈ {0, 1} ⊆ �.

La ventaja de utilizar esta representación es la equivalencia que surge entre el grado
de los monomios Xγ del ideal del semigrupo I(S) y el peso de Hamming del vector γ,
siguiendo los resultados del Capítulo 4.

La investigación que se presenta en esta tesis ha dado lugar a las siguientes publica-
ciones científico-técnicas (con peer-review):

[75] I. Márquez-Corbella and E. Martínez-Moro. Decomposition of Modular Codes for
Computing Test Sets and Graver Basis. Mathematics in Computer Science, 6(2),
pp. 147-165, 2012.

[74] I. Márquez-Corbella and E. Martínez-Moro. Algebraic structure of the minimal
support codewords set of some linear codes. Adv. Math. Commun., 5(2), pp.
233-244, 2011.

[18] M. Borges-Quintana, M. A. Borges-Trenard, I. Márquez-Corbella and E. Martínez-
Moro, An algebraic view to gradient descent decoding. Information Theory Work-
shop (ITW), 2010 IEEE, Dublin (Ireland), August 30 - September 3, 2010,
pp.1-4.

Otras publicaciones derivadas de colaboraciones mantenidas durante la ejecución de
esta tesis y que han sido relevantes para la misma son:

[76] I. Márquez-Corbella and E. Martínez-Moro. An Introduction to LDPC codes. In
Algebraic Geometry Modeling in Information Theory, Series on Coding Theory
and Cryptology, pp. 129-166. ISBN: 978-981-4335-75-1, 2013.

[78] I. Márquez-Corbella, E. Martínez-Moro and G. R. Pellikaan. On the unique rep-
resentation of very strong algebraic geometry codes. Designs, Codes and Cryp-
tography, pp. 1-16, 2012.

[77] I. Márquez-Corbella, E. Martínez-Moro and G. R. Pellikaan. The non-gap se-
quence of a subcode of a generalized Reed-Solomon code. Designs, Codes and
Cryptography, pp. 1-17, 2012.

10 Resumen

[37] B. Debraize and I. Márquez-Corbella. Fault Analysis of the Stream Cipher Snow
3G. Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), Lau-
sanne (Switzerland), September 6, 2009, pp. 103-110.

Otras publicaciones enviadas para su consideración son:

[79] I. Márquez-Corbella, E. Martínez-Moro, G. R. Pellikaan and D. Ruano. Compu-
tational Aspects of Retrieving a Representation of an Algebraic Geometry Code.

[81] I. Márquez-Corbella, E. Martínez-Moro and E. Suárez-Canedo. On the Compo-
sition of Secret Sharing Schemes Related to Codes.

[12] M. B. Quintana, M. A. B. Trenard, I. Márquez-Corbella and E. Martínez-Moro.
Computing coset leaders and leader codewords of binary codes.

[82] I. Márquez-Corbella, E. Martínez-Moro and E. Suárez-Canedo. On the ideal
associated to a linear code.

[80] I. Márquez-Corbella and R. Pellikaan. Error-correcting pairs for public-key cryp-
tosystem.

Summary (English)

This thesis aims to explore the bridge between the algebraic structure of a linear code
and the complete decoding process. Complete decoding is an NP-problem [6] for an
arbitrary linear code, even if preprocessing is allowed [23]. Our goal is to make
an algebraic analysis of the decoding process. To that end, we associate different
mathematics structures to certain families of codes. From a computational point of
view, our description does not provide an efficient algorithm since our problem is NP-
complete. However we propose alternative algorithms and new techniques to reduce
the space and time needed to handle such problem.

By �, �s, � and �q where q is a prime power, we denote the ring of integers, the ring
of integers modulo s, an arbitrary field and a finite field with q elements, respectively.

Complete decoding has many applications not only in Coding Theory but also in
other areas of Information Security:

• The goal of Coding Theory is to efficiently transfer reliable information. One
of the main applications of complete decoding process is that it describes the
set of codewords of minimal support. This problem has been solved for q-ary
Hamming codes and for the second order binary Reed-Muller codes. There
have been several attempts to characterize this set for other classes of codes,
such as BCH codes and the r th-order binary Reed-Muller code, see [19] and
the references therein. However, in general it is difficult to describe them since
it is related with the problem that concerns this thesis (complete decoding).

• Cryptography, is the science of secure communication in such a way that if
a message is intercepted, it is not understood. In particular, our research has
applications in secret sharing schemes which is a cryptographic protocol for
distributing a secret amongst a group of participants, such that only specified
subsets are able to determine the secret from joining the shares they hold.
The subset of participants which are able to reconstruct the secret is called
the access structure of the scheme. There are several ways to obtain a secret
sharing scheme using a linear code � , we refer the reader to [31, 84, 96]. The
set of codewords of minimal support describe completely the minimal access
structure of these schemes.

• Steganography is the science of stealth communication in such a way that no
one, apart from the sender and the receiver, can detect the existence of a mes-

11

12 Summary

sage. In order to hide messages in innocuous-looking media we need mainly
two factors: (i) the cover selection and (ii) the embedding and recovering
methods. The embedding function should introduce a little distortion on the
cover, while the extraction function recovers the hidden message.

In 1998, Crandall [36] proposed to create steganographic schemes with the
use of error correcting codes. The key idea of this approach is to modify the
cover to obtain a cover modification whose syndrome is precisely equal to the
message to hide. In particular, let� be an [n, k]-linear code over �q and H be a
parity check matrix of � , x ∈ �n

q be a cover-data and m ∈ �n−k
q be the message

to be hidden in x. The problem consist in finding y ∈ �n
q such that HyT = m.

Therefore, the embedding map is directly linked to a decoding function.

However, the decoding map is used differently in Coding Theory and Steganog-
raphy. In Coding Theory the goal is to detect and correct errors so it is impor-
tant that the original message and the decoded word match. On the contrary,
in Steganography the objective is to introduce errors in the cover so the unique-
ness of the nearest codeword is not necessary, if there more than one nearest
codeword we arbitrary take one of them. Hence complete decoding plays an
important role in steganography, see [89] and the references given there.

We begin the thesis with a preliminary chapter to give a brief introduction of the re-
search topics necessary for understanding the new results presented in the following
chapters. This memory is intended to be as much self contained as possible. There-
fore, we provide an introduction to Coding Theory, to computational tools, namely
Gröbner and Border basis, and a section highlighting the relationship between linear
codes and representable matroids.

Chapter 2 is devoted to binary codes, i.e. k-dimensional linear subspace of �n
2. The

goal of this chapter is to extend previous work on the Gröbner representation of
binary codes [11, 13, 14, 15, 16], that we will see is an essential structure in the
decoding process, to get a better understanding of the underlying coset enumeration.
Let
�
e1, . . . ,en
�

be the canonical basis of �n
2. A Gröbner representation of a binary

linear code � is a pair (� ,φ) where � is a transversal of the cosets in �n
2/� and φ

is the function that maps each pair (n,ei) to the element of� representing the coset
that contains n+ei . As the reader may have guessed, the word Gröbner is not casual.
Indeed, if we consider a total degree ordering ≺, the binomial ideal associated to �
I(�) =
�

Xa −Xb | a− b ∈ �
�
⊂ �[X] and we compute the reduced Gröbner basis

� of I(�) w.r.t. ≺. Then, we can take � as the vectors associated with the standard
monomials of � , while the functionφ can be seen as multiplication tables of standard
monomials times the variables Xi . Therefore, the Gröbner representation of � can
be computed with a slight modification of the FGLM algorithm presented in [11]. In
Chapter 2 we present an algorithm that not only provides a Gröbner representation
of a binary linear code but also the whole set of all coset leaders and even more a test-
set. Moreover, the algorithm could be adapted without incrementing the complexity

Summary 13

to get more information such as the Newton radius or the Covering radius.
For those not familiar with Coding Theory recall that a test-set of a code is a set of
codewords such that every word y either belongs to the set of coset leaders or there is
an element t from the test-set such that the wH(y− t)≤ wH(t), where wH(·) denotes
the Hamming weight of a vector.
At the end of Chapter 2 we show a unified approach, via the Gröbner representation
of a code, to the two gradient descent decoding algorithm known for binary codes
proposed independently by Liebler [71] and Ashikhmin and Barg [2]. The algorithms
were claimed to be of different nature but we will show that both algorithms can be
seen as two ways of understanding the reduction of a monomial modulo the binomial
ideal associated to the binary code.

In Chapter 3 we work with modular codes defined over �q, or equivalently a sub-

module of
�
�n

q ,+
�

. Throughout this chapter we will use the following characteristic
crossing functions:

� : �s −→ �s
q y � �s

q −→ �s

where s is determined by context and both maps act coordinate-wise. The map � is
reduction modulo q while the map � replaces the class of 0, 1, . . . , q− 1 by the same
symbols regarded as integers. This relationship allows us to work with monomials
with �q-exponents as monomials with integer exponents.
Consider the matrix A∈ �m×n

q (namely the coefficient matrix), the vector b ∈ �m
q and

the cost vector w ∈ �n. We define a modular integer program, denoted by IPA,w,q(b),
as the problem of finding a vector u ∈ �n

q that minimizes the inner product w ·�u
subject to AuT ≡ b mod q. If we express the problem in schematic form it becomes:

IPA,w,q(b) =





minimize: w ·�u

subject to:

�
AuT ≡ b mod q
u ∈ �n

q

It is widely known that Minimum Distance Decoding (MDD) for binary codes can be
regarded as a linear integer program with binary arithmetic conditions. From the
point of transmission reliability, MDD is the most powerful decoding method. This
method consists of finding a codeword that minimized the Hamming distance with
the received word. In other words, solving the modular problem IPH,w,2(b), where H
is a parity check matrix of the linear code � and w is the all one vector, is equivalent
to perform complete decoding of the received word b in � .
In 2002, Ikegami and Kaji [60], extending the ideas of Conti and Traverso [33],
proposed an efficient algorithm which uses Gröbner bases to solve modular integer
program. Roughly speaking, the algorithm computes a Gröbner basis � of the bi-
nomial ideal associated to the family of modular problems IPA,w,q with respect to an
adequate term order compatible with the corresponding cost-vector w. Therefore,
the binomials involved in the Gröbner bases of � induced a uniquely defined test-set
for the family of modular problems IPA,w,q.

14 Summary

A test-set for integer programming is a subset with the property that for each feasible
but not optimal solution, there exists at least an element from the test set in which
when added to the solution yields an improved value of the objective function.
These ideas gives a method for computing a test-set for a binary code. Furthermore
the Graver basis associated to a modular integer programming problem provides a
universal test-set which turns out to be a set containing the set of codewords of
minimal support of the corresponding modular code.
These ideas are the main axis of Chapter 3. In brief, in order to obtain a test-set for
the binary case or the set of codewords of minimal support of a modular code, we
must compute a reduced Gröbner basis of an ideal from which we know a generating
set. We propose several solutions to improve the efficiency of the algorithm. For
example, we can use Urbanke-Di Biase [38] philosophy to reduce the number of
variables. This reduction consists of a generalization to the non-modular case of what
was exposed in [11]. Moreover, we recommend to use the extension of the FGLM
techniques presented in [11] for the modular case. In that paper the algorithm was
stated for the binary case but we present the generalization to the modulo q. Note
that the complexity of the algorithm is �

�
n2qn−k
�

where k is the dimension of the
code and n is the length of the code, i.e. n is the number of variables involved. This
procedure is completely general but it has the following advantages in our setting:

1. All steps can be carried out as Gaussian elimination steps.

2. The problem of growth of the coefficients does not have to be considered since
we can encode all the information of the problem in the exponents, thus we
can always take � = �2.

3. The problem of growth of the total degree does not have to be taken into
account since the total degree of the binomials concerned are bounded by n×q.

Another way to reduce the complexity is by using the decomposition of a code as
“gluing” of smaller ones. That is to say, our aim is to explicitly define a procedure
that:

• Finds a decomposition of an arbitrary modular code � as m-gluing of two (or
more) smaller codes.

• Computes the set of codewords of minimal support for each code that appeared
on the decomposition.

• Finally computes the set of codewords of minimal support of the original code
using the set obtained in the previous step.

Note that parallel computing is implicitly well-suited for the second step since the
computation can be carried out in parallel for each component. A similar process can
be defined in the binary case to compute a Gröbner test-set.

In Chapter 4 we study a generalization of the results discussed in the above chapters
to an arbitrary linear code. For that purpose, we need new characteristic crossing

Summary 15

functions defined over a finite fields �q where q is a prime power. Let α be a primitive
element of �q and

�
e1, . . . ,eq−1

�
be the canonical basis of �q−1, then we define:

∇ : {0,1}q−1 −→ �q and ∆ : �n
q −→ {0,1}q−1

The map ∆ replace the class of the elements a = α j ∈ �∗q by the vector e j and 0 ∈ �q

by the zero vector 0 ∈ �q−1. While the map∇ recovers the element j1α+ . . . jq−1α
q−1

of �q from the (q− 1)-tuple of binary elements
�

j1, . . . , jq−1

�
.

Let X denote n vector variables X1, . . . , Xn such that each variable Xi can be decom-
posed into q− 1 components xi1, . . . , xiq−1 with i = 1, . . . , n. Let a = (a1, . . . , an) be
an n-tuple of elements of the field �q. We fix the following notation

Xa = X a1
1 · · ·X an

n =
�

x11 · · · x1q−1

�∆a1 · · ·
�

xn1 · · · xnq−1

�∆an .

This relationship allows us to work with monomials whose exponents are formed
by elements defined over the field �q as monomials with integer exponents. More-
over, for all a ∈ �n

q we have that deg(Xa) = wH(∆a), that is, a weight compatible
ordering on �n

q can be viewed as a total degree ordering on �[X]. This is the key
idea of the generalization made in Chapter 4 which we will detail in the following
lines. Let � be a linear code defined over the finite field �q, then:

1. We give a finite set of generators of the binomial ideal associated to� , denoted
by I+(�), defined by the rows of a generating matrix of our code and the
relations given by the additive table of the field �q.

2. We compute a Gröbner representation of � .

3. We show that the binomials involved in the reduced Gröbner basis of I+(�)
w.r.t. a degree compatible ordering define a test-set for our code.

4. We define via the Gröbner representation of a linear code two reduction pro-
cesses which allow us to define two gradient descent decoding algorithms sim-
ilar to the two algorithms known for binary codes.

5. We discuss an alternative for the computation of the Gröbner basis of I+(�),
adapting the FGLM techniques presented in [11] for the binary case. In addi-
tion, a complete study of the complexity of the proposed algorithm is given.

6. We set an algorithm to compute the set of codewords of minimal support of � .

Moreover, the result of this chapter could be generalized to other classes of codes
such as modular codes, codes defined over multiple alphabets or additive codes.
Modular codes have already been discussed in Chapter 3 but this new approach
allows the computation of a Gröbner test-set.

Last chapter provides a new approach using techniques inspired by toric mathematics
from semigroups. The purpose of Chapter 5 is to assign a generating set to the semi-
group associated to an error-correcting code. This construction establishes a strong

16 Summary

relation between codes and semigroups and constitutes a means to apply numerous
results in the field of semigroups to problems in information theory. We will study
different representations for the semigroup S associated with modular and linear
codes. However the choice of digital representations seems to be the best adapted to
perform complete decoding on the selected codes. We understand by digital repre-
sentation any generating set

�
n1, . . . ,nr
�

of S such that every element m ∈ S can be
written as

r�

i=1

aini with a1, . . . , ar ∈ {0, 1} ⊆ �.

The advantage of using digital representations lies on the equivalence between the
degree of the monomials Xγ ∈ I(S) and the Hamming weight of the vectors γ, fol-
lowing the results obtained in Chapter 4.

Some research of this thesis can be found in the following publications (with peer-
review):

[75] I. Márquez-Corbella and E. Martínez-Moro. Decomposition of Modular Codes for
Computing Test Sets and Graver Basis. Mathematics in Computer Science, 6(2),
pp. 147-165, 2012.

[74] I. Márquez-Corbella and E. Martínez-Moro. Algebraic structure of the minimal
support codewords set of some linear codes. Adv. Math. Commun., 5(2), pp.
233-244, 2011.

[18] M. Borges-Quintana, M. A. Borges-Trenard, I. Márquez-Corbella and E. Martínez-
Moro, An algebraic view to gradient descent decoding. Information Theory Work-
shop (ITW), 2010 IEEE, Dublin (Ireland), August 30 - September 3, 2010,
pp.1-4.

More publications and collaborative work during my PhD are:

[76] I. Márquez-Corbella and E. Martínez-Moro. An Introduction to LDPC codes. In
Algebraic Geometry Modeling in Information Theory, Series on Coding Theory
and Cryptology, pp. 129-166. ISBN: 978-981-4335-75-1, 2013.

[78] I. Márquez-Corbella, E. Martínez-Moro and G. R. Pellikaan. On the unique rep-
resentation of very strong algebraic geometry codes. Designs, Codes and Cryp-
tography, pp. 1-16, 2012.

[77] I. Márquez-Corbella, E. Martínez-Moro and G. R. Pellikaan. The non-gap se-
quence of a subcode of a generalized Reed-Solomon code. Designs, Codes and
Cryptography, pp. 1-17, 2012.

Summary 17

[37] B. Debraize and I. Márquez-Corbella. Fault Analysis of the Stream Cipher Snow
3G. Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), Lau-
sanne (Switzerland), September 6, 2009, pp. 103-110.

Other publications submitted for publications are:

[79] I. Márquez-Corbella, E. Martínez-Moro, G. R. Pellikaan and D. Ruano. Compu-
tational Aspects of Retrieving a Representation of an Algebraic Geometry Code.

[81] I. Márquez-Corbella, E. Martínez-Moro and E. Suárez-Canedo. On the Compo-
sition of Secret Sharing Schemes Related to Codes.

[12] M. B. Quintana, M. A. B. Trenard, I. Márquez-Corbella and E. Martínez-Moro.
Computing coset leaders and leader codewords of binary codes.

[82] I. Márquez-Corbella, E. Martínez-Moro and E. Suárez-Canedo. On the ideal
associated to a linear code.

[80] I. Márquez-Corbella and R. Pellikaan. Error-correcting pairs for public-key cryp-
tosystem.

18 Summary

Notations

� An arbitrary field, appears on page 31.

�[X] The polynomial ring in n variables over �, appears on page 31.

� The ring of integers, appears on page 122.

�s The ring of integer modulo s, appears on page 26.

�q A finite field with q elements, appears on page 20.

Linear Codes

� An [n, k] linear code over �q, appears on page 22.

n Length of � , appears on page 22.

k Dimension of � , appears on page 22.

d Minimum distance of � , appears on page 22.

dH(x,y) Hamming distance between two vectors x, y ∈ �n
q , appears on

page 22.

wH(y) Hamming weight of the vector y ∈ �n
q , appears on page 22.

supp(y) Support of the vector y ∈ �n
q , appears on page 22.

t error-correcting capacity of � , appears on page 22.

�⊥ Dual code of � , appears on page 23.

S(x) Syndrome of a vector x ∈ �n
q , appears on page 24.

CL(�) Set of coset leaders of the code � , appears on page 24.

CL(y) Subset of coset leaders corresponding to the coset � + y, appears
on page 24.

CL(�) j
i The j-th element of the set of coset leaders of weight i, appears on

page 53.

19

20 Notations

�� Test-set for � , appears on page 25.

D(c) Voronoi region of a codeword c ∈ � , appears on page 25.

�� Set of codewords of minimal support of � , appears on page 25.

ν(�) Newton radius of � , appears on page 55.

ρ(�) Covering radius of � , appears on page 55.

WDCL Weight Distribution of the Coset Leaders of a binary code � , ap-
pears on page 55.

L(�) Set of leader codewords of � , appears on page 58.

� (A) Set of words at Hamming distance 1 from A, appears on page 62.

δ(A) Boundary of A, appears on page 62.

� (�) Set of all Zero-Neighbours of � , appears on page 62.

B(�) Border of the code � , appears on page 70.

R(�) Reduced Border of a code, appears on page 71.

head(b) First component of an element b ∈ B(�), appears on page 71.

tail(b) Second component of an element b ∈ B(�), appears on page 71.

Im(�) Binomial ideal of� by taking care of the arithmetic over the math-
ematical definition structure of � , appears on page 86.

I+(�) Binomial ideal of � given by the additive rules of the mathemati-
cal definition structure of � , appears on page 123.

�Xi

�
T+
�

Binomials on the variable Xi associated to the relations given by
the additive table of the field �q, appears on page 124.

cf(w) Canonical form of w ∈ �n
q , appears on page 131.

xJ The restriction of x to the coordinates indexed by J , appears on
page 98.

J The relative complement of J in {1, . . . , n}, appears on page 98.

�J Punctured code at positions in J , appears on page 98.

� .J Shortened code at positions in J , appears on page 99.

c(i) i-th coordinate of c, appears on page 99.

�1 ⊕�2 Sum code of two modular codes �1 and �2, appears on page 99.

Notations 21

�
c1 � c2
�

Codewords of the sum code �1 ⊕�2, appears on page 99.

(a | b) ∈ �m1+m2
q Concatenation of a ∈ �m1

q and b ∈ �m2
q , appears on page 99.

S(�1,�2) New code from �1 ⊕�2 by shortening at the positions where �1
and �2 overlap, appears on page 100.

c1 �m c2 Codewords of S(�1,�2), appears on page 100.

�1 g�m�2 m-gluing of �1 and �2, appears on page 100.

Gröbner bases, Border bases and Graver bases

[X] Set of terms in �[X], appears on page 31.

[X]d Set of terms of degree d, appears on page 37.

≺T Total degree ordering, appears on page 32.

supp(f) Support of a polynomial f , appears on page 32.

LT≺(f) Leading term of f w.r.t. ≺, appears on page 32.

LC≺ Leading coefficient of f w.r.t. ≺, appears on page 32.

LT≺{F} Set of leading terms of all non-zero polynomials in F , appears on
page 32.

LT≺(F) Semigroup ideal generated by LT≺{F}, appears on page 32.

in≺(I) Initial ideal of the ideal I w.r.t. ≺, appears on page 34.

δ� Border of an order ideal � , appears on page 37.

ind� (t) � -index of t ∈ [X], appears on page 38.

S≺(f , g) S-polynomial of f and g w.r.t. ≺, appears on page 36.

N≺(I) Set of standard monomials of I w.r.t. ≺, appears on page 41.

B≺(I) Border set of I w.r.t. ≺, appears on page 41.

C≺(I) Corner set of I w.r.t. ≺, appears on page 41.

G≺(I) Unique minimal basis of in≺(I), appears on page 41.

�≺ Reduced Gröbner basis of I w.r.t. ≺, appears on page 41.

�≺ Border basis of I w.r.t. ≺, appears on page 41.

Red≺(f , F) Remainder on the division of f by the list of polynomials F w.r.t.
the term order ≺., appears on page 34.

22 Notations

(� ,φ) Gröbner representation of � , appears on page 46.

n−→i n� Reduction of an element n relative to the unit vector ui , appears
on page 140.

Linear programming problems

�A Set of circuits of A∈ �m×n, appears on page 84.

GrA Graver basis of A∈ �m×n, appears on page 84.

IPA,w(b) Integer LP problem, appears on page 78.

Λ(A) Lawrence lifting of A∈ �m×n, appears on page 85.

Λ(A)q Lawrence lifting for the modulo q of A ∈ �m×n
q , appears on page

86.

T�w
Test-set for the family of problems IPA,w, appears on page 78.

UGBA Universal Gröbner basis of A∈ �m×n, appears on page 84.

Semigroups

S Commutative semigroup with an identity element, appears on page
174.

G(S) Associated commutative group of S, appears on page 175.

�[S] Semigroup algebra of S, appears on page 175.

I(S) Semigroup ideal associated to S, appears on page 176.

IF (S) Semigroup ideal associated to S when S is defined by the generat-
ing set F , appears on page 176.

� Lattice, appears on page 176.

I� Lattice ideal associated to � , appears on page 176.

1
Preliminaries

Contents
1.1 Coding Theory . 24

1.1.1 Basics of Linear Codes . 26
1.1.2 Generator matrices of modular codes 30
1.1.3 The general decoding problem 32

1.2 Gröbner Bases and Border Bases . 36
1.2.1 Gröbner Bases . 39
1.2.2 Border Bases . 42
1.2.3 The relation between Gröbner Bases and Border Bases . . 45

1.3 Matroids . 47

This first chapter aims to give a brief introduction about the research topics of
the thesis which include Coding Theory (Section 1.1), Gröbner basis and Border basis
(Section 1.2) and an overview of the connections between codes and Matroids (Sec-
tion 1.3). This chapter will provide the reader with the necessary background for
interpreting the results within this study; and thus, improve the readability of the
thesis. We will fix general notation, summarize definitions and recall known results.
Indeed for these three topics we need several volumes for their proper coverage as
well as their connections. Thus, this introduction is based in our purposes. Please
refer to the cited references for a deeper insight.

Section 1.1 provides an introduction to Coding Theory. The approach to error
correcting codes started in the late 1940’s with the work of Shannon [101], which
set the theoretical limits of reliable communication; and the work of Hamming [53]
and Golay [50] who developed the first error correcting schemes. My goal is to

23

24 Preliminaries

present the necessary aspects of this theory in a simple and understandable manner.
For a more thorough treatment of the theory of error-correcting codes see Berlekamp
[5], Blahut [9], Justesen and Høholdt [62], MacWilliams and Sloan [72], Hoffman
[56] Huffman and Pless [58] and Van Lint [112].

Section 1.2 gives a very basic introduction to Gröbner Bases and Border Bases.
Gröbner Bases were first introduced in 1965 in Burno Buchberger’s PhD dissertation
[24] who named his method after his advisor Wolfgang Gröbner. The idea can be
traced back to Gauss-Jordan elimination for multivariate polynomial systems. Our
notation on Gröbner Bases is from [98]. For a fuller treatment we refer the reader
to [1, 34, 35, 52, 67]. Gröbner bases for toric ideals and their application to integer
programming have been studied by several authors (including Conti-Traverso [33],
Sturmfels [106, 107], Sturmfels-Thomas [108], Thomas [110]), note that Chapter 3
and Chapter 4 is an application of their results. We refer the reader to [40, 87, 103]
for deeper discussion on combinatorial commutative algebra and binomial ideals.

Section 1.3 explores the connection between Coding Theory and Matroid Theory,
see [61] and the references given there. Matroids were introduced independently
by Whitney [120] and by Van der Waerden [117]. This theory enables the study of
the concepts of linear algebra and graph theory in a more abstract way. For a more
background reading on Matroid Theory see Oxley [90], Kung [68], Welsh [118] or
White [119].

1.1 Coding Theory

Claude Shannon’s paper from 1948 entitled “A Mathematical Theory of Communica-
tion” [101] gave birth to the disciplines of information theory and coding theory. The
main goal of these disciplines is to efficiently transfer reliable information. To be ef-
ficient the transfer of information must not require a big amount of time and effort.
Whereas to be reliable, the received and transmitted data must coincide. However,
during the transmission over noisy channels, the information could be damaged so it
has become necessary to develop ways of detecting when an error has occurred and
how to correct it.

Given a communication channel that may corrupt information sent over it, Shan-
non proved that there exists a number which he identified with the capacity of the
channel, such that reliable communication is possible at any rate below its capacity.

The fundamental problem of Coding Theory is to find optimal encoding and de-
coding schemes for reliable error correction of data sent through noisy transmission
channels. The idea is to add redundant information to enable the detection and
correction of errors after transmission. The theory has been developed for diverse
applications, intersecting mathematics and engineering, such as the minimization of
noise from compact disc recordings, the transmission across telephone and satellite
lines, data storage and information transmission from a distant source. Diagram 1.1
provides an idea of a general communication channel.

We begin by selecting an alphabet which is a finite set of letters. Every original
message is presented as a set of k-tuples of element of the chosen alphabet. In general

1.1. Coding Theory 25

our alphabet is the finite field with q elements �q, so our messages will be vectors in
�k

q .

Message
source Encoder Channel Decoder Receiver

m = m1 · · ·mk

message

Enc. function
E : �k

q → �n
q

Noisy

e = e1 · · · en

error from
noisy

Dec. function
D : �n

q → �k
q

y = E(m) + e
received
vector

D(y)

Figure 1.1: Block diagram of a communication system

An encoding function with parameters [n, k] is a function E : �k
q −→ �n

q
that maps a message m consisting of k symbols into a longer redundant string E(m)
of length n over �n

q . An error-correcting code � is defined to be the image of an
encoding function and the set of string E(m) of the different messages are called the
set of codewords of � . Thus, the process of transforming the original message into
codewords of a certain code of length n is known as encoding.

Every codeword is then sent through a noisy channel. We will assume that the
channel noise is “nicely” behaved, i.e. is a discrete memoryless channel. Roughly
speaking a discrete channel comprises an input � and an output � alphabets (both
finite alphabets, moreover in our particular case both alphabets will coincide) and a
probability transition matrix which defines the probability that y ∈ � was received
given that x ∈ � was sent; the channel is memoryless if the error in each letter is
independent of previous channel inputs or outputs.

Finally, the receiver gets a possibly distorted copy of the transmitted codeword
and needs to figure out the original message. This process of correcting errors and
obtaining back the message is called decoding. This is done via a decoding function

D : �n
q −→ �k

q that maps noisy received words y to an estimate ŷ, hoping that
ŷ and the transmitted message agree.

Shannon’s Theorem guarantees that taking into account the characteristics of
the channel and with the right encoding, our estimate will be very likely match the
original message. However, Shannon does not provide a method to perform the
required encoding and decoding schemes efficiently.

Let � be a fix alphabet with q elements. There are several parameters that
indicate the quality of a code of length n over the alphabet � , which contains M
codewords:

• The information rate of the code R =
logq(M)

n
, which gives a measure of how

much information is being transmitted.

26 Preliminaries

• The relative minimum distance δ = d
n

which is closely related to its error-
correcting capability, where d is the minimum distance of the code or equiva-
lently the least Hamming distance between any two distinct codewords (num-
ber of places where they differ).

Now it is clear that the aim of Coding Theory is to provide codes with high in-
formation rate, high relative minimum distance and low complexity on its encoding
and decoding procedures.

1.1.1 Basics of Linear Codes

In order to define codes that can encode and decode efficiently, we can add some
structure to the codespace. In this thesis we are mainly interested in linear codes.

Definition 1.1. A linear code � over �q of length n and dimension k, or an [n, k]q
code for short, is a k-dimensional subspace of �n

q .

We will call the vectors v in �n
q words while the vectors in � are called codewords.

For a word v ∈ �n
q its support is defined as its support as a vector in �n

q , i.e.
supp(v) =
�

i | vi �= 0
�

and its Hamming weight, denoted by wH(v) as the cardinality
of supp(v).

It is clear that for an [n, k] code over �q, its size, which is the number of code-
words, is equal to M = qk; the information rate, which gives a measure of how much
information is being transmitted, is R= k

n
; and the redundancy is n− k.

Definition 1.2. The Hamming distance, dH(x,y), between two vectors x, y ∈ �n
q is

the number of places where they differ, or equivalently, dH(x,y) = wH(x− y).

The minimum distance d of a linear code � is defined as the minimum weight
among all nonzero codewords. Therefore, the minimum distance is also called the
minimum weight of the code. If � has minimum distance d, then we refer to the
code as an [n, k, d] linear code over �q.

The following bound called Singleton bound gives us the maximal minimum dis-
tance of an [n, k] code.

Theorem 1.3. If � is an [n, k, d]q code, then d ≤ n− k+ 1.

Proof. A proof can be found for example in [62, Theorem 5.1.1].

Any code with parameters which achieve the Singleton Bound is called a Maxi-
mum Distance Separable (MDS) code.

The minimum distance of a code is important in determining the error-correcting
capability of the code, i.e. the higher the minimum distance, the more errors the
code can correct.

1.1. Coding Theory 27

Definition 1.4. A code � is t-error correcting if there exists a decoding function
D : �k

q −→ �k
q such that for every message m ∈ �k

q and every received word
y ∈ �n

q with dH(y, E(m)) ≤ t, we have that D(y) = m. In other words, it is not
possible to attain a certain received word from making at most t error in two different
codewords.

Remark 1.5. Note that for any [n, k, d] code and for any received word y, if t ≤�
d−1

2

�
then there is only one codeword c in � satisfying that dH(c,y)≤ t. Or equiv-

alently, the nearest codeword to y is unique when y and � has maximum distance of�
d−1

2

�
to � . The parameter t =

�
d−1

2

�
is called the error-correcting capacity of the

code � .

There are two standard ways to describe a linear subspace, either explicitly by
giving a basis, or implicitly by the solution space of a set of homogeneous linear
equations. Therefore, there are two ways to describe a linear code: explicitly as the
row space of a matrix (generator matrix) or implicitly by the null space of a matrix
(parity check matrix).

Let � be an [n, k] linear code over �q, then � is a k-dimensional linear subspace
of �n

q , i.e. there exists a basis that consists of k linearly independent codewords.

Definition 1.6. A k× n matrix G with entries in �q is called a generator matrix of an
[n, k] linear code � if the rows of G form a basis of � .

Given a generator matrix G of � , the encoding from the message m ∈ �k
q to a

codeword can be done efficiently by a matrix multiplication since

� =
�

mG |m ∈ �n
q

�
.

Thus, representing the code requires storing only k vectors of length n rather than the
qk vectors that would be required for a nonlinear code. Note also that the representa-
tion of the code provided by a generator matrix G is not unique since by performing
row operations on G (nonzero linear combinations of the rows) another generator
matrix of � can be obtained.

A generator matrix G is a standard generator matrix if its first k columns forms
the identity matrix of size k. This form of the generator matrix gives a systematic
encoding of the information, i.e. we simply let the first k coordinates be equal to the
information symbols. The generator matrix G is systematic if among its columns we
can find the identity matrix of size k, in which case G is said to be systematic on
those columns. Any set of coordinates corresponding to k independent columns of G
forms an information-set for � .

Definition 1.7. An (n−k)×n matrix of rank n−k with entries in �q is called a parity
check matrix of an [n, k] linear code � if � is the null space of this matrix.

A generator matrix G and a parity check matrix H for a code � satisfy GHT = 0.
Moreover, a parity check matrix for a code provides information about the minimum
distance of the code.

28 Preliminaries

Proposition 1.8. Let H be a parity check matrix of � . Then the minimum distance d
of � is the smallest integer d such that d columns of H are linearly independent.

The next proposition gives a parity check matrix for � when � has a generator
matrix in standard form.

Proposition 1.9. If G =
�

Ik A
�

is a generator matrix for the [n, k]q code � in
standard form, then H =

�
−AT In−k

�
is a parity check matrix for � , where Im

denotes the identity matrix of size m and AT is the transpose of A.

Definition 1.10. Let � be any code (not necessarily linear) defined over �n
q . The

dual code of � , denoted �⊥, is the code

�⊥ =
�

x ∈ �n
q | x · c= 0 for all c ∈ �

�
,

where x · y = x1 y1 + . . .+ xn yn for x,y ∈ �n
q denotes the usual inner product or dot

product on �n
q .

The dual of � is linear even if � is not. Indeed it is often a good way of proving
that a given code is linear.

Lemma 1.11. If � is an [n, k] linear code, then its dual �⊥ is an [n, n− k] linear
code and
�
�⊥
�⊥
= � . Moreover, a parity check matrix of � is a generator matrix for

the dual code �⊥.

Let � be an [n, k] code in �q and x be any vector in �n
q , the set

x+� = {x+ c | c ∈ �}

is called a coset of � . Thus, two vectors x and y belong to the same coset if and only
if y− x ∈ � .

By Lagrange’s Theorem, the cosets form a partition of the space �n
q into qn−k

classes each containing qk elements.

Theorem 1.12 (Lagrange’s Theorem). Suppose � is an [n, k] code in �n
q , then:

• Every vector of �n
q is in some coset of � .

• Every coset contains exactly qk vectors.

• Any two cosets are either equivalent or disjoint.

The minimum weight of a coset is the smallest Hamming weight among all vectors
in the coset. Notice that while the minimum weight of a coset is well-defined, there
may be more than one vector of that weight in the coset.

Definition 1.13. The words of minimal Hamming weight in the cosets of �n
q/� are

the set of coset leaders for � in �n
q . We will denote by CL(�) the set of coset leaders

of the code � and by CL(y) the subset of coset leaders corresponding to the coset
� + y.

1.1. Coding Theory 29

The zero vector is the unique coset leader of the code � . Moreover, every coset
of weight at most t =

�
d−1

2

�
has a unique coset leader.

Definition 1.14. Choose a parity check matrix H for � . The Syndrome of a vector
x ∈ �n

q with respect to the parity check matrix H is the vector S(x) = HxT ∈ �n−k
q .

As the syndrome of a codeword is 0, then we have a way to test whether the
vector belongs to the code. Moreover, two vectors y and e that differ by a codeword
have the same syndrome, i.e.

HyT = H(c+ e)T = 0+ HeT = HeT .

Hence, there is a one-to-one correspondence between cosets of � and values of
syndromes. The following is just a reformulation of our arguments:

Theorem 1.15. Two vectors belong to the same coset if and only if they have the same
syndrome.

Since H has rank n− k, the number of cosets is qn−k, that is, every vector in �n−k
q

is a syndrome.

Remark 1.16. It is well known that complete minimum distance decoding (CDP) over
the code � has a unique solution for those vectors in the union of the Hamming balls
of radius t around the codewords of� i.e. B(� , t) =

�
y ∈ �n

2 | c ∈ � s.t. dH(c,y)≤ t
�

,
where t = � d−1

2
� is the error-correcting capacity of � and �·� denotes the greatest in-

teger function.

The following theorem gives us a nice relationship between the coset leaders.

Theorem 1.17. Let w ∈ CL(�) and y ∈ �n
q such that all nonzero components of y agree

with the corresponding component of w. Then y ∈ CL(�).
In other words, if there is a coset of weight s, there is also a coset of any weight less

than s.

Proof. Consider y ∈ �n
q \ {w} such that yi = wi for all i ∈ supp(y). Therefore,

wH(w) = wH(y) + wH(w − y). Suppose, contrary to our claim, that y /∈ CL(�).
Then, there must exists a codeword c ∈ � such that wH(y+ c)< wH(y). However,

wH(w+ c)≤ wH(y+ c) +wH(w− y)< wH(y) +wH(w− y) = wH(w)

which contradicts the fact that w ∈ CL(�).

In particular, for the binary case, we have the following result, where
�
e1, . . . ,en
�

denotes the canonical basis of �n
2.

Corollary 1.18. Let w ∈ CL(�) such that w = y + ei for some word y ∈ �n
2 and

i ∈ supp(w), then y ∈ CL(�).

Proof. See [58, Corollary 11.7.7].

30 Preliminaries

Definition 1.19. The Voronoi region of a codeword c ∈ � , denoted by D(c), is de-
fined as:

D(c) =
�

y ∈ �n
q | dH(y,c)≤ dH(y,c�) for all c� ∈ � \ {c}

�
.

Note that the set of Voronoi regions of a linear code � partitions the space �n
q .

However, some points of �n
q may be contained in several regions. Furthermore, the

Voronoi region of the all-zero codeword D(0) coincides with the set of coset leaders
of � , i.e. D(0) = CL(�).
Definition 1.20. A test-set �� for a given code � is a set of codewords such that
every word y either lies in the Voronoi region of the all-zero vector, denoted by D(0),
or there exist t ∈ �� such that wH(y− t)< wH(y).

Definition 1.21. A non-zero codeword m in the code � is said to be a minimal
support codeword if there is no other codeword c ∈ � such that

supp(c)⊆ supp(m).

We will denote by�� the set of codewords of minimal support of � .

1.1.2 Generator matrices of modular codes

Throughout this section� will be a modular code defined over �m where �m denotes
the ring of integers modulo m. In other words, � is a submodule of

�
�n

m,+
�

.
Let m =
�

pri
i be the prime factorization of m. Along this thesis p will denote a

prime number, unless otherwise specified. For any divisor q of m let

Φq : �m −→ �q

be the map defined by Φq(c) = c mod q.

Definition 1.22. The vectors v1, . . . ,vk ∈ �pr are modular independent if and only if�k
i=1 aivi = 0 implies that p/ai for all i.

Therefore, the zero vector is modular dependent and any nonzero vector v is
modular independent. Thus, if v1, . . . ,vs are modular independent, then vi �= 0 for
all i. Moreover v1, . . . ,vs are modular dependent if and only if some v j can be written
as a linear combination of the other vectors (for a proof see, for example, [39, Lemma
3.1]).

We use the definition of modular independence of vectors in �pr to define modu-
lar independence in �n

m as follows:

Definition 1.23. The vectors v1, . . . ,vk in �n
m are modular independent if the vectors

Φi(v1), . . . ,Φi(vk) are modular independent for some i.

On [39, Theorem 3.2] it is shown that if v1, . . . ,vk are modular independent over
�m and
�k

j=1 ajv j = 0, then all α j are nonunits, but the converse is not true. This
motivates the following definition:

1.1. Coding Theory 31

Definition 1.24. The vectors v1, . . . ,vk in �n
m are independent if

�k
j=1 ajv j = 0 implies

that ajv j = 0 for all j.

Note that if v1, . . . ,vr are independent, then so are v1, . . . ,vr ,0. Moreover if
v1, . . . ,vk are independent and λw /∈ 〈v1, . . . ,vk〉 for any λ �= 0, then v1, . . . ,vk,w
are independent.

It is easy to see that, if the nonzero vectors v1, . . . ,vs in �n
pe are independent,

then they are modular independent over �pe . However the converse does not hold.
Moreover, over �m, modular independence does not imply independence nor does
independence imply modular independence.

Example 1.25. Consider the vectors (11,7) and (3,9) in �2
12. By definition, they

are modular independent over �12, since Φ4 ((11,7)) = (3,3) and Φ4 ((3, 9)) = (3, 1)
are modular independent over �4. However they are not independent over �12 since
6(11,7) + 2(3, 9) = (0, 0) but 6(11,7) = 2(3,9) = (6,6) �= (0, 0).

If now we consider the vectors (4, 0) and (0, 3) in �2
12. They are independent

since a(4, 0) + b(0, 3) = (0,0) implies that 4a ≡ 0 and 3b ≡ 0, i.e. a ∈ {0,3, 6,9}
and b ∈ {0, 4,8}, so a(4, 0) = (0,0) and b(0, 3) = (0,0). But (4, 0) and (0, 3) are
modular dependent over �12 since Φ4 ((4,0)) = (0,0) and Φ3 ((0,3)) = (0, 0) so they
are modular dependent over �4 and �3.

Definition 1.26. Let � be a code over �m. The codewords w1, . . . ,wk form a basis
for � if they are independent, modular independent and generate � .

This allow us to make the following definition:

Definition 1.27. A matrix G is called a generator matrix for � if the row vectors
form a basis for � .

From the fundamental theorem on finitely generated abelian groups, if � is a
code of length n over �m, then:

� ∼= �m/〈d1〉 ⊕ . . .⊕�m/〈dr〉

where all di are nonunits and 〈dr〉 ⊆ 〈dr−1〉 ⊆ . . . ⊆ 〈d1〉 with r ≤ n are uniquely
determined. Or equivalently, 1< d1/d2/ . . ./dr/m, with r ≤ n.

We can use this notion of modular basis to develop the already-known results for
the field case such as:

1. Every code has a basis. Indeed we have the following theorem:

Theorem 1.28. Suppose φ : � −→ �m/〈d1〉 ⊕ . . .⊕�m/〈dr〉 as before.
Let wi be the codeword in � corresponding to (0, . . . , 1, . . . , 0) in the direct prod-
uct, where 1 ∈ �m/〈di〉 is in the ith place. Then w1, . . . ,wr form a basis for
� .

The proof follows from [39, Theorem 4.6] or [92, Theorem 4.12].

32 Preliminaries

2. Any two bases have the same number of codewords, which enable us to define
the rank to be the number of codewords in a basis, for a proof see [39, Theorem
4.7] or [92, Theorem 4.13].

However, note that r modular independent codewords in a code of rank r do not
necessarily form a basis. Moreover, s modular independent codewords with s < r are
not always possible to be extended to a basis for a code of rank r.

Remark 1.29. Codes over the rings �pr have generator matrices permutation equiva-
lent to the standard form

G =




Ik0
A0,1 A0,2 A0,3 . . . A0,r−1 A0,r

0 pIk1
pA1,2 pA1,3 . . . pA1,r−1 pA1,r

0 0 p2 Ik2
p2A2,3 . . . p2A2,r−1 pA2,r

...
...

...
...

. . .
...

...
0 0 0 0 . . . pr−1 Ikr−1

pr−1Ar−1,r




.

In [92] they define standard forms for codes over �m using the Chinese Remainder
Theorem which does not necessarily coincide with a matrix with the previous form.

1.1.3 The general decoding problem

For the decoding problem we would like that D(E(m)+noise) =m for every message
m and every reasonable noise pattern.

Maximum Likelihood decoding (MLD) is the most powerful decoding method from
the point of view of transmission reliability. However, it has a complexity that grows
exponentially with the length of the code. MLD can be described as the method
where given a received word y ∈ �n

q , try to find a codeword x that maximizes the
probability that y was received given that x was sent. On a symmetric channel the
MLD becomes the Minimum distance decoding (MDD) whose goal is to output the
codeword closest in Hamming distance to the received word.

A decoding algorithm which decodes only up to the number of errors for which
it is guaranteed to find a unique codeword within such a distance of the received
word, is called a unique decoding sequel. In particular, a linear code with minimum
distance d has a unique decoding algorithm that can correct up to t = d−1

2
errors

(error-correcting capability of the code). When the number of errors is greater than
t then the unique decoding algorithms could either output a wrong codeword or
report a decoding failure and not output any codeword. However, when we have a
decoder capable of finding all codewords nearest to the received vector then we have
a complete decoder.

In general, complete decoding for a linear code has proved to be an NP-hard com-
putational problem. For binary codes see [6] and for the q-ary case see [3, Theorem
4.1]. Recall that the complexity is measured by the number of operations (time com-
plexity) and the amount of memory used (space complexity).

We are interested in complete minimum distance decoding (CDP), or equivalently
given a received vector y ∈ �n

q , find one of the closest codewords in � . The first

1.1. Coding Theory 33

idea to accomplish this procedure could be to compute the hamming distance of the
received word with all the codewords (recall that a linear code has qk codewords).
The complexity of this brute force method is �

�
nqk
�

. Thus, large parameters make
any brute force method wildly impractical.

Known decoding methods with complexity asymptotically less than that of ex-
haustive search can be divided mainly into three groups:

• Syndrome decoding.

Its trivial implementation can be performed as follows:

1. We construct the syndrome lookup table (i.e. we enumerate the cosets
of � in �n

q , we choose a coset leader for each coset and we compute its
syndrome).

2. Compute the syndrome S(y) of the received vector y ∈ �n
q and determine

from the table which coset leader e satisfies that S(y) = S(e).

3. Decode y as y− e.

The space complexity of this method is �
�

nqn−k
�

. Therefore, the computation
of the look-up table grows exponentially with the length of the code. However,
if pre-computation is allowed, this algorithm is fast.

• Gradient Descent decoding.

The general principle of these methods is the use of a certain set of code-
words �� (namely test-set, formally described in Definition 1.20) which has
been precomputed and stored in memory in advance. Then the algorithm can
be accomplished by recursively inspecting the test-set for the existence of an
adequate element which is subtracted from the current vector. Algorithm 1
describes a gradient-like decoding algorithm for binary codes, this algorithm
appears in [3].

Algorithm 1: Gradient-like decoding
Data: The received word y ∈ �n

2.
Result: A codeword c ∈ � that minimized the Hamming distance dH(c,y).
Set c= 0;1

while y /∈ D(0) do2

Look for z ∈ �� such that wH(y− z)< wH(y);3

y←− y− z;4

c←− c+ z;5

endw6

Return c= y.7

The following result shows that Algorithm 1 performs complete minimum-
distance decoding.

34 Preliminaries

Theorem 1.30. (Correctness of Algorithm 1) Algorithm 1 always converges to
the nearest codeword.

Proof. We follow [3, Theorem 3.11]. Let y /∈ D(0). By construction, there
must exists an element z1 ∈ �� such that wH(y− z1) < wH(y). We replace y
by y1 = y− z1.

Repeating the above process a finite number of times we must arrive to a vector
ym with the following property:

ym = y−
m�

i=1

zm ∈ D(0).

Therefore y ∈ D
��m

i=1 zm

�
, which completes the proof.

The idea behind this is step by step decoding which is an old but quite recurrent
technique. A primer study on it can be found in [94].

The time complexity of the algorithm is �
�

n2|�� |
�

and the space complexity
is � �n|�� |
�
, see [3, Theorem 3.11]. Making use of the ideas of the zero-

neighbours algorithm it is possible to reduce the number of codewords in-
spected by the gradient-like algorithm. Moreover, for binary codes if �� =��
then this version is called minimal-vector decoding.

Theorem 1.31. The minimal-vector algorithm for binary codes performs com-
plete minimum distance decoding.

Proof. This proof appears in [3, Theorem 3.13]. Assume that y /∈ D(0), or
equivalently, there exists a nonzero codeword c ∈ � such that

wH(y+ c)< wH(c) (1.1)

It follows easily that every nonzero codeword of � can be written as

c=
m�

i=1

zm with zm ∈ �� and m≥ 1

where wH(c)> wH(c− z1)> . . .> wH(c−
�m

i=1 zm) = 0.

In our case �� = �� , that is, c can be described as sum of codewords of
minimal support. Note that on the binary case the supports of codewords from
�� do not intersect. Hence there must exists at least one codewords z ∈��
satisfying Equation 1.1. Then the proof follows from Theorem 1.30.

Gradient Descent Decoding has gained renewed interest over the past 20 years
thanks to the efficient implementation achieved with turbo codes and low-
density parity check (LDPC) codes. In fact, see [116] for gradient descent
procedures based in bit flipping, particularly beneficial for LDPC codes.

1.1. Coding Theory 35

• Information-set decoding

The idea of these methods is to decode by localizing errors. Fundamentally,
we look for a set of coordinates which are error-free in such a way that the
restriction of a code’s generator matrix to these positions is invertible and the
original message can be retrieved by multiplying the received vector and the
inverse of the mentioned submatrix.

For any vector x in �n
q , we denote by xI the restriction of x to the coordinates

indexed by I . Similarly, let A be a matrix with at least n columns we denote by
AI the limitation of A to the columns indexed by I .

Now we can define more precisely the principle of these procedures. Let y be
the received vector and I some information-set of our code � , then y can be
written as y= c+e for some codeword c and some error vector e verifying that
supp(e)∩ I = � or equivalently yI = cI . Moreover, the restriction of the matrix
G(−1)

I G, where G denotes a generator matrix for � , to the columns indexed by
the set I match the identity matrix Ik of size k. Therefore, the original message
can be found as m= yI G

(−1)
I .

The first approach to this method was introduced by Prange in [95]. Sub-
sequent variants were devised by McEliece [86], by Lee and Brickell [69],
by Leon [70] and by Stern [105]. Latter improvements to Stern’s and Lee-
Brickell’s attack were presented independently by van Tilborg, Canteaut, Chabaud,
Chabanne, Finiasz and Sendrier in [27, 28, 29, 43, 113, 114]. As a culmination
of the previous improvement, Bernstein, Lange and Peters presented a new ad-
vance in [7]. Moreover, Peters in [93] generalizes Lee-Brickell’s algorithm and
Stern’s algorithm to the non-binary case.

More recent improvements include [4, 8, 44, 85] which give asymptotically
exponential improvements over Stern’s algorithm.

Note that information-set decoding, though much more efficient than a brute-
force search, still needs exponential time in the code length.

Definition 1.32. Given a received word y and an error-correcting capability w, a
list-decoding algorithm outputs a (possibly empty) list of all codewords within a Ham-
ming distance of w to y. The decoding is considered successful if the transmitted
codeword is included in the list.

This method was introduced independently by Elias [41] and Wozencraft [121].
An important parameter of list-decoding is the size of the list that the decoder is
allowed to output. Note that if the size is equal to one, then list-decoding coincides
with unique decoding, otherwise list-decoding only gives more options than unique
decoding.

36 Preliminaries

1.2 Gröbner Bases and Border Bases

Let � denote an arbitrary field and �[X] = �[X1, . . . , Xn] denote the polynomial
ring in n variables over the field �. Let [X] be the set of terms in �[X], i.e.

[X] =
�
Xa = X a1

1 · · ·X an
n | a= (a1, . . . , an) ∈ �n

�

which is a multiplicative version of the additive semigroup �n. Note that, a, b and c
being elements in �n, implies that:

• Xa ·Xb = Xc ⇐⇒ a+ b= c i.e. ai + bi = ci

• Xa/Xb ⇐⇒ a≤ b i.e. ai ≤ bi

where < is a natural partial ordering in �n.
A term order on �[X] is a total order ≺ on the set [X] such that

Xa ≺ Xb implies that Xa+c ≺ Xb+c.

Moreover, if 1≺ Xa for all a ∈ �n \ {0}, then ≺ is a well-ordering on [X].
Let us fix an ordering on the variables, such as X1 > X2 > . . . > Xn. The most

common examples of term order are:

• The lexicographical (lex) ordering defined by

Xa <lex Xb ⇐⇒ ∃ j such that
�
ai = bi for i > j

�
and
�

aj < bj

�

• The reverse lexicographical (lexrev) ordering defined by

Xa <lexrev Xb ⇐⇒ ∃ j such that
�
ai = bi for i < j

�
and
�

aj > bj

�

It is not a well-ordering since X1 < 1.

• The degree lexicographical (deglex) ordering defined by

Xa <deglex Xb ⇐⇒
�

deg(Xa)> deg(Xb) or
deg(Xa) = deg(Xb) and Xa <lex Xb

• The degree lexicographical (degrevlex) ordering defined by

Xa <degrevlex Xb ⇐⇒
�

deg(Xa)> deg(Xb) or
deg(Xa) = deg(Xb) and Xa <revlex Xb

More in general, given an ordering ≺ on [X] we define its total degree ordering
extension ≺T as:

Xa ≺T Xb ⇐⇒
�

deg(Xa)< deg(Xb) or
deg(Xa) = deg(Xb) and Xa ≺ Xb

Now we fix a term order ≺ on �[X]. Let f =
�

t∈[X] ct t be a nonzero polynomial
in �[X].

1.2. Gröbner Bases and Border Bases 37

• The support of f is the set of terms which occurs with nonzero coefficient in
the expansion of f , i.e. supp(f) =

�
t ∈ [X] | ct �= 0
�
.

• The leading term of f , denoted by LT≺(f), is the term t in f such that t � t �

for all t � ∈ supp(f).

• The leading coefficient of f is LC≺(f) = cLT≺(f).

• The leading monomial of f is LM≺(f) = LC≺(f) · LT≺(f).

Let F be a finite set of polynomials in �[X]. Then LT≺{F} =
�
LT≺(f) | f ∈ F
�

denotes the set of leading terms of all non-zero polynomials in F and LT≺(F) denotes
the semigroup ideal generated by LT≺{F}, i.e. LT≺(F) =

�
t · LT≺(f) | t ∈ [X], f ∈ F

�
.

Remark 1.33. A semigroup ideal S (resp. Σ) is a subset of �[X] (resp. �n) such that
if s ∈ S and t ∈ [X], then ts ∈ S (resp. if a ∈ Σ and b ∈ �n such that a ≤ b, then
b ∈ Σ).

Algorithm 2 describes a division algorithm for multivariate polynomials. This
algorithm is taken from [35].

Algorithm 2 terminates since a term order on �[X] is a well ordering.
Remark 1.34. Dividing f by (f1, . . . , fs) w.r.t. ≺ gives a unique expression of the form

f = a1 f1 + . . .+ as fs + r where deg(f)≥ deg(ai fi) for i ∈ {1, . . . , s}.
However, a1, . . . , as, r ∈ �[X] depend on the chosen term order ≺.

Example 1.35. Let f = x y2 − x , f1 = x y + 1 and f2 = y2 − 1 and take ≺ to be the
lex ordering with x > y . Then:

• Dividing f by (f1, f2) yields: x y2 − x = y(x y + 1) + (−x − y).

• Dividing f by (f2, f1) yields: x y2 − x = x(y2 − 1) + 0.

Definition 1.36. A non empty subset I ⊂ �[X] is called a polynomial ideal of �[X]
if I is closed under:

• Addition, i.e. for all f , g ∈ I , f + g ∈ I .

• Multiplication by elements of �[X], i.e. h ∈ �[X] and f ∈ I , implies that
hf ∈ I .

By the well-known Hilbert basis theorem [35, Section2.5] every polynomial ideal
I has a finite generating set. That is, I =

�
f1, . . . , fs
�

for some f1, . . . , fs ∈ I .
Let I be a nonzero ideal in �[X]. Then its initial ideal w.r.t. a term ordering ≺,

denoted by in≺(I), is the ideal generated by the leading terms of all the polynomials
in I :

in≺(I) =
�
LT≺(f) | f ∈ I
�

.

The terms which do not lie in the ideal in≺(I) are called standard monomials .
Let F be a finite generating set for I . Note that

�
LT≺{F}
� ⊂ in≺(I). However�

LT≺{F}
�

and in≺(I) may be different ideals, as we see by the following counterex-
ample.

38 Preliminaries

Algorithm 2: A division algorithm in �[X]
Data: A dividen f ∈ �[X], an ordered set of divisors

�
f1, . . . , fs
�⊆ �[X] and a

term order ≺.
Result: The quotients a1, . . . , as and the remainder r in �[X] such that

f = a1 f1 + . . .+ as fs + r where no term in r is a multiple of LT≺
�

fi
�

for i ∈ {1, . . . , s}.
Initialization1

a1 := 0, . . . , as := 0, r := 0;2

// Each of the quotient registers and the remainder is set to zero;
p := f ;3

// The dividend is f ;
G2←− �; List←− {1}; N ←− �; r ←− 0;4

while p �= 0 do5

i := 1;6

divisionoccurred := false;7

while i ≤ s and divisionoccurred= false do8

// Find the smallest value i ∈ {1, . . . , s} (if any) for which LT≺(p) is a
multiple of LT≺(fi);
if LT≺(fi) divides LT≺(p) then9

ai := ai +
LT≺(p)
LT(fi)

;10

p := p− LT≺(p)
LT(fi)

fi;11

divisionoccurred := true;12

else13

i := i + 1;14

endif15

if divisionoccurred= false then16

// If there is no such i subtract LT≺(p) from the dividend and add it
to the remainder r := r + LT(p);
p := p− LT(p);17

endif18

endw19

endw20

Example 1.37. Let f = x y2+x y and g = x2 y+x2−y be polynomials in�[x , y] and
take ≺ to be the degrevlex ordering with x > y . Note that h= y2 is an element of
the ideal I generated by f and g since h= x f − y g. However, h /∈ �LT≺(f), LT≺(g)

�
.

1.2. Gröbner Bases and Border Bases 39

1.2.1 Gröbner Bases

Definition 1.38. A finite subset G≺ = {g1, . . . , gs} of an ideal I is a Gröbner basis
w.r.t. the term order ≺ if

in≺(I) =
�
LT≺(g1), . . . , LT≺(gs)

�
=
�
LT≺{G}
�

Note that if G≺ is a Gröbner basis for I , then G≺ is a basis of I , and any finite
subset of I that contains G≺ is also a Gröbner basis. To remedy the non-minimality,
we say that G≺ is a reduced Gröbner basis if

1. gi are monic for all i ∈ {1, . . . , s}.
2. For all distinct pairs i, j ∈ {1, . . . , s}. None of the monomials appearing in the

expansion of g j is divisible by LT≺(gi).

Remark 1.39. A note on existence and uniqueness of Gröbner Bases. Fix a term order
≺:

1. Every ideal I ⊆ K[X] has a Gröbner basis w.r.t. ≺ (Corollary of Hilbert basis
theorem).

2. Any Gröbner basis for an ideal I is a system of generators of I .

3. Every non-zero ideal has a unique reduced Gröbner basis w.r.t. ≺, see for
instance [35, Section 2.7].

Definition 1.40. We write Red≺(f , F) for the remainder on the division of f by the
list of polynomials F =

�
f1, . . . , fs
�

w.r.t. the term order ≺.
Let � be a Gröbner basis for an ideal I , then Red≺(f ,�) is called the normal form

of f in I w.r.t. the term order ≺.

Given an ideal I =
�

f1, . . . , fs
�

and a polynomial f ∈ �[X], how can we test
whether f lies in I or not? This problem is called the ideal membership problem
and can be solved using Gröbner basis techniques. The idea is simple, fix a term
ordering ≺ and let G≺ be a Gröbner basis for I w.r.t. ≺ then f ∈ I if and only if
Red≺(f , G≺) = 0.

Moreover, Gröbner Bases provide a uniform approach to solve systems of polyno-
mials in several variables. Let F =

�
f1, . . . , fs
�

be a finite set of polynomials in �[X].
Finding all common solutions in �n of the system

f1(X1, . . . , Xn) = . . . = fs(X1, . . . , Xn) = 0

is the same problem as searching for all the points in the affine variety V (f1, . . . , fs) =
V (F). Since the definition of V (F) is independent of the chosen generating set, then
the reduced Gröbner basis G≺ for the ideal I = 〈F〉 w.r.t. a fix term ordering ≺
specifies the same variety, i.e. V (F) = V (G). The advantage of G is that it reveals
some geometric properties of the variety that are not visible from F . Observe that:

• By Hilbert’s Nullstellensatz, V (F) is empty if and only if G≺ is equal {1}.

40 Preliminaries

• V (F) is finite if and only if the set of standard monomials is finite.

Moreover, the number of zeros counted with multiplicity of V (F) is equal to the
number of standard monomials. Note that for n = 1, this yields to the Fundamental
Theorem of Algebra.

Another problem where Gröbner Bases is very useful is the implicitization prob-
lem, i.e. compute the implicit representations of varieties given by rational parametriza-
tions. Suppose that the rational parametrization, which define a subset of an alge-
braic variety V in �n, is given by a polynomial parametrization, i.e.





X1 = f1(t1, . . . , tm)
...
Xn = fn(t1, . . . , tm)

How can we find polynomial equations in the Xi that define V? One way to solve
this problem is to use elimination theory, that is, to compute a Gröbner basis of the
ideal

I =
�
X1 − f1, . . . , Xn − fn

�∩�[X]

using an elimination ordering for the variables t, e.g. a lexicographic ordering t1 >
. . .> tm > X1 > . . .> Xn.

A Gröbner basis � for I can be computed from any generating set of I by a
method that was introduced by Bruno Buchberger in [24] Buchberger was the first
to give an algorithm for computing Gröbner Bases.

Algorithm 3: Buchberger’s Algorithm
Data: The generating set F =

�
f1, . . . , fs
�

of a nonzero ideal I .
Result: A Gröbner basis G =

�
g1, . . . , gt
�

for I .
G := F ;1

repeat2

// Repeat the process until all S-polynomials of G have remainder 0 after
division by G;
G := G�;3

for each pair (p, q), p �= q in G�4

S := Red≺
�
S(p, q), G�
�
;5

if S �= 0 then6

// If S �= 0 add S to G and start again;
G := G ∪ {S};7

endif8

endfor9

until G = G� ;10

1.2. Gröbner Bases and Border Bases 41

Definition 1.41. Let f , g ∈ �[X] be nonzero polynomials and ≺ be any term order-
ing. The S-polynomial of f and g w.r.t. ≺ is the combination:

S≺(f , g) =
Xγ

LT≺(f)
f − Xγ

LT≺(g)
g

where Xγ is the least common multiple of LT≺(f) and LT≺(g).

We can now describe Buchberger’s algorithm. This algorithm hinges on the fact
that � is a Gröbner basis w.r.t ≺ if and only if for each pair f , g ∈ � we have that
Red≺
�
S(f , g),�≺
�
= 0. We reproduce the algorithm from [35].

FGLM algorithm

The FGLM algorithm [42] is a method for changing a Gröbner basis from one term
order to another by means of linear algebra techniques. This method applies to
Gröbner Bases of zero-dimensional ideals and is based on the following key ideas:

• The quotient ring with respect to an ideal may be viewed as a vector space.

• For zero-dimensional ideals I , the quotient ring �[X]/I is finitely generated
and any Gröbner basis provides a canonical vector-space basis.

• The elements that are not in the vector-space are linearly dependent from the
elements in the basis. Moreover, the dependency relations yields to polynomi-
als of the Gröbner basis.

We require the following subroutines:

• NormalForm(f) returns the normal form of f w.r.t. the old basis G1.

• NextTerm[List] removes the first element of the list List and returns it.

• InsertNext[w,List] inserts to the list List the products wx for x ∈ [X]1,
sorts the list List by increasing ordering for ≺1 and removes duplicates.

• LinearDependency[v,
�

v1, . . . , vr
�
] returns false if v is not a linear combi-

nation of {v1, . . . , vr} and the set {λ1, . . . ,λr} ⊂ � if v =
�r

i=1λi vi .

A proof of its correctness may be found in [42].
Let I be a zero-dimensional ideal with codimension D(I) in �[X] i.e. D(I) is the

dimension of the �-vector space �[X]/I . Let n be the number of variables of the
polynomial ring �[X].

Theorem 1.42. Let G1 be a Gröbner basis of I w.r.t. a term order ≺1. Given a different
term order ≺2, then a reduced Gröbner basis G2 of I w.r.t. ≺2 can be calculated in
�
�

nD(I)3
�

arithmetic operations.

Proof. See for instance [42, Theorem 5.1].

42 Preliminaries

Algorithm 4: Algorithm FGLM
Data: A Gröbner basis G1 of a zero-dimensional ideal I w.r.t. a term order ≺1

and a new admissible order ≺2.
Result: The reduced Gröbner basis G2 of I w.r.t. ≺2
G2←− �; List←− {1}; N ←− �; r ←− 0;1

while List �= � do2

w←− NextTerm(List);3

if w /∈ LT≺2
(G2) then4

v= NormalForm(w);5

if LinearDependency[v,
�

v1, . . . , vr
�
] �= false then6

G2 = G2 ∪
�
w−
�r

i=1λiwi

�
;7

else8

r ←− r + 1;9

vr = v;10

wr =w;11

N = N ∪ �wr
�
;12

List= InsertNexts[wr ,List]13

endif14

endif15

endw16

1.2.2 Border Bases

For every d ≥ 0, we let [X]d be the set of terms of �[X] of degree d.

A non-empty set of terms � ⊆ [X] is called an order ideal if every term dividing a
term in � is contained in � . That is, if t ∈ � implies t � ∈ � for every term t � dividing
t. The set of terms δ� = [X]1� \� =

�
X1� ∪ . . .∪ Xn�

� \� forms the Border of � .

Let � = �t1, . . . , ts
�

be an order ideal with Border δ� = �b1, . . . , br
�
. A set of

polynomials {g1, . . . , gr} ⊆ �[X] of the form

g j = bj −
s�

i=1

ci j ti with ci j ∈ �

is called an � -Border prebasis.

Example 1.43. Consider the order ideal � = �1, x , y, x y
�

in �[x , y]. Its Border is
δ� =
�

x2, x2 y, x y2, y2
�

.

1.2. Gröbner Bases and Border Bases 43

δ�

Ideal �

Therefore the following set of polynomials

g1 = x2 − x , g2 = x2 y − x y, g3 = x y2 − x y and g4 = y2 − y

form an � - Border basis of I .

Let
�0 = � and �i = �i−1 ∪δ�i−1 for i ≥ 1.

For every term t ∈ [X], there is a unique integer i = ind� (t)≥ 0 such that t ∈ �i\�i−1
which is called the � -index of t. In other words, let � be an order ideal and t ∈ [X],
ind� (t) is the smallest integer k such that t = t � t1 with t1 ∈ � and t � ∈ [X]k. More
generally, the index of a polynomial f is defined as

ind� (f) =max
�

k ≥ 0 | k = ind� (ti) with ti ∈ supp(f)
�

.

The index possesses properties resembling those of term orderings but index in-
equalities do not need to be preserved under multiplication.

Definition 1.44. Let � = �t1, . . . , ts
�

be an order ideal with Border δ� = �b1, . . . , br
�
,

� = �g1, . . . , gr
�

be an � -Border prebasis and I be a zero-dimensional ideal of �[X]
containing � . Then � is a Border basis if and only if the residue classes of t1, . . . , ts
modulo I are �-linearly independent.

Let bi , bj ∈ δ� be two distinct Border terms, bi and bj are neigbours if either
bi = Xk bj for some k ∈ {1, . . . , n} or Xk bi = Xl bj for some l, k ∈ {1, . . . , n}.

Let gi = bi −
�s

l=1 cli bl and g j = bj −
�s

l=1 cl j bl be two distinct Border pre-
basis polynomials. Then the polynomial

S(gi , g j) =
lcm(bi , bj)

bi
gi −

lcm(bi , bj)
bj

g j

is called the S-polynomial of gi and g j .

Proposition 1.45 (Characterizations of Border-Bases). Let � be an order ideal and
� = �g1, . . . , gr

�
be an � -Border prebasis. � is an � -Border basis of I if and only if for

every nonzero polynomial f in I, there exists polynomials f1, . . . , fr in �[X] such that

f = f1 g1 + . . .+ fr gr with deg(fi)≤ ind� (f)− 1 whenever fi gi �= 0.

44 Preliminaries

Proof. See [66, Proposition 9].

Remark 1.46. For Border Bases we have a similar remark to what we did for Gröbner
Bases (Remark 1.39). Let � = �t1, . . . , ts

�
be an order ideal with Border δ� =�

b1, . . . , bm
�

and � = �g1, . . . , gm
�

be an � -Border prebasis then:

1. Every zero dimensional ideal I in �[X] do not have an � -Border basis, i.e. the
existence is not guaranteed.

2. Any � -Border basis � for a zero dimensional ideal I is a system of generators
of I . Moreover � is uniquely determined by � and δ� .

Remark 1.47. If we fix the � -border prebasis � = �g1, . . . , gr
�

then the result of
Algorithm 5 is uniquely determined.

Example 1.48. Let � = �t1 = 1, t2 = x
�⊆ �[x , y], δ� =

�
b1 = y, b2 = x y, b3 = x2

�

and � =
�

g1 = y, g2 = x y − 1, g3 = x2 − 1
�

. We apply Algorithm 5 to divide the
polynomial f = x2 y + x2 + 2x y by � .

1. We initialize the algorithm with: f1 = f2 = f3 = 0; c1 = c2 = 0 and h= f .

2. Since ind� (h) = 2 and h = h1 + x2 + 2x y with h1 = x2 y = x2 b1. Then, we
replace:

h←− h− x2 y = x2 + 2x y and f1←− x2.

3. Now, ind� (h) = 1 and h= h1 + 2x y with h1 = x2 = b3. Thus,

h←− h− x2 + 1= 2x y + 1 and f3←− 1.

4. Note that ind� (h) = 1 and h= 2h1 + 1 with h1 = x y = b2. Thus,

h←− h− 2(x y − 1) = 3 and f2←− 2.

5. Finally ind� (h) = 0 and h= 3 · 1+ 0 · x . Hence, c1←− 3 and c2←− 0.

Therefore the algorithm returns (x2, 2, 1, 3, 0) such that f = x2 g1 + 2g2 + g3 + 3.

Let f = f1 g1+ . . .+ fr gr + c1 t1+ . . .+ cs ts be a representation of f computed by
Algorithm 5. Then

NR� ,� (f) = c1 t1 + . . .+ cs ts

is called the normal � -remainder of f .

Theorem 1.49 (Buchberger criterion for Border Bases). An � -Border prebasis � is an
� -Border basis if and only if for all pair of neighbours (bi , bj) the normal � -remainder
of the S-polynomial S(gi , g j) is zero.

Proof. See a proof in [66, Proposition 18]

1.2. Gröbner Bases and Border Bases 45

Algorithm 5: The Border division algorithm
Data: An order ideal � = �t1, . . . , ts

�
, its border δ� = �b1, . . . , br

�
, an

� -border prebasis � = �g1, . . . , gr
�

and a polynomial f ∈ �[X].
Result: The tuple (f1, . . . , fr , c1, . . . , cs) ∈ �[X]r ×�s such that

f = f1 g1 + . . .+ fr gr + c1 t1 + . . .+ cs ts

where deg(fi)≤ ind� (f)− 1 for all i ∈ {1, . . . , r} with fi gi �= 0.
Initialization1

f1 = . . .= fr = 0; c1 = . . .= cs = 0; h= f ;2

while h �= 0 do3

if ind� (h) = 0 then4

Find c1, . . . , cs ∈ � such that h= c1 t1 + . . .+ cs ts;5

h := 0;6

else7

Find a1, . . . , am ∈ � \ {0} and h1, . . . , hm ∈ [X]n with ind� (h1) = ind� (h)8

such that h= a1h1 + . . .+ amhm;
// The algorithm does not depend on the choice of the term h1

endif9

// Determine the smallest i ∈ {1, . . . , r} : h1 = t�bi with

deg(t�) = ind� (h)− 1.

// Note that this factorization always exists. boolean := false;
while i ≤ i and boolean= false do10

if h1 = t�bi with deg(t�) = ind� (h)− 1 then11

h := h− a1t�gi;12

fi := fi + a1t�;13

boolean := true;14

else15

i := i + 1;16

endif17

endw18

endw19

1.2.3 The relation between Gröbner Bases and Border Bases

Let ≺ be a term ordering and I be an ideal of �[X] generated by the finite set of
polynomials F =

�
f1, . . . , fs
�
. Then � = [X] \ LT≺(F) is an order ideal of terms such

that I has an � -Border basis.

Remark 1.50. Note that the elements of the reduced Gröbner basis of I w.r.t. ≺ are
exactly the Border basis polynomials corresponding to the corners of δ� , i.e. to the
minimal generators of the Border basis.

46 Preliminaries

We will fix some notation and terminology (similar to those introduced in [98]).

1. N≺(I) stands for the set of standard monomials of I w.r.t. ≺.

2. G≺(I) denotes the unique minimal basis of in≺(I).

3. B≺(I) =
�

Xht | 1≤ h≤ n and t ∈ N≺(I)
�
, the Border of the order ideal N≺(I),

for short the Border set of I w.r.t. ≺.

4. C≺(I) =
�

t ∈ B≺(I) | t ∈ LT≺(F)
�

means the corner set of I .

Example 1.51. Consider the ideal I =
�

X 6
1 , X 4

1 X 3
2 , X 5

2

�
, then we have the following

figure:

G≺(I)
N≺(I)
B≺(I)
C≺(I)

Proposition 1.52 (Properties). The following properties are trivially satisfied.

1. N≺(I), N≺(I)∪ G≺(I) and N≺(I)∪ B≺(I) are order ideals.

2. For every w ∈ LT≺{F}, there exists u ∈ [X] and v ∈ B≺(I) such that w = vu.

3. �[X] = I ⊕ Span�
�
N≺(I)
�
, where Span�
�
N≺(I)
�

stands for the �-vector space
whose basis is
�
N≺(I)
�
.

4. For each polynomial f ∈ �[X] there is a unique remainder on the division of f
by F w.r.t. ≺, such that f −Red≺(f , F) ∈ I . The normal form also satisfies:

(a) Red≺(f1, F) = Red≺(f2, F) if and only if f1 − f2 ∈ I .

(b) Red≺(f , F) = 0 if and only if f ∈ I .

5. The reduced Gröbner basis of I w.r.t. ≺ is the set �≺ =
�

t −Red(t, F) | t ∈ G≺(I)
�
.

6. The Border basis of I w.r.t. ≺ is the set�≺ =
�

t −Red(t, F) | t ∈ B≺(I)
�
.

1.3. Matroids 47

Proof. These properties can be found in [98].

Remark 1.53. I is a zero-dimensional ideal if the dimension of the quotient ring
�[X]/I is finite. In such case, dim� (�[X]/I) is equal to the cardinality of the set
N≺(I).

1.3 Matroids

We briefly state the connections between coding and matroid theory.

Definition 1.54. A matroid M is a pair (E, I) consisting of a finite set E called ground
set and a collection I of subsets of E called independent sets, satisfying the following
conditions:

1. the empty set is independent, i.e. � ∈ I .

2. if A∈ I and B ⊂ A, then A∈ I .

3. If A, B ∈ I and |A|< |B|, then there exists e ∈ B \ A such that A∪ {e} ∈ I .

A maximal independent subset of E is called a basis of M . A direct consequence
of the previous definition is that all bases of M have the same cardinality. Therefore
we define the rank of the matroid M as the cardinality of any basis of M , denoted
by rank(M). A subset of E that does not belong to I is called dependent set. Minimal
dependent subsets of E are known as circuits of M . A set is said to be a cycle if it is a
disjoint union of circuits. The collection of all cycles of M is denoted by C(M).

Let us consider an m × n matrix A in �q whose columns are indexed by E =
{1, . . . , n} and take I to be the collection of subsets J of E for which the column
vectors
�

Aj | j ∈ J
�

are linearly independent over �q. Then (E, I) defines a matroid
denoted by M[A]. A matroid M = (E, I) is �q-representable if it is isomorphic to M[A]
for some A∈ �m×n

q . Then A is called the representation matrix of M .
The following well known result describes the relation between the collection of

all cycles of a matroid M and its representation matrix.

Proposition 1.55. Let M = (E, I) be a �q-representable matroid. Then C(M) is the
null space of a representation matrix of M. Furthermore, the dimension of C(M) is
|E| − rank(M).

Given an m× n matrix H in �q then H can be seen not only as the representation
matrix of the �q-representable matroid M[H] but also as a parity check matrix of an
[n, k]-code � . Furthermore there exists a one to one correspondence between �q-
representable matroids and linear codes since for any H, H � ∈ �m×n

q , M[H] = M[H �]
if and only if H and H � are parity check matrices of the same code� . This association
enables us to work with �q-representable matroids and linear codes as if they were
the same object and thus we can deduce some properties of linear codes using tools
from matroid theory and vice-versa.

48 Preliminaries

�q-representable matroid
M[H] = (E, I)

[n, k]-code �

|E| n
rank(M[H]) dim(�) = k

A cycle of M[H] The support of a codeword of �
A circuit of M[H] supp(c) : c ∈��

The weight of a minimal circuit The minimum distance

Table 1.1: Codes and their relation to matroids

Table 1.1 provides some similarities between both theories. For example, by def-
inition of parity check matrix of a code and making use of Proposition 1.55, we can
relate the support of any codeword of � with a cycle in M[H]. In addition, we have
that c ∈ � is a minimal support codeword if and only if supp(c) is a circuit of the
matroid M[H].

The decomposition theory of matroids when applied to binary matrices provides a
powerful decomposition theory for binary linear codes with applications in maximum-
likelihood decoding, see [63] and the references therein. For some relations between
matroids and the Gröbner basis associated to binary codes we refer the reader to
[17, 21].

2
Binary codes: Gröbner representation

and related structures

Contents
2.1 Gröbner representation of a binary code 50
2.2 Computing coset leaders . 53
2.3 Computing leader codewords . 62

2.3.1 Leader codewords and zero neighbours 66
2.4 Gradient descent decoding . 69

2.4.1 An algebraic view to gradient descent decoding 72

Throughout this chapter � will be a binary linear code of length n and dimension
k, i.e. a k-dimensional linear subspace of �n

2 where �2 is the field of two elements.
The first two sections essentially follow [12]while the last section presents the re-

sults in [18]. Both are joint works with M. Borges-Quintana and M.A. Borges-Trenard
from the University of Oriente (Santiago de Cuba), and E. Martínez-Moro from Uni-
versity of Valladolid (Spain). The purpose of this chapter is to extend the previous
work on Gröbner representation of binary codes to get a better understanding of the
underlying coset enumeration procedure as well as relating it to the problem of gra-
dient descent decoding procedures known in the literature. Indeed, our view point
sheds some new light on the latter problem and unifies some existing approaches.

The outline of the Chapter is as follows. First, in Section 2.2 we present an al-
gorithm that not only provides a Gröbner representation of a binary linear code �

49

50 Binary codes

but also the whole set of all coset leaders denoted by CL(�). Its efficiency stands on
the fact that its complexity is linear on the number of elements of CL(�) which is
smaller than exhaustive search in �n

2. There are a few applications for CL(�): the set
of coset leaders in linear codes has been related to the set of minimal support code-
words which have been used in maximum likelihood decoding analysis [3, 74], and
also to secret sharing schemes since they describe the minimal access structure [84].
The example presented in Section 2.2 with 64 coset and 118 coset leaders suggests
some extra applications of the algorithm such as obtaining the weight distribution of
the coset leaders or the Newton and Covering radius of the code. We shall remark
that these applications do not pose a large additional cost to the proposed algorithm.

Section 2.3 is devoted to show how the algorithm presented in the previous sec-
tion can be adapted to compute a test-set for the code which we refer to as leader
codewords. Not only do we prove that the elements of this set are zero neighbours
but also that the knowledge of this set can be used to compute the subset of coset
leaders corresponding to the coset of the received word.

Finally, in Section 2.4 we show a unified approach, via the Gröbner representation
of a code, to the two gradient descent decoding algorithm known for binary codes:
the one where the search is done changing the coset representative (l-GDDA) due to
Liebler [71] and the one given by descending within the same coset (ts-GDDA) due
to Ashikhmin and Barg [2]. Note that they were claimed to be of different nature.
However, we will show that both come from two ways of computing the reduction of
a monomial modulo the binomial ideal I2(�) associated to the binary code.

2.1 Gröbner representation of a binary code

Let
�
ei | i ∈ {1, . . . , n}� be the canonical basis of �n

2.
Let us consider the integer q ≥ 2. We define the following characteristic crossing

functions:
� : �s −→ �s

q and � : �s
q −→ �s

where s is determined by context, note that the space may be also the matrix space.
The map � is reduction modulo q while the map � replace the class of 0, 1, . . . , q−1
by the same symbols regarded as integers. Both maps act coordinate-wise.

Let a = (a1, . . . , an) be an element in �n
q then X�a = x�a1

1 · · · x�an
n ∈ �[X]. There-

fore, these functions enable us to go back to the usual definition of terms in �[X].

Definition 2.1. A Gröbner representation of an [n, k] binary linear code � is a pair
(� ,φ) where:

• � is a transversal of the cosets in �n
2/� (i.e. one element of each coset)

verifying that 0 ∈ � and for each n ∈ � \ {0} there exists an ei with i ∈
{1, . . . , n} such that n= n� + ei with n� ∈ � .

• φ : � × �ei
�n

i=1 −→ � is a function called Matphi function that maps
each pair (n,ei) to the element of� representing the coset that contains n+ei .

2.1. Gröbner representation of a binary code 51

The word Gröbner is not casual. Indeed, if we consider the binomial ideal

I2(�) =
�
X�w1 −X�w2 |w1 −w2 ∈ �

�⊆ �[X]

and a total degree ordering ≺ and we compute the reduced Gröbner basis � of I2(�)
w.r.t. ≺. Then we can take� as the vectors w such that X�w is a standard monomial
in � w.r.t. ≺. Moreover, the function Matphi can be seen as the multiplication tables
of the standard monomials times the variables xi ∈ [X]1 modulo the ideal I2(�).
Note that the Matphi structure is independent of the particular chosen set � of
representative elements of the quotient ring �n

2/� . See [11, 13, 14, 15, 16] for a
more general treatment of these concepts.

Remark 2.2. It is important to remark that � does not need to be the same field
as the one where the code is defined. In fact, any field will work since the code is
“encoded” in the exponents. Thus we will use � = �2 in the computation which is
the easiest field to tackle with.

The Gröbner representation of a code can be computed with a slight modification
of the FGLM algorithm [42], since we are dealing with a zero-dimensional ideal. This
extension algorithm can be found in [15]. Let ≺T be a total degree ordering, there
are three functions needed to understand the algorithm:

• InsertNext[w,List] adds to List all the sums w+ ek with k /∈ supp(w),
keeps the increasing order of the list List w.r.t. ≺T and removes duplicates.

• NextTerm[List] returns the first element of List and deletes it from List.

• Member[v,
�
v1, . . . ,vr
�
] returns j if v= v j and false otherwise.

The following theorem showns the importance of using a total degree ordering
(for example degrevlex).

Theorem 2.3. Let � be an [n, k] binary linear code with error correcting capability t
and GT be the reduced Gröbner basis of I2(�) w.r.t. a total degree ordering ≺T . If

deg
�

Red≺T
(X�w, GT)
�
≤ t

then the exponent of Red≺T
(X�w, GT) is the error vector corresponding to the received

word w ∈ �n
2. In other words, by subtracting the exponent of Red≺T

(X�w, GT) from w,
we obtain the closest codeword to w.

On the other hand, if deg
�

Red≺T
(X�w, GT)
�
> t, then w contains more than t

errors.

Proof. The following proof can be found in [11, Theorem2]. However, we expose it
here to familiarize the reader with the new notation in this section and render the
chapter as self-contained as possible.

The uniqueness of the normal form is guaranteed by its definition. Thus, it suf-
fices to show that the monomial associated to the error vector e corresponding to the
received word w ∈ �n

2 is the normal form of X�w w.r.t. GT .

52 Binary codes

Algorithm 6: Computing a Gröbner representation of a binary linear code �
Data: A total degree ordering ≺T and the parity check matrix H of a binary

code �
Result: (� ,φ) a Gröbner representation for �
List←− [0]; S←− �; � ←− �; r ←− 0;1

while List �= � do2

w←− NextTerm[List];3

s←−wHT ;4

j←− Member[s, S];5

if j �= false then6

for k ∈ supp(w) : w=w� + ek with w� ∈ �7

φ(w�,ek)←−w j;8

endfor9

else10

r ←− r + 1;11

wr ←−w;12

� ←−� ∪ {wr};13

S←− S ∪ {s};14

List= InsertNexts[w,List];15

for k ∈ supp(w) : w=w� + ek with w� ∈ �16

φ(w�,ek)←−w;17

φ(w,ek)←−w�;18

endfor19

endif20

endw21

Suppose that w ∈ B(� , t) =
�
y ∈ �n

2 | ∃c ∈ � : dH(c,y)≤ t
�

, or equivalently,
that there exists a unique codeword c ∈ � such that w= c+ e with wH(e)≤ t. Note
that deg(X�e) = wH(e). This equality implies that there cannot be another monomial
Xb with deg(Xb) ≤ t such that �b has the same syndrome as the received word w,
since this would contradict the definition of the error correcting capacity t of � .

On the other hand, if deg
�

Red≺T
(X�w, GT)
�

is greater that t then the previous
arguments means that the minimum weight representative of the coset w+� has
weight greater than t, i.e. w contains more than t errors.

Note that Algorithm 6 provides us a representation of the algebra �[X]/I2(�)
given a set of representatives and how they behave under multiplication by the vari-
ables {xi}i=1,...,n.

Example 2.4. Let � be a [6, 3,3] binary code with generator matrix G and parity

2.2. Computing coset leaders 53

check matrix H given by:

G =




1 0 0 1 1 1
0 1 0 0 1 1
0 0 1 1 0 1


 and H =




1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1


 .

We will use the degrevlex order with x1 < x2 < . . . < x6. Then Algorithm 6
computes a Gröbner representation (� ,φ) of � which corresponds to:

� =
�

n1 = 0, n2 = e1, n3 = e2, n4 = e3,
n5 = e4, n6 = e5, n7 = e6, n8 = e1 + e6

�

and the following representation of φ where the first entry corresponds to the el-
ements ni ∈ � and the second points to the values φ(ni ,e j) for j = 1, . . . , 6 and
i = 1, . . . , 8.


[0, [2,3, 4,5, 6,7]] ,

�
e1, [1,5, 6,3, 4,8]

�
,
�

e2, [5, 1,8, 2,7, 6]
�

,�
e3, [6, 8,1, 7,2, 5]

�
,
�

e4, [3,2, 7,1, 2,5]
�

,
�

e5, [4, 7,2, 8,1, 3]
�

,�
e6, [8, 6,5, 4,3, 1]

�
,
�

e1 + e6, [7,4, 3,6, 5,2]
�


 .

Therefore, φ(e3,e1) = e5 or φ(e2,e3) = e1 + e6 and so on with the other cases.
By [11, Theorem 1], associated to the code � we can define the following bino-

mial ideal:

I2(�) =
��

x1 x4 x5 x6 − 1, x2 x5 x6 − 1, x3 x4 x6 − 1
�∪
�

x2
i − 1
�

i=1,...,6

�
.

The reduced Gröbner basis of this ideal w.r.t. degrevlex order with x1 < x2 < . . .<
x6 has 20 elements given by the following set:




x6 x5 − x3, x6 x4 − x2, x6 x3 − x5, x6 x2 − x4,
x5 x4 − x6 x1, x5 x3 − x6, x5 x2 − x1, x5 x1 − x2,
x4 x3 − x1, x4 x2 − x6, x4 x1 − x3,
x3 x2 − x6 x1, x3 x1 − x4,
x2 x1 − x5




∪
�

x2
i − 1
�

i=1,...,6

i.e. it corresponds to the set
�
Xni Xel −Xn j | ni ,n j ∈ � and φ(ni ,el) = n j

�
modulo

the ideal
��

x2
i − 1
�

i=1,...,6

�
.

2.2 Computing coset leaders

Definition 2.5. An ordering ≺ on �n
2 is a weight compatible ordering if for any a, b ∈

�n
2 we say a≺ b if

wH(a)< wH(b) or wH(a) = wH(b) and �a≺1 �b

where ≺1 is any admissible order on �n.

54 Binary codes

Remark 2.6. A weight compatible ordering ≺ is in general not admissible on �n
2.

Note that a ≺ b does not always imply that ac ≺ bc for all c ∈ �n
2. However ≺ is a

Noetherian order on �n
2 since �n

2 is finite; and for all v, w ∈ �n
2, if supp(v)⊂ supp(w)

then v ≺ w. Moreover, for all a ∈ �n
2 we have that deg(X�a) = wH(a), that is, a

weight compatible ordering on �n
2 can be viewed as total degree ordering on �[X].

Definition 2.7. We define the object List as an ordered set of elements in Fn
2 w.r.t.

a weight compatible order ≺ verifying the following properties:

1. 0 ∈ List.

2. If v ∈ List and wH(v) = wH (N(v)) then
�
v+ ei | i /∈ supp(v)

� ⊂ List, where
N(v) =min≺ {w |w ∈ List∩ (� + v)}.

Remark 2.8. If the second condition holds for v ∈ �n
2 then v is a coset leader for the

coset � + v. Note as well the resemblances with Definition 2.1 of Gröbner represen-
tation.

Definition 2.9. For each v ∈ List we have defined N(v) as the minimal element
w.r.t. a fixed weight compatible order ≺ which belongs to the intersection List ∩
(v+�). We will denote by � the set of distinct N(v) with v ∈ List.

The next theorem states that the object List includes the set of coset leaders of
a given binary linear code.

Theorem 2.10. Let w ∈ �n
2. If w ∈ CL(�) then w ∈ List.

Proof. We will proceed by Noetherian induction on �n
2 with a weight compatible

ordering ≺.
The statement is true for 0 ∈ �n

2 by definition. Now assume that the desired
property is true for any word u smaller than an arbitrary but fixed w ∈ CL(�) \ {0}
w.r.t. ≺, i.e.

if u ∈ CL(�) and u≺w then u ∈ List.

Let i ∈ supp(w), then we can write w = u+ ei with i /∈ supp(u), or equivalently,
supp(u) ⊂ supp(w) and hence u ≺ w. In addition, since w ∈ CL(�), then by The-
orem 1.18 u also belongs to CL(�). So if we invoke the induction hypothesis we
have that u ∈ List. Moreover, wH(u) = wH (N(u)) which is clear from the fact that
u ∈ CL(�). We now apply property 2 of Definition 2.7 which gives, as claimed, that
w= u+ ei ∈ List with i /∈ supp(u).

Theorem 2.10 and its proof suggest an algorithm for computing all the coset
leaders of a given binary code � . Note that in [16] a similar algorithm was proposed
as described above in Algorithm 6. Indeed, the output for those cosets with only one
coset leader is the same. We shall also keep track of the Matphi function in the new
algorithm but it is not strictly necessary if we only want to compute the set CL(�).

The subfunctions used in the new algorithm are:

• InsertNext[t,List], adds to List all the sums t + ek with k /∈ supp(t),
removes duplicates and keeps List in increasing order w.r.t. the ordering ≺.

2.2. Computing coset leaders 55

Algorithm 7: CLBC Algorithm
Data: A weight compatible ordering ≺ and a parity check matrix H of a binary

code � .
Result: The set of coset leaders CL(�) and (� ,φ) a Gröbner representation

for � .
List←− [0]; � ←− �; r ←− 0; CL(�)←− �; S←− �;1

while List �= � do2

t←− NextTerm[List]; s←− tHT ;3

j←− Member[s, S];4

if j �= false then5

for k ∈ supp(t) : t= t� + ek with t� ∈ �6

φ(t�,ek)←− t j7

endfor8

if wH(t) = wH(t j) then9

CL(�)[t j]←− CL� [t j]∪ {t};10

List←− InsertNext[t,List];11

endif12

else13

r ←− r + 1; tr ←− t; � ←−� ∪ {tr};14

CL(�)[tr]←− {tr}; S←− S ∪ {s};15

List= InsertNext[tr ,List];16

for k ∈ supp(tr) : tr = t� + ek with t� ∈ �17

φ(t�,ek)←− tr ;18

φ(tr ,ek)←− t�;19

endfor20

endif21

endw22

• NextTerm[List], returns the first element from List and deletes it. If List
is empty returns �.
• Member[obj, G], returns the position j of obj in G if obj ∈ G and false other-

wise.

Remark 2.11. First we perform subroutine t= NextTerm[List] where the element
t is deleted from the set List. Then subroutine InsertNext[t,List] is carried out
which inserts in List all the elements of the form:

t� = t+ ek with k /∈ supp(t), i.e. t� � t.

Therefore all the new elements inserted in List are greater than those that have
already been deleted from it with respect to ≺.

Theorem 2.12. Algorithm 7 computes the set of coset leaders of a given binary code �
and its corresponding Matphi function.

56 Binary codes

Proof. Let us first prove that the set List is well defined according to Definition 2.7.
It is clear that 0 ∈ List verifying property 1, by Step 1. In Step 3 the syndrome
of t = NextTerm[List] is computed, then we have two possible cases based on the
outcome of Step 4:

1. If j = false then the coset � +t has not yet been considered. Thus, according
to Remark 2.11, we have that N(t) = t and Step 16 guarantees property 2.

2. On the other hand, if j �= false, then the element N(t) = t j has already been
computed. However, if t ∈ CL(�), or equivalently, wH(t) = wH(t j), then Step
11 certified property 2.

Therefore, Algorithm 7 constructs the object List in accordance with Definition 2.7.
Furthermore, on one hand Step 10 and Step 15 assure the set of coset leaders

of the given code; and on the other hand Step 7, Step 18 and Step 19 compute the
Matphi function. Note that Step 17 is necessary since the first case above ensures
that N(tr) = tr so by Theorem 1.18 t� ∈ CL(�). But tr = t� + ek with k ∈ supp(tr) so
by Remark 2.11 t� ≺ tr has already been considered on the algorithm. Thus, we have
actually proved that Algorithm 7 guarantees the desired outputs.

Finally, notice that the cardinality of the set List is bounded by n times the
cardinality of CL(�), and Step 11 and Step 16 guarantee that when the complete
set of coset leaders is computed no more elements are inserted in List while Step 3
continues deleting elements from it. Thus, after a finite number of steps the set List
is empty. Consequently, Step 2 provides the end of the algorithm.

Remark 2.13. Note that Algorithm 7 returns (� ,φ) that fulfill Definition 2.1, for
correctness we refer the reader to [16, Theorem 1]. Furthermore, by Definition 2.9,
those representative of the cosets given by � are the smallest terms in List w.r.t.
≺.

The next theorem states an upper bound for the number of iterations that Algo-
rithm 7 will perform.

Theorem 2.14. Algorithm 7 computes the set of coset leaders of a given binary code �
of length n after at most n|CL(�)| iterations.

Proof. Notice that by looking how Algorithm 7 is constructed, the number of iter-
ations is exactly the size of List. Moreover, note that we can write List as the
following set

List= {w+ ei |w ∈ CL(�) and i ∈ {1, . . . , n}}.
Therefore, it is clear that the size of List is bounded by n|CL(�)|.

Remark 2.15.

1. We can proceed analogously to the previous proof to estimate the required
memory space which is � (n|CL(�)|). In the best case, � (|CL(�)|) of memory
space is needed, thus Algorithm 7 is near the optimal case when considering
memory requirements.

2.2. Computing coset leaders 57

2. Algorithm 7 generates at most n|CL(�)| words from �n
2 to compute the set of

all coset leaders. Therefore, the proposed algorithm has near-optimal perfor-
mance and significantly reduced complexity.

For a detailed complexity analysis and some useful considerations from the com-
putational point of view of Algorithm 6 we refer the reader to [16]. In Algorithm
7, the main difference with respect to the previous relatives (see [14, 16] and the
references therein) is that we do not only provide a set of canonical forms � but
also the set of all coset leaders.

Remark 2.16. The collection of programs and procedures GBLA_LC (Gröbner Basis
by Linear Algebra and Linear Codes) has already been presented in previous works
(see for instance [11, 13, 16]). This frameworks consists of various files written in
the GAP [48] language and included in GAP’s package GUAVA 3.10.

We have implemented Algorithm 7 and added to the collection GBLA_LC. The
so-called function GBLA, has the same input of the algorithm and returns a list with
three components given by the set of coset leaders with respect to any total degree
compatible ordering, the function Matphi and the error correction capacity of a given
binary code.

Example 2.17. Consider the [n = 10, k = 4, d = 4] binary code � defined by the
following parity check matrix:

H� =




1 0 0 0 1 0 0 0 0 0
1 0 1 1 0 1 0 0 0 0
1 1 0 1 0 0 1 0 0 0
1 1 1 0 0 0 0 1 0 0
1 1 1 1 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 1



∈ �6×10

2 .

The CLBC function returns the list showed in Table 2.1 of cosets leaders with
64 components where each component corresponds to a coset with its coset leaders
ordered w.r.t. the degrevlex ordering ≺ with x1 < . . . < x10. Thus, the set � is
built up by the first element of each component. Recall that this function also returns
the map Matphi and the error correction capacity of � , in this case t = 1. We denote
by CL(�) j

i the j-th element of the set of coset leaders of weight i.
Note that no subword of two elements of y = e4 + e5 + e6 ∈ CL(�)23 is part of

� , i.e. e4 + e5 ∈ CL(�)72, e4 + e6 ∈ CL(�)13
2 and e5 + e6 ∈ CL(�)12 do not lie in � .

Therefore, the importance of the second property of the Definition 2.7 to obtain the
complete set of coset leaders.

The algorithm could be adapted without incrementing the complexity to get more
information such as:

• The Newton radius ν(�) of a binary code � is the largest weight of any vector
that can be uniquely corrected, or equivalently, ν(�) is the largest value among
the cosets with only one coset leader since an error is uniquely correctable if
and only if it is the unique coset leader in its coset. Recall that every coset

58 Binary codes

Coset Leaders CL(�)
CL(�)0 [0]
CL(�)1 [e1], [e2], [e3], [e4], [e5], [e6], [e7], [e8], [e9], [e10],

CL(�)2

[e1 + e2,e5 + e6], [e1 + e3,e5 + e7], [e1 + e4,e5 + e8],
[e1 + e5,e2 + e6,e3 + e7,e4 + e8], [e1 + e6,e2 + e5],
[e1 + e7,e3 + e5], [e1 + e8,e4 + e5], [e1 + e9], [e1 + e10],
[e2 + e3,e6 + e7], [e2 + e4,e6 + e8], [e2 + e7,e3 + e6],
[e2 + e8,e4 + e6], [e2 + e9], [e2 + e10],
[e3 + e4,e7 + e8], [e3 + e8,e4 + e7], [e3 + e9],
[e3 + e10], [e4 + e9], [e4 + e10], [e5 + e9],
[e5 + e10], [e6 + e9], [e6 + e10], [e7 + e9],
[e7 + e10], [e8 + e9], [e8 + e10], [e9 + e10],

CL(�)3

[e1 + e2 + e3,e1 + e6 + e7,e2 + e5 + e7,e3 + e5 + e6],
[e1 + e2 + e4,e1 + e6 + e8,e2 + e5 + e8,e4 + e5 + e6],
[e1 + e2 + e7,e1 + e3 + e6,e2 + e3 + e5,e5 + e6 + e7],
[e1 + e2 + e8,e1 + e4 + e6,e2 + e4 + e5,e5 + e6 + e8],
[e1 + e2 + e9,e5 + e6 + e9], [e1 + e2 + e10,e5 + e6 + e10],
[e1 + e3 + e4,e1 + e7 + e8,e3 + e5 + e8,e4 + e5 + e7],
[e1 + e3 + e8,e1 + e4 + e7,e3 + e4 + e5,e5 + e7 + e8],
[e1 + e3 + e9,e5 + e7 + e9], [e1 + e3 + e10,e5 + e7 + e10],
[e1 + e4 + e9,e5 + e8 + e9], [e1 + e4 + e10,e5 + e8 + e10],
[e1 + e5 + e9,e2 + e6 + e9,e3 + e7 + e9,e4 + e8 + e9],
[e1 + e5 + e10,e2 + e6 + e10,e3 + e7 + e10,e4 + e8 + e10],
[e1 + e6 + e9,e2 + e5 + e9], [e1 + e6 + e10,e2 + e5 + e10],
[e1 + e7 + e9,e3 + e5 + e9], [e1 + e7 + e10,e3 + e5 + e10],
[e1 + e8 + e9,e4 + e5 + e9], [e1 + e8 + e10,e4 + e5 + e10],
[e1 + e9 + e10],
[e2 + e3 + e8,e2 + e4 + e7,e3 + e4 + e6,e6 + e7 + e8],
[e5 + e9 + e10]

Table 2.1: List of coset leaders in Example 2.17

2.2. Computing coset leaders 59

of weight at most t =
�

d−1
2

�
has a unique coset leader. However, there are

errors of weight greater than t which are also uniquely correctable. Therefore,
the study of the Newton radius is important when we want to study decoding
beyond half the minimum distance. See [47, 54] for a deeper discussion of this
parameter.

In our example it suffices to analyze the last element of the list CL(�) to obtain
the coset of highest weight which contains only one leader, i.e. ν(�) = 3 since
CL(�)23

3 = [e5 + e9 + e10].

• The Covering radius ρ(�) of a binary code � is the smallest integer s such
that �n

2 is the union of the spheres of radius s centered at the codewords of
� , i.e. ρ(�) = maxy∈�n

2
minc∈� dH(y,c). It is well known that ρ(�) is the

weight of the coset of largest weight. Likewise, in our example ρ(�) = 3 since
CL(�)23

3 = [e5 + e9 + e10] is the coset of highest weight.

• The Weight Distribution of the Coset Leaders of a binary code � is the list

WDCL= (α0, . . . ,αn) where αi with 1≤ i ≤ n

is the number of cosets with coset leaders of weight i, i.e. |CL(�)i |. Note that
the set � is enough to compute this parameter. It is clear that

WDCL=
�

1, 10, 30, 23, 0, 0, 0, 0, 0, 0
�

.

• The number of coset leaders in each coset :

� (CL) =




1,
1,1, 1,1, 1,1, 1,1, 1,1,
2,2, 2,4, 2,2, 2,1, 1,2, 2,2, 2,1, 1,2, 2,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1,
4,4, 4,4, 2,2, 4,4, 2,2, 2,2, 4,4, 2,2, 2,2, 2,2, 1,4, 1




Note that there are 30 of the 64 cosets where the Complete Decoding Problem
(CDP) has a unique solution. It is also interesting to note that amongst the
cosets with one leaders there are more cosets exceeding the error correction
capacity (19) than achieving such capacity (11).

Example 2.18. Continuing with Example 2.4 and now using Algorithm 7 we obtain
the list of cosets leaders given by table 2.2.

Moreover in the same manner as Example 2.17 we can obtain the following ad-
ditional information: the Newton radius of � is ν(�) = 1, the Covering radius of �
is ρ(�) = 2, the Weight Distribution of the Coset Leaders of � is given by

WDCL=
�

1, 6, 1, 0, 0, 0
�

.

and the number of coset leaders in each coset by

� (CL) =




1,
1, 1,1, 1,1, 1
3


 .

60 Binary codes

Coset Leaders CL(�)
CL(�)0 [0]
CL(�)1 [e1], [e2], [e3], [e4], [e5], [e6]
CL(�)2 [e1 + e6, e2 + e3, e4 + e5]

Table 2.2: List of coset leaders in Example 2.18

For all e ∈ �≥0 and v ∈ �n
q the set B(v, e) :=

�
w ∈ �n

q | dH(v,w)≤ e
�

is called
sphere around v with radius e respect to the Hamming metric. Note that its cardinality
is |B(v, e)|=
�e

i=0

�n
i

�
(q− 1)i .

As we have already defined, the covering radius of an [n, k] linear code over �q
is defined as the smallest integer ρ(�) such that the spheres of radius ρ(�) around
the codewords of � completely cover the space �n

q . Or equivalently,

ρ(�) =max
y∈�n

q

min
c∈�

dH(y,c).

Note that the statement B(c, e)∩ B(ĉ, e) = � holds true for all c, ĉ ∈ � with c �= ĉ
if and only if 2e + 1 ≤ d(�) is valid. Moreover, �n

q = ∪c∈� B(c, e) holds true if and
only if ρ(�) ≤ e. Therefore the minimum distance and the covering radius of any
code are related by d(�)≤ 2ρ(�) + 1.

Lemma 2.19. For any [n, k] binary code � the following inequality holds:

t�

i=0

�
n
i

�
≤ |CL(�)| ≤

ρ(�)�

j=0

�
n
j

�
,

where t denotes the error-correcting capacity of � and ρ(�) its covering radius.

Proof. Let us first prove that every vector e ∈ �n
2 with wH(e) ≤ t is a coset leader.

Assume to the contrary that there exists a vector e ∈ �n
2 with wH(e) ≤ t and e /∈

CL(�). Hence there is another vector ê ∈ �n
2 with S(e) = S(ê) and wH(ê) < wH(e).

Or equivalently, there exists a codeword e− ê ∈ � with

wH(e− ê)≤ wH(e) +wH(ê)≤ 2t ≤ d(�)− 1

which is a contradiction to the definition of the minimum distance of � . For the
previous inequalities, recall that if x,y ∈ �n

2 then

wH(x+ y) = wH(x) +wH(y)− 2|supp(x)∩ supp(y)|.

Moreover the error-correcting capacity of a linear code � is defined as t =
�

d(�)−1
2

�

where �·� denotes the greatest integer function. Hence, we have actually proved that
the number of vectors of weight up to t is a lower bound for the cardinality of the
set CL(�), i.e.

t�

i=0

�
n
i

�
≤ |CL(�)|.

2.2. Computing coset leaders 61

Furthermore, by the definition of the covering radius of � , we have that for
all y ∈ �n

2 there exists a codeword c ∈ � such that dH(c,y) ≤ ρ(�). In other
words, there exists a vector e ∈ �n

2 such that wH(e) ≤ ρ(�) and S(e) = S(y). Thus,
wH (CL(y))≤ ρ(�) and the lemma holds.

Remark 2.20. If the above lemma holds with equality then � is called a perfect code.
That is to say, let � be a linear code with more than one codeword, then � is a
perfect code if and only if ρ(�) = t.
Remark 2.21. As presented in [58, Section 11.7], there is a natural relationship
between the cosets of an [n, k] binary code� based on the following partial ordering
≤ on the set of cosets of �

x+� ≤ y+� ⇐⇒ supp(x)⊆ supp(y) with x ∈ CL(x) and y ∈ CL(y).

Under this partial ordering we can develop a hierarchy on the cosets:

• If x+� < y+� then x+� is called a descendant of y+� . While y+� turn
to be an ancestor of x+� .

Note that if x+� < y+� then wH(x+�)≤ wH(y+�)− 1.

• x+� is a child of y+� if x+� < y+� and wH(x+�) = wH(y+�)−1. In
such case, y+� is viewed as a parent of x+� .

• A coset is an orphan if its has no parents.

Therefore, all cosets of maximum weight (that is of weight ρ(�), the covering
radius of �), is an orphan. Moreover, The code � is the unique minimal element of
the set of cosets.

Diagram 2.1 shows an scheme of this hierarchy using the code of Example 2.4,
where the different cosets of � are represented by a coset leader, i.e.

n0 = [0] +� , n3 = [e3] +� , n6 = [e6] +� ,
n1 = [e1] +� , n4 = [e4] +� , n7 = [e1 + e6] +� .
n2 = [e2] +� , n5 = [e5] +� ,

n7

n1 n2 n3 n4 n5 n6

n0

Figure 2.1: Hierarchy relationship amongst the cosets of a binary code.

62 Binary codes

Remark 2.22. A Maximum-likelihood List Decoding (MLLD) Algorithm takes an arbi-
trary received vector as input and produces as output a list of all error patterns in the
same coset which have minimal weight within the coset, i.e. the set of coset leaders.

2.3 Computing leader codewords

The following Algorithm is just an adaptation of Algorithm 7 for computing a test-set.

Definition 2.23. The set of leader codewords of a given code � is defined as:

L(�) =
�

n1 + n2 + ei

����
i /∈ supp(n1), n1 + ei �= n2,

n1,n2 ∈ CL(�) and S(n1 + ei) = S(n2)

�
.

For efficiency reasons we are just interested in a particular case of the above
objects, when supp(n1 + ei)∩ supp(n2) = �.

Algorithm 8: CLBC2 Algorithm
Data: A weight compatible ordering ≺ and a parity check matrix H of a binary

code � .
Result: The set of coset leaders CL(�) and the set of leader codewords L(�)

for � .
List←− [0]; � ←− �; r ←− 0; CL(�)←− �; S←− �; L(�)←− �;1

while List �= � do2

t←− NextTerm[List]; s←− tHT ;3

k←− Member[s, S];4

if k �= false then5

if wH(t) = wH(tk) then6

CL(�)[tk]←− CL(�)[tk]∪ {t};7

List←− InsertNext[t,List];8

endif9

if ∃i ∈ supp(t) : t= t� + ei with t� ∈ CL(�) and i /∈ supp(t�) then10

L(�)←−11

L(�)∪
�
t+ t j | t j ∈ CL(�)[tk] and supp(t)∩ supp(t j) = �

�

endif12

else13

r ←− r + 1; tr ←− t; � ←−� ∪ {tr};14

CL(�)[tr]←− {tr}; S←− S ∪ {s};15

List= InsertNext[tr ,List];16

endif17

endw18

Remark 2.24. The difference between Algorithm 7 and Algorithm 8 are Steps 10-12.

2.3. Computing leader codewords 63

Theorem 2.25. Algorithm 8 computes the set of coset leaders and the set of leader
codewords of a given binary code � .

Proof. Taking into account Remark 2.24 and Theorem 2.12 we only need to prove
that Algorithm 8 computes the set of leader codewords. We first observe that all the
words of the set L(�) are leader codewords since t = t� + ei and t j are in the same
coset, in particular t, t j ∈ CL(�)[tk], and by definition we have

t, t j ∈ CL(�), supp(t)∩ supp(t j) = � and i /∈ supp(t�).

Furthermore, Algorithm 8 ratifies that we are considering all the leader codewords,
since the elements of List are ordered by ≺, then in each loop we study all leader
codewords of the form n1 + ei + n2 with n1,n2 ≤ t with t ∈ CL(�).

Remark 2.26. By its construction, Algorithm 8 has the same time complexity as Al-
gorithm 7. The advantage of computing the set of leader codewords is that it helps
in solving the same problems as the function Matphi does but with a structure which
is considerately smaller.

Example 2.27. Using Algorithm 8 with the [6, 3,3] binary code � of Example 2.4
we obtain the following set of leader codewords:

L(�) =





e1 + e2 + e4, e1 + e3 + e5,
e2 + e5 + e6, e3 + e4 + e6,

e1 + e2 + e3 + e6, e1 + e4 + e5 + e6,
e2 + e3 + e4 + e5



 .

Note that all nonzero codewords of � are in L(�).

Definition 2.28. We define the subset L1(�) of L(�) as

L1(�) =
�

n1 + n2 + ei

����
i /∈ supp(n1), n1 ∈ CL(�), n2 ∈ � ,

wH(n1 + ei)> wH(n2) and S(n1 + ei) = S(n2)

�
.

Following Definition 2.9, � denotes the set of minimal elements w.r.t. a weight
compatible ordering ≺ of each coset.

Remark 2.29. Note that the condition wH(n1 + ei) > wH(n2) is imposed just to im-
prove the efficiency of computing this set. Therefore L(�) can be rewritten as

L(�) =
�

n1 + n2 + ei

����
i /∈ supp(n1), wH(n1 + ei)> wH(n2)

n1,n2 ∈ CL(�) and S(n1 + ei) = S(n2)

�
.

Thus, the only difference between the sets L1(�) and L(�) is that n2 ∈ � instead
of n2 ∈ CL(�). In other words, the element n2 in L1(�) is required not only to belong
to the set of the coset leaders but also to be the smallest element in its coset according
to a fix weight compatible ordering ≺.

64 Binary codes

Example 2.30. From Example 2.18, note that the only nonzero codeword of L(�)
that is missing in L1(�) is e2 + e3 + e4 + e5.

Theorem 2.31. The subset L1(�)⊆ L(�) is a test-set for � .

Proof. Let us consider a word y ∈ �n
2 with supp(y) =

�
i1, . . . , im
� ⊆ {1, . . . , n} such

that y /∈ CL(�). Thus, there must exist an integer 1≤ l < m such that

n1 := ei1 + . . .+ eil ∈ CL(�) and n1 + eil+1
/∈ CL(�).

We define n2 = �
�

n1 + eil+1

�
, i.e. n2 is the smallest element in the coset of

n1 + eil+1
according to a fix compatible weight ordering �. Since n1 + eil+1

/∈ CL(�)
we have that wH(n2)< wH(n1 + eil+1

). Thus t= n1 + n2 + eil+1
∈ L1(�).

Without loss of generality we may assume that supp(n1 + eil+1
) ∩ supp(n2) = �.

Indeed,

• if il+1 ∈ supp(n2) then, by Theorem 1.18, n2 + eil+1
∈ CL(�). Moreover

S(n2 + eil+1
) = S(n1) and wH(n2 + eil+1

)< wH(n1) ,

which contradicts the fact that n1 ∈ CL(�).
• Otherwise, if there exists j ∈ supp(n1)∩ supp(n2). Then, we may define

n1 = n1 + e j and n2 = n2 + e j .

Note that, by Theorem 1.18, n1,n2 ∈ CL(�). Furthermore,

wH(n1 + eil+1
)< wH(n2) and S

�
n1 + eil+1

�
= S(n2).

Thus, t= n1 + n2 + eil+1
∈ L1(�).

Therefore,

|supp(t)∩ supp(y)| ≥ wH(n1 + eil+1
)> wH(n2)≥ |supp(t)∩ supp(y)|

where y denotes the relative complement of y in �n
2, and in consequence, wH(y−t)<

wH(y) which completes the proof.

Remark 2.32. Since L1(�)⊆ L(�) and by Theorem 2.31 the subset L1(�) is a test-set
for � , then so is the set L(�).

The following theorem gives a bound for the weight of a leader codeword of a
given binary code � .

Theorem 2.33. Let c ∈ L(�) then wH(c) ≤ 2ρ(�) + 1 where ρ(�) is the covering
radius of � .

Proof. Let c ∈ L(�) then there exists n1, n2 ∈ CL(�) and i /∈ supp(n1) such that
wH(n1 + ei) > wH(n2) and c = n1 + ei + n2. Applying the definition of covering
radius we have that wH(n1),wH(n2)≤ ρ(�), thus wH(c)≤ 2ρ(�) + 1.

2.3. Computing leader codewords 65

Algorithm 9: Computing the set CL(y)
Data: A received vector y ∈ �n

2 and the set of leader codewords L(�) of � .
Result: The subset CL(y) of coset leaders corresponding to the coset y+� .
Compute N(y) by gradient-like decoding using the test-set L(�); ; // We refer1

the reader to Section 1.1.3
y←− N(y); S←− {y}; L←− L(�);2

while there exists c ∈ L : wH(y− c) = wH(y) do3

y←− y− c; S←− S ∪ {y};4

L←− L − {c};5

endw6

Return S7

Theorem 2.34. Algorithm 9 computes, from the set L(�), the subset CL(y) of coset
leaders corresponding to the coset y+� for a given received vector y ∈ �n

2.

Proof. Let us first prove that every z ∈ CL(y) can be rewritten as z = N(y)− c with
c ∈ L(�). Let i ∈ supp(z) then z = n1 + ei with i /∈ supp(n1). Hence, by Theorem
1.18, n1 ∈ CL(�). Furthermore we have that

S(N(y)) = S(z) and wH(n1)< wH(z) = wH(N(y)).

Thus, from the definition of leader codewords, c = N(y) + (n1 + ei) ∈ L(�) ⊆ � , or
equivalently, z= n1 + ei = c− N(y) with y ∈ L(�).

The proof is completed by noting that Theorem 2.31 guarantees Step 1.

To show Algorithm 9, in the following lines a toy example will be fully discussed.

Example 2.35. Given the [6, 3,3] binary code � in Example 2.4 which corrects up
to t = 1 error. Suppose we have a received word y= (1, 1,1, 1,1, 0) with error vector
e= e1.

• Initialization: First we compute a coset leader of y+� by gradient-like de-
coding using the test-set L(�). We obtain that e1 ∈ CL(y) and we check using
Algorithm 9 if there are more coset leaders corresponding to the coset of the
received word. The initial data is

y= e1, S = {y} and L= L(�)

See Example 2.18 for a complete description of the set L(�).
• Step 1: Since there is no codeword c ∈ L such that wH(y−c) = wH(y) then the

algorithm terminates and produces CL(y) =
�
e1
�
.

Now suppose we received the word y= e1+e2+e5 with error vector e= e1+e6.

• Initialization: First we compute N(y) = e1 + e6. Then we have as initial data:

y= e1 + e6, S = {y} and L= L(�)

66 Binary codes

• Step 1: There exists c1 = e1 + e4 + e5 + e6 ∈ L such that wH(y− c) = wH(y).
So y− c1 = e4 + e5 is inserted into the list S, c1 is removed from L and y is
replaced by y− c1.

• Step 2: There exists c2 = e2 + e3 + e4 + e5 ∈ L verifying the required property.
Thus, y− c2 = e2 + e3 is added to the list S, c2 is subtracted from L and y is
substituted by y− c2.

• Step 3: There exists c3 = e1 + e2 + e3 + e6 with the desired property. Thus
y− c3 = e1 + e6 is included into the list S (although it already exists in the list
S), c3 is removed from L and y is substituted by y− c3.

• Step 4: Since there is no other codeword c ∈ L with the requested property
then the algorithm terminates and returns

CL(y) =
�

e1 + e6, e2 + e3, e4 + e5

�
.

2.3.1 Leader codewords and zero neighbours

In this section we will give a brief review of basic concepts from [3, Section 3] and
thus establish the relation between Zero-Neighbours and leader codewords of a bi-
nary code � .

Definition 2.36. For any subset A⊂ �n
2 we define � (A) as the set of words at Ham-

ming distance 1 from A, i.e.

� (A) =
�
y ∈ �n

2 |min
�

dH(y,a) : a ∈ A
�
= 1
�

.

We define the boundary of A as δ(A) =� (A)∪� (�n
2 \ A).

Definition 2.37. A nonzero codeword c ∈ � is called Zero-Neighbour if its Voronoi
region shares a common boundary with the set of coset leaders, i.e.

δ(D(c))∩δ(D(0)) �= �.

We will denote by � (�) the set of all Zero-Neighbours of � , that is to say:

� (�) = {z ∈ � \ {0} : δ(D(z))∩δ(D(0)) �= �} .

Note that if z ∈ � \ {0} satisfies that � (D(0)) ∩ D(z) �= �, then z ∈ � (�).
Furthermore� (�) is a test-set for� (see for instance [3, Theorem 3.16]). However,
the only property of the set � (�) that is essential for successful decoding is

� (D(0))⊆
�

z∈� (�)
D(z).

Thus, if we restrict the set � (�) to a smallest subset verifying the previous property
we still have a test-set for � . We will denote such subset of � (�) by �min(�). Note
that the set �min(�) may be not unique, however its size is well defined.

2.3. Computing leader codewords 67

Theorem 2.38. Let � be a binary code and z ∈ � \ {0}. Then the following are
equivalent:

• � (D(0))∩D(z) �= �.

• z ∈ L(�).

Proof. If � (D(0))∩D(z) �= � then there exists n1 ∈ D(0) = CL(�) and i /∈ supp(n1)
such that n1 + ei ∈ � (D(0)) and n1 + ei ∈ D(z). In other words,

wH(z− (n1 + ei))≤ wH(c− (n1 + ei)) for all c ∈ � \ {z}, (2.1)

or equivalently, n2 = z− (n1 + ei) ∈ CL(�) with z ∈ � , thus S(n2) = S(n1 + ei).
Furthermore, the special case of c = 0 ∈ � \ {z} of Equation 2.1 implies that
wH(n2) ≤ wH(n1 + ei). Therefore, all conditions in Definition 2.23 are verified,
i.e. z= n1 + n2 + ei ∈ L(�).

Conversely, if z ∈ L(�), then z can be rewritten as z= n1 + n2 + ei where

(1) n1, n2 ∈ CL(�). (3) wH(n1 + ei)> wH(n2).
(2) i /∈ supp(n1). (4) S(n2) = S(n1 + ei).

Now (1) and (2) gives that n1 + ei ∈ � (D(0)), whereas (1), (3) and (4) clearly
force that CL(n1+ei) = n2, i.e. wH(n2)≤ wH(n1+ei+c) for all c ∈ � , or equivalently,
n1 + ei ∈ D(z). Therefore, � (D(0))∩D(z) �= �.

Corollary 2.39. Let� be a binary code then�min(�)⊆ L(�), for any minimal test-set
�min(�) obtained from � (�).

Proof. Let �min(�) be a minimal test-set of � obtained from � (�), then every
z ∈ �min(�) satisfies that � (D(0))∩D(z) �= �. Thus, by Theorem 2.38, we obtained
the required result.

Algorithm 8 gives the set of leader codewords L(�) of a binary code � . Fur-
thermore, any minimal test-set �min is a subset of L(�). Thus, after performing
redundancy elimination to L(�), a minimal test-set �min can also be obtained.

Remark 2.40. There is a built in function CLBC2 in GBLA_LC which performs Algo-
rithm 8 in order to compute L(�) and a variant of the same function which computes
L1(�).

Example 2.41. We use the same code of Example 2.17. Algorithm 8 returns L(�)
and L1(�), in this case we obtained that both sets coincide. We describe below the
set of leader codewords with 14 elements of the given binary code � .

68 Binary codes

L(�) = L1(�) =





e3 + e4 + e7 + e8, e2 + e4 + e6 + e8,
e2 + e3 + e6 + e7, e1 + e4 + e5 + e8,
e1 + e3 + e5 + e7, e1 + e2 + e5 + e6,

e4 + e6 + e7 + e9 + e10, e3 + e6 + e8 + e9 + e10,
e2 + e7 + e8 + e9 + e10, e2 + e3 + e4 + e9 + e10,

e1 + e5 + e6 + e7 + e8 + e9 + e10,
e1 + e3 + e4 + e5 + e6 + e9 + e10,
e1 + e2 + e4 + e5 + e7 + e9 + e10,
e1 + e2 + e3 + e5 + e8 + e9 + e10





.

Note that the only nonzero codeword of� that is missing in L(�) is the codeword
y = (1, 1,1, 1,1, 1,1, 1,0, 0) of weight 8. This result is consistent with the fact that
the covering radius of � is ρ(�) = 3, as shown in Example 2.17, and the statement
of Theorem 2.33, where we proved that the weight of a leader codeword is always
less or equal to 2ρ(�) + 1= 7.

� =





(0, 0,0, 0,0, 0,0, 0,0, 0), (1,0, 0,0, 1,1, 1,1, 1,1), (0,1, 0,0, 0,0, 1,1, 1,1),
(1, 1,0, 0,1, 1,0, 0,0, 0), (0,0, 1,0, 0,1, 0,1, 1,1), (1,0, 1,0, 1,0, 1,0, 0,0),
(0, 1,1, 0,0, 1,1, 0,0, 0), (1,1, 1,0, 1,0, 0,1, 1,1), (0,0, 0,1, 0,1, 1,0, 1,1),
(1, 0,0, 1,1, 0,0, 1,0, 0), (0,1, 0,1, 0,1, 0,1, 0,0), (1,1, 0,1, 1,0, 1,0, 1,1),
(0, 0,1, 1,0, 0,1, 1,0, 0), (1,0, 1,1, 1,1, 0,0, 1,1), (0,1, 1,1, 0,0, 0,0, 1,1),

(1, 1, 1, 1, 1, 1, 1, 1, 0, 0)





In the following table we present the computational results for a binary Golay
code and a binary BCH code.

[23,12] Golay code [21,12] BCH code
Codewords (2k) 4096 4096
Cosets (2n−k) 2048 512
Leader codewords (|L(�)|) 253 478
|L1(�)| 253 449

Table 2.3: Number of codewords, number of cosets, number of leader codewords
and the cardinality of |L1(�)| of the [23,12, 7] binary Golay code and the [21, 12,5]
binary BCH code computed by GBLA-LC.

Therefore, we show an example where the subsets L(�) and L1(�) agree (this
is not a surprise since the Golay code is a perfect code) and an example where the
set L1(�) is smaller than L(�). Also, note that both codes have the same number of
codewords but the Golay code has four times the number of cosets of the BCH code.
On the other hand, the number of leader codewords is less in the Golay code.

Lemma 2.42. If � is a perfect code, then |L(�)|= |L1(�)|.

2.4. Gradient descent decoding 69

Proof. If � is a perfect code then every coset of � has a unique coset leader. That is,
� = CL(�). Recall that the only difference between the sets L1(�) and L(�) is that
the component n2 of any element b = n1 + n2 + ei from L1(�) is required to belong
to � ⊆ CL(�). But in this case this difference doesn’t exists.

2.4 Gradient descent decoding

As it was explained in Section 1.1.3, the classical syndrome decoding basically stands
as follows:

• First construct the syndrome lookup table (i.e. enumerate the cosets of � in �n
2,

choose a coset leader for each coset and compute its syndrome).

• Then if y is the received word, determine from the table which coset leader e
satisfies that S(y) = S(e).

• Finally decode y as y− e ∈ � .

Unfortunately, for a fixed rate k
n

the precomputation of this method grows exponen-
tially with the length of the code. The main advantage of gradient descent from other
decoding methods is that this task is broken into smaller steps. Gradient Descent De-
coding Algorithm (GDD) have gained renewed interest over the past 20 years thanks
to the efficient implementation achieved with turbo codes and low-density parity
check (LDPC) codes. Unfortunately, there is no theoretical reason for the success
of these algorithms. This is why Calderbank [25] said that “GDD has moved coding
towards an experimental science”. This leads to another question for which there is
not a clear answer: Which parameters of a code contribute to have an efficient gradient
descent decoding method?

In the literature there are two gradient descent decoding algorithms for binary
codes proposed independently by Liebler [71] and Ashikhmin and Barg [2]. In
Liebler’s own words:

“The gradient-like decoding algorithm of Ashikhmin and Barg is similar to ours
in some way but is actually quite different”.

In this section we will show that both algorithms can be seen as two ways of
understanding the reduction associated to the Gröbner representation of the code.

Leader Gradient Descent Decoding Algorithm: This method requires a gradient
function γ : �n

2/� ←− � which is a strictly increasing function with respect
to the Hamming weight. Liebler [71] presented the first construction of this type
of function for any linear code on a binary symmetric channel (BSC). However, this
construction has no complexity advantage over classical syndrome decoding for an
arbitrary code.

Given a received word y ∈ �n
2, let us briefly give the outline of the algorithm. First

find a Hamming neighbor y� of y (i.e. y� ∈ � (y), or equivalently, dH(y,y�) = 1) such
that

wH(CL(y�))< wH(CL(y)).

70 Binary codes

Then replace y with y� and iterates until wH(CL(y)) = 0.

Algorithm 10: Leader GDDA
Data: The received word y ∈ �n

2.
Result: A codeword c ∈ � that minimized the Hamming distance dH(c,y).
while wH(CL(y)) �= 0 do1

Look for y� ∈ � (y) such that wH(CL(y�))< wH(CL(y));2

y←− y�3

endw4

Return c= y.5

Example 2.43. Let � be the code in Example 2.4. Suppose we received the word
y = e1 + e2 + e3 + e4 + e5 with error vector e = e1. We will apply Algorithm 10 to
obtain the closest codeword c to y.

• Step 1: There exists y� = e2 + e3 + e4 + e5 ∈ � (y) such that

0= wH(CL(y�))< wH(CL(y)) = wH(e1) = 1.

Thus, we replace y by y�. Since wH(CL(y)) = 0 then the algorithm terminates
and returns c= e2 + e3 + e4 + e5.

If the received vector is y = e1 + e2 + e5 and the transmitted codeword was
c= e2+ e5+ e6, then e= e1+ e6 is the error vector. Applying Algorithm 10 yields to
the following lines:

• Step 1: We found y� = e2 + e5 ∈ � (y) with the desired property. So we
substituted y by y�.

• Step 2: There exists y� = e2 + e5 + e6 such that wH(CL(y�)) = 0. Hence we
replace y by y� and the algorithm terminates giving the right solution.

Test-set Gradient Descent Decoding Algorithm: Given a received word y ∈ �n
2

and suppose that a test-set �� of codewords has been precomputed and stored in
the memory. This algorithm recursively search an element t ∈ �� such that

wH(y− t)< wH(y)

and replace y by y� = y− t. Of course y− t belongs to the same coset of y, since t ∈
�� ⊂ � . The algorithm terminates when we arrive to a coset leader corresponding
to the coset y+� , that is when y� ∈ CL(y). See [2] for further details and correctness
of Algorithm 11.

Note that this algorithm requires a nontrivial preprocessing for the construction
of a test-set of codewords. Moreover, the main difference from the previous algorithm
is that it stays entirely in one coset of the code and systematically seeks out a coset

2.4. Gradient descent decoding 71

Algorithm 11: Test-set GDDA
Data: The received word y ∈ �n

2 and a test-set �� for � .
Result: A codeword c ∈ � that minimized the Hamming distance dH(c,y).
c←− 0;1

while there exists t ∈ �� such that wH(y+ t)< wH(y) do2

c←− c+ t;3

y←− y+ t;4

endw5

Return c.6

leader while Algorithm 10 changes between different cosets of �n
2/� until it arrives

to the 0-coset, i.e. the code itself.
Note that in section 2.3 we already propose an algorithm to obtain a test-set

(called leader codewords) that allows gradient descent decoding.
It is pointed in [3, Theorem 3.13] that setting �� =�� in Algorithm 11, then

the so-called minimal vector algorithm performs complete minimum distance decod-
ing. Moreover, the set of all Zero-Neighbours of � is also a test-set, i.e. we can
set �� = � (�). Then this version of Algorithm 11 is called Zero-Neighbours decod-
ing which also performs complete minimum distance decoding (see for instance [3,
Theorem 3.16]).

Example 2.44. Following with Example 2.43 we shall decode using Algorithm 11.
Consider the test-set L(�) given in Example 2.30. Suppose we receive the vector
y= e1 + e2 + e3 + e4 + e5. First, the word c is initialized to zero.

• Step 1: There exists t= e1+e2+e4 ∈ L(�) such that wH(y+ t)< wH(t). Thus
t is added to the vector c and y is replaced by y+ t= e3 + e5.

• Step 2: We found t = e1 + e3 + e5 in L(�) with the desired property. So c is
replaced by e2 + e3 + e4 + e5 and y by y+ t= e1.

• Step 3: There is no other codeword c ∈ L(�) with the required property so the
algorithm terminates and returns c which was the transmitted codeword.

If y = e1 + e2 + e5 is the received word with error vector e = e1 + e6. Then, we
detect but cannot correct the errors since there are at least two choices:

1. Suppose that our first option is to choose t= e1+e3+e5 in L(�) which verifies
the required property. Then the algorithm returns y= y+ t= e2 + e3.

2. Otherwise, suppose that our first option is to choose t = e2 + e5 + e6 from the
test-set L(�) which also verifies the desired property. In this case the algorithm
returns y= e1 + e6.

Note that this last fact happens because we have exceeded the error correction ca-
pacity of the code.

72 Binary codes

2.4.1 An algebraic view to gradient descent decoding

Given a binary code � and its corresponding Gröbner representation (� ,φ) we can
accomplish two types of reduction that are associated to Algorithm 10 and Algorithm
11. Therefore, both GDD algorithms obey to the same algebraic structure.

Reduction by φ: We shall define the reduction of an element n ∈ � relative to ei
with i ∈ {1, . . . , n} as the element n� = φ(n,ei) ∈ � , denoted by n −→i n� .

If we write each element y ∈ �n
2 as

y=
�s

j=1 ei j
where supp(y) =

�
i1, . . . , is
�⊆ {1, . . . , n} ,

we can conclude that iterating a finite number of reduction yields to a representative
of the coset y+� , that is, an element of the subset CL(y). By Remark 2.13, if a total
degree ordering ≺ is chosen, Algorithm 7 returns a Gröbner representation (� ,φ)
such that the representative given by� corresponds to the set of coset leaders of � .
We will consider that this is the case from now on.

These ideas give us another gradient descent decoding algorithm described below
as Algorithm 12.

Algorithm 12: GDDA using the reduction by φ
Data: (� ,φ) a Gröbner representation for � w.r.t. a total degree ordering

and the received word y ∈ �n
2.

Result: A codeword c ∈ � that minimized the Hamming distance dH(c,y).
y=
�s

j=1 ei j
i.e. supp(y) = {i1, . . . , is}

Forward Step: // Compute n ∈ � corresponding to the coset y+� , i.e.
n ∈ CL(y)
n←− 0
for j← 1 to s

n−→i j
n� // i.e. n� = φ(n,ei j

)
n←− n�

endfor

Backward Step:
while n �= 0 do

Find i ∈ {1, . . . , n} such that wH(n)> wH(φ(n,ei))
y←− y+ ei
n←− φ(n,ei)

endw
Return c= y

Example 2.45. This example compares Algorithm 12 with Algorithm 10. Consider
the same data as in Example 2.43 and take the pair (� ,φ) in Example 2.4. We
initialize the vector n to zero.

If y= e1 + e2 + e3 + e4 + e5 is the received word with error vector e= e1, then:

2.4. Gradient descent decoding 73

• The Forward Step computes n ←−i n� for i taking values on the support of
the received vector y and replacing after each step n by n�. The following table
summarizes the result of this step:

i n n�

1 n= 0 φ(0,e1) = e1
2 n←− e1 φ(n,e2) = e4
3 n←− e4 φ(n,e3) = e6
4 n←− e6 φ(n,e4) = e3
5 n←− e3 φ(n,e5) = e1

Thus, Forward Step computes the coset leader n= e1 of the coset y+� .

• The Backward Step looks for i ∈ {1, . . . , 6} such that wH(n) > wH(φ(n,ei)).
Note that φ(n,e1) = 0, thus in one iteration the algorithm terminates and
returns c= y+ e1.

Now take y = e1 + e2 + e5 as the received word with error vector e = e1 + e6. In
this case the Forward Step gives n = e1 + e6. With the following example we will
see that if the coset of the received word does not have a unique coset leader (i.e.
the weight of its coset leader exceeds the error correcting capacity of the code) then
the backward step could give different solutions.

1. Suppose that our first option is choosing i = 1 such that φ(n,ei) = e6 verifies
the required property. Then the algorithm returns y= e2 + e5 + e6.

2. On the other hand, assume that our first option is choosing i = 2 (note that
φ(n,e2) = e3 which verifies that wH(n) > wH(φ(n,e2))). In this case the
algorithm returns y = e1 + e3 + e5, i.e. the error vector is assumed to take the
value e= e2 + e3.

Note that Algorithm 12 is somehow redundant, since at the end of the forward
step we end with a coset leader n of the coset y+� . Thus we can decode without
performing the backward step. We have expressed the algorithm in this way to see
the resemblance to Algorithm 10. We can modify the previous algorithm to make it
more effective with the following definition.

Definition 2.46. Let (� ,φ) be a Gröbner representation of �n
2/� . Take an ordering

on N with n1 = 0, say N =
�
ni
�

i=1,...,2n−k . We define (� ∗,φ∗) as the pair where:

• We replace each element of � with vectors of type (i, wi) where wi represents
the weight of CL(ni), i.e.

� ∗ =
�
(i, wi) | wi = wH(ni) for i = 1, . . . , 2n−k

�
.

• φ∗ : � ∗ × {ei}ni=1 ←− � ∗ is a function that maps each triple (i, wi ,e j)
to the element (i j , wij

) ∈ � ∗ such that ni j
= φ(ni ,e j) and wij

= wH(ni j
).

74 Binary codes

In other words, we keep track only on the ordering of the elements of � and the
weight of its coset leaders. Thus, we reduce the memory necessary to execute Algo-
rithm 12. Let (� ,φ) be the Gröbner representation of � obtained from Algorithm
6. Then, (� ∗,φ∗) can be easily obtained from (� ,φ), since in this case� coincides
with the set of coset leaders of � . Moreover, Algorithm 6 gives us an incremental
construction of � ∗ ordered non-decreasingly on the second component i.e. if (i, wi)
and (j, wj) are elements of � ∗ with i < j, then wi ≤ wj . Therefore, we can decode
using the pair (� ∗,φ∗).

Algorithm 13: GDDA using the reduction by (� ∗,φ∗)
Data: The pair (� ∗,φ∗) associated to � and the received word y ∈ �n

2.
Result: A codeword c ∈ � that minimized the Hamming distance dH(c,y).
y=
�s

j=1 ei j
i.e. supp(y) = {i1, . . . , is}

Forward Step: // Returns i ∈ {1, . . . , 2n−k} which corresponds to the position
of the element CL(y) in � ∗
(i, wi)←− (1, 0)
for j← 1 to s�

i�, wi�
�←− φ ∗
�
(i, wi), eij

�
�
i, wi
�←− (i�, wi�)

endfor

Backward Step:
while i �= 1 do

Find j ∈ {1, . . . , n} such that wi > wi�

// where wi� is the 2nd component of φ∗((i, wi),e j)
y←− y+ e j
(i, wi)←− φ∗((i, wi), ej)

endw

After performing the forward step we can decide whether the coset of the received
word y+� has a unique coset e, i.e. wl ≤ t =

�
d−1

2

�
. If so, the backward step gives

the unique solution c = y − e ∈ � . Otherwise, if wl > t, then there are as many
solutions given by the backward step as number of coset leaders has the l-th coset,
i.e. |CL(y)|.
Remark 2.47. Again, the backward step is exactly Algorithm 10. As pointed by Liebler
[71], in each step of the backtracking procedure we change of coset untill we arrive
to the 0-coset.

Border reduction: Associated to the Gröbner representation (� ,φ) for the binary
code � obtained by Algorithm 6, we can define the Border of a code as follows:

B(�) =
�
(n1 + ei ,n2) |

n1 + ei �= n2, n1,n2 ∈ � ,
S(n1 + ei) = S(n2), i ∈ {1, . . . , n}

�

2.4. Gradient descent decoding 75

By definition, both components of an element of the set B(�) belong to the same
coset, that is, their sum is a codeword of the code. We can also describe the Border
as the following set:

B(�) =
� �

n+ ei ,φ(n,ei)
� | n+ ei �= φ(n,ei), n ∈ �

and i ∈ {1, . . . , n}
�

The Border of a code B(�) is associated to the � -Border basis of the ideal I2(�)
where � = [X] \ LT≺

�
I2(�)
�

(see Definition 1.44). By Remark 1.50, every Gröbner
basis with respect to a term order can be extended to a Border basis but the opposite
is not true in general.

Let b= (b1,b2) ∈ B(�), we define the head and the tail of b as

head(b) = b1 ∈ �n
2 and tail(b) = b2 ∈ Fn

2.

As pointed above head(b) + tail(b) is a codeword of � for all b ∈ B(�).

Example 2.48. Let us consider the code � defined by Example 2.4. The Border of
� is given by the following set:

B(�) =





(e1 + e2,e4), (e1 + e3,e5), (e1 + e4,e2), (e1 + e5,e3),
(e2 + e3,e1 + e6), (e2 + e4,e1), (e2 + e5,e6), (e2 + e6,e5),
(e3 + e4,e6), (e3 + e5,e1), (e3 + e6,e4),
(e4 + e5,e1 + e6), (e4 + e6,e3),
(e5 + e6,e2),
(e1 + e6 + e2,e3), (e1 + e6 + e3,e2), (e1 + e6 + e4,e5),
(e1 + e6 + e5,e4)





The information in the Border is somehow redundant, we can reduce the number
of codewords in it by defining the following structure.

Definition 2.49. Let ≺ be a term ordering. A subset R(�) ⊆ B(�) is called the
reduced Border of the code � w.r.t. ≺ if it fulfills the following conditions:

• For each element in the Border b ∈ B(�) there exists an element h in R(�)
such that supp (head(h))⊆ supp (head(b)).

• For every two different elements h1 and h2 in R(�) neither supp(head(h1)) ⊆
supp
�
head(h2)
�

nor supp(head(h2))⊆ supp
�
head(h1)
�

is verified.

Example 2.50. Again if we consider the code � defined by Example 2.4. The re-
duced Border of � is given by the following set:

�(�) = B(�) \
�
(e1 + e6 + e2,e3), (e1 + e6 + e3,e2),
(e1 + e6 + e4,e5), (e1 + e6 + e5,e4)

�
.

See Example 2.48 for a complete description of the set B(�).

76 Binary codes

Proposition 2.51. Let us consider the set of codewords in � given by

MRed≺(�) = {head(b) + tail(b) | b ∈ R(�)}

Then MRed≺(�) corresponds to a subset of codewords of minimal support of � ,�� .

Proof. Let c be an element of the set MRed≺(�). We can rewrite c as

c= head(b) + tail(b) ∈ � with b ∈ R(�).

Let us assume that c is not an element of�� , then there exists a different codeword
c� ∈ � \ {0} such that supp(c�) ⊂ supp(c). Let c1 ∈ �n

2 be a vector with the property
that supp(c1) = supp(c�)∩ supp (head(b)). Hence the vector c2 = c+ c1 satisfies the
condition supp(c2) ⊂ supp (tail(b)). Let us define m as a vector of �2n

2 by imposing
the conditions that head(m) = c1 and tail(m) = c2. We claim that m ∈ B(�).
Indeed,

• head(m) �= tail(m), otherwise we would have that c1 = c2 and thus c� = c1 +
c2 = 0.

• Both components of m lie in the same coset.

Note that we have actually found an element m ∈ B(�) such that supp(head(m)) ⊂
supp(head(b)), which contradicts the definition of R(�).

Therefore, MRed≺(�) is a minimal test-set that allows GDDA as stated in Algo-
rithm 11.

Remark 2.52. In Chapter 3 we will prove that the above set can also be seen as a
test-set for the modular integer program associated.

Example 2.53. Continuing with Example 2.4, the set MRed≺(�) is given by L(�)
which was defined in Example 2.30.

Remark 2.54. Previously, similar ideas of the ones in this Chapter have been used.
The idea behind Loop transversal codes is near to a Gröbner representation of the
quotient �[X]/I2(�). Loop transversal codes (LP codes) were introduced by J.D.H.
Smith in [102] with the aim of giving a new approach to linear codes. Instead of
constructing a code and then study its correction capability, with this theory first we
look to specify this parameter and then construct the code. This type of codes have
been shown to be suitable for burst-error correction [30, 57].

Let us briefly describe a general loop transversal code construction. Given a sub-
group � of a (not necessarily abelian) group (V,+, ·). A transversal E to � is a
subset of V such that V may be represented as the disjoint union V =

�
e∈E (� + e).

Therefore each element v ∈ V can be expressed uniquely as v= c+e with c ∈ � and
e ∈ E.

We construct a syndrome function ϕ : V −→ V such that ϕ is linear and
ϕ|E is injective, that is no two different elements in the set E should get the same
syndrome assigned. Then the kernel of ϕ is the subgroup � that corrects E, i.e. the

2.4. Gradient descent decoding 77

translation to Coding theory may be that a received word v = c+ e is decoded to a
codeword c with error e= ϕ(v) ∈ E.

We define a binary operation on E by t1 ∗ t2 = ϕ
�
t1 + t2
�

whose domain is E× E.
We can generalize such operation by recursion, i.e.

�0
i=1 ui = ϕ(0) and

�r
i=1 ui =
��r−1

i=1 ui

�
∗ ur for r > 0.

For any t1, t2 ∈ E note that the equation x ∗ t1 = t2 has a unique solution x.
Moreover, if the equation x∗ t1 = t2 has also a unique solution, then E is called a loop
transversal. Note that if V is abelian then each transversal is a loop transversal.

In the particular case of linear codes, V is a finite dimensional vector space over
�q. We define λ× t= ϕ (λt) for λ ∈ �q and t ∈ E. Induction extends the operation ×
to:

r�

i=1

�
λi × ti
�
= ϕ

�
r�

i=1

λiti

�
for ti ∈ E and λi ∈ �q.

That is (E,∗,×) is a vector space over �q and its is reasonable to require E to contain
a basis
�
e1, . . . ,en
�

for V = �n
q where ei denotes the canonical basis of �n

q .
Then the knowledge of the vector space (T,∗,×) is sufficient to determine the

code � . Indeed,

� = �v−ϕ(v) | v ∈ V
�
=

�
k�

i=1

λiei −
k�

i=1

�
λi × ei
�

with λi ∈ �q

�

Here is another way of passing between the code � and the transversal E. Taking
account of the fact that

ϕ (x+ y) = ϕ (x) ∗ϕ (y) and ϕ (λx) = λ×ϕ (x)

for x,y ∈ V and λ ∈ �q, we define a linear transformation (V,+, ·) −→ (E,∗,×)
known as parity map. Note that parity check matrices of � can be given by matrices
of ϕ with respect to appropriate bases. In other words, a set of coset representatives
for � (e.g. a complete set of coset leaders) defines a loop transversal E for � .

78 Binary codes

3
Modular codes and the set of codewords

of minimal support

Contents
3.1 Relationship to integer linear programming 81

3.1.1 Integer linear programming approach to decoding binary
codes . 87

3.1.2 A note on Graver basis . 88
3.2 The lattice ideal associated with a modular code 90

3.2.1 Minimal support codewords 90
3.3 Computation of the Gröbner basis . 94
3.4 Decomposition of modular codes . 101

3.4.1 Direct sum of modular codes 105
3.4.2 1-gluing of modular codes . 109
3.4.3 3-gluing of modular codes . 117
3.4.4 General case . 122

Throughout this chapter � will be a modular code defined over �q where �q
denotes the ring of integers modulo q. A modular code � over �q of length n is

an additive subgroup of
�
�n

q ,+
�

. The notion of elementary row operations on a
matrix and its consequences are carried over �q with the understanding that only
multiplication of a row by a unit in �q is allowed, as opposed to multiplication by a

79

80 Modular codes

non-zero element in the case of a field. Note that if q is prime, � is just a linear code
in the usual sense. From now on we simple write an [n, k]-code for a modular code
of length n and rank k.

See Section 1.1.2 for the definition of a generator matrix of a modular code.
Recall that r modular independent codewords in a modular code of rank r do not
necessarily form a basis. However, for the results presented along this chapter it
would be enough to require a set of generators of the modular code, without insisting
in the fact of its independence over �q.

It has been widely known that complete decoding for binary linear codes can be
regarded as a linear integer programming problem with binary arithmetic conditions.
This approach which leads our study, aimed to give an algebraic description to the
set of codewords of minimal support of a modular code. Note that for q prime our
goal is equivalently to find the collection of all cycles of an �q-representable matroid.
Tutte [111] proved that the set of codewords of minimal support of � , when � is
defined over a finite field �q, is precisely the set of cocircuits of its associated vector
matroid (see also [90, Theorem 9.2.4]). The vocabulary necessary to translate the
language of matroid theory into that of coding theory can be found, for example, in
[64].

Conti and Traverso in 1991 [33] proposed an efficient algorithm which uses Gröb-
ner Bases to solve integer programming with ordinary integer arithmetic conditions.
This idea was later extended by Ikegami and Kaji [60] to solve modular integer
problems. Therefore, we have a method for computing a test-set (called the Gröbner
test-set) for a modular code which only works in the binary case. Furthermore, the
complete decoding scheme allowed by the Gröbner test-set is equivalent to the gra-
dient descent decoding given by Ashikhmin and Barg [2], which has been proven in
[74] to be equivalent to Liebler’s approach [71]. See Chapter 2 for a further account
on this topic.

Thus, it is natural to consider for those problems the Graver basis associated to
them that provides a universal test-set, which turns out to be a set containing the set
of codewords of minimal support of codes defined over �q.

We will like to emphasize that the modular integer programming approach pre-
sented in this chapter does not allow us to perform complete decoding for q > 2, but
the description of the Graver basis of the modular problem provides a description of
the set of codewords of minimal support for any modular code.

The organization of this chapter is as follows. In Section 3.1 we start by briefly
reviewing the algorithm of Conti and Traverso [33]. The main idea of this algorithm
is to compute a Gröbner basis of the binomial ideal associated to the integral ker-
nel of the coefficient matrix of the problem with respect to a term order induced by
the corresponding cost vector, and so obtain a solution which minimizes the indi-
cated linear function using the Gröbner basis reduction procedure. Then we discuss
the extension of Conti-Traverso algorithm given by Ikegami and Kaji [60] to solve
linear integer programming with modulo arithmetic conditions. If we fix an m× n
coefficient matrix of the modular problem, the main disadvantage of Ikegami-Kaji’s
algorithm is that it involves m× n variables. Moreover they do not show any spe-
cific system for improving the complexity of the classical Buchberger algorithm for

3.1. Relationship to integer linear programming 81

computing Gröbner Bases. However, note that in our case the coefficient growth is
not a problem since all the necessary information is encoded in the exponents of the
binomials of our defined ideals. The solutions proposed in this section to improve
the efficiency of the above algorithm using the philosophy presented by Di Biase -
Urbanke in [38] looks to reduce the number of variables. We can also see this fact
as a generalization of the ideas in the paper [11] to the non-binary modular case. In
Subsection 3.1.1 we recall how in the binary case the maximum likelihood decoding
can be regarded as a modular integer problem.

All these ideas will allow us to introduce in Section 3.2 the binomial ideal asso-
ciated to a modular code Im(�) which we prove that it can be seen as the binomial
ideal associated to a modular integer program. Finally, we describe the set of code-
words of minimal support of modular codes using the Graver basis associated to the
defined ideal. This Graver basis is again the �q-kernel associated to a Lawrence lifted
matrix, therefore we can apply the techniques previously used by Sturmfels in [107].

In Section 3.3 we discuss an alternative for the computation of the Gröbner basis
of Im(�) relative to a degree compatible ordering. For this section, we will use the
“change of basis” or FGLM technique proposed in [11]. In that paper the algorithm is
stated for the binary case, but the generalization to the modulo q is straightforward.

Finally, in Section 3.4 we try to reduce the complexity of the above algorithm
taking advantage of the powerful decomposition theory for linear codes provided by
the decomposition theory of representable matroids over finite fields. In [63, 65]
Kashyap gives an overview of an example of such decomposition theory. In this way
we identify the codes that can be written as “gluing” of codes of shorter length. The
concept of “glue” was first used in the context of semigroups representation by A.
Thomas [109] and Rosales [97]. Recently, some generalisations have been made
of this concept in [49], article that has motivated our work. If this decomposition
verifies certain properties, then computing the set of codewords of minimal support
in each code appearing in the decomposition is equivalent to computing the set of
codewords of minimal support for the original code. Moreover, these computations
are independent of each other, thus they can be carried out in parallel for each com-
ponent, thereby not only obtaining a reduction of the complexity of the algorithm
but also decreasing the time needed to process it.

The results in this chapter are joint works with E. Martínez-Moro from University
of Valladolid (Spain) and appeared in [74, 75].

3.1 Relationship to integer linear programming

Given an integral matrix A ∈ �m×n, which is known as the matrix of coefficients,
the vector b ∈ �m and the cost vector w ∈ �n, the integer linear programming (LP)
problem, denoted by IPA,w(b) consists of three parts: a linear function to be minimized,
a problem constraint and non-negative variables. Therefore, if we express the problem

82 Modular codes

in matrix form it becomes:

IPA,w(b) =





minimize w · u
subject to
�

Aut = b
u ∈ �n

≥0

(3.1)

A solution u ∈ �n
≥0 which satisfies Aut = b is called optimal if u minimizes the

inner product w · u. Although an integer program differs from a linear program only
in the requirement that solutions are integral instead of real, the general integer
program is NP-complete while linear programs can be solved in polynomial time,
see for instance [20, 91]. The first general algorithm to solve an integer program
was Gomory’s cutting plane method. Then, further methods around branching and
bounding integer linear programs were designed. For other algorithms and further
reading on both linear and integer programming see [100].

In [33] Conti and Traverso introduced a Gröbner basis based algorithm to solve
the problem IPA,w as follows: for a given integer linear programming problem IPA,w
stated as in Equation (3.1), the algorithm computes a reduced Gröbner basis ��w

of
the toric ideal

I =
�
{Xu+ −Xu− | u= u+ − u− ∈ ker�(A)}

�

where u+, u− ∈ �n
≥0 and have disjoint supports w.r.t the term order �w induced by

the cost vector w ∈ �n defined as:

α�w β⇔
�

either w ·α�w · β or
w ·α=w · β , α� β , for � a fixed admissible ordering.

Note that the reduced Gröbner basis of the binomial ideal I is given also by bino-
mials (see for instance [107, Corollary 4.4], for a proof). Finally, for any non-optimal
solution u of I PA,w(b), we compute the normal form of the monomial Xu w.r.t. ��w

namely Red�w
(Xu,��w

) = Xu� , and then u� is the optimal solution. The interested
reader can refer to [107] for an account on Gröbner basis material related to integer
linear programming.

Algorithm 14: Conti-Traverso Algorithm
Data: The matrix A∈ �m×n and the vectors b ∈ �m, w ∈ �n.
Result: An optimal solution of IPA,w(b)
Define the ideal I related with the constraint equations and a monomial order1

�w induced by the cost vector w;
Compute the reduced Gröbner basis ��w

of I w.r.t. �w;2

Compute Red�w
(Xb,��w

) = Xu;3

Return u ∈ �n;4

Definition 3.1. We denote by IPA,w the family of problems of type IPA,w(b) where
the coefficient matrix A ∈ �m×n and the cost vector w ∈ �n are fixed whereas the

3.1. Relationship to integer linear programming 83

vector b ∈ �m runs over all possible integer vectors of size m. A test-set for the family
of problems IPA,w is a subset ��w

⊆ ker�(A) if, for each non-optimal solution u to a
program IPA,w(b), there exists t ∈ ��w

such that u− t is also a solution and t�w 0.

A set �A ⊆ ker�(A) is a universal test-set for IPA if �A contains a test-set for the
family of integer programs IPA,w for every generic w.

The exponents of the binomials involved in the reduced Gröbner basis ��w
in-

duce a (uniquely defined) test-set for IPA,w called the Gröbner test-set. The existence
of a finite test-set ��w

gives a trivial gradient descent method for finding the op-
timal solution of the problem IPA,w(b). Indeed, starting at a solution u of IPA,w(b)
we can successively move to an improved solution of the program by subtracting an
appropriate element of ��w

, then the solution u� is optimal if and only if there does
not exists t ∈ ��w

such that u� − t is feasible for IPA,w(b). Test-sets for integer pro-
gramming were introduced by Graver [51] and provide a way of telling if a feasible
solution is optimal or not by checking for each element in the test-set whether adding
it to the solution yields an improved value of the objective function. The same holds
when the test-set is replaced by the Gröbner basis and addition is replaced by the
reduction induced by the basis.

Ikegami and Kaji in [60] adapted the ideas of the Conti-Traverso algorithm to
solve the modular integer programming problem.

Definition 3.2. Consider the matrix A ∈ �m×n
q and the vectors b ∈ �m

q , w ∈ �n, we
define a modular integer program, denoted by IPA,w,q(b) as the problem of finding a
vector u ∈ �n

q that minimizes the inner product w ·�u subject to Aut ≡ b mod q. If
we express the problem in matrix form it becomes:

IPA,w,q(b) =





minimize w ·�u

subject to

�
Aut ≡ b mod q
u ∈ �n

q

(3.2)

Note that the constrain conditions are modular ones but the weight minimizing
condition is over the reals.

Let X denotes n variables x1, . . . , xn and Y denotes m variables y1, . . . , ym. Con-
sider the ring homomorphism

Θ : �[X] −→ �[Y]

defined by Θ(Xv) = Y(�A)vT
.

Let Jq be a binomial ideal defined by Jq = 〈{yq
i − 1}mi=1〉 in the polynomial ring

�[Y]. We have the following result.

Lemma 3.3. Aut ≡ b mod q if and only if Θ(X�u)≡ Y�b mod Jq.

Proof. See a proof of this result in [60, Lemma 1].

84 Modular codes

In [60] they showed that the ideal generated by binomials associated to the vec-
tors belonging to the �q-kernel of a matrix A ∈ �m×n

q , which is the kernel of the ring
homomorphism Θ, is given by the elimination ideal I = IA ∩�[X] where

IA =
� �
Θ(xi)− xi
�n

i=1 ∪
�

yq
j − 1
�m

j=1

�
⊆ �[X,Y]. (3.3)

Remark 3.4. In other words, we can see the ideal related to the �q-kernel of a matrix
A∈ �m×n

q as an elimination ideal of the �-kernel of the matrix
�
�A q · Idm

�
∈ �m×(m+n),

where Idm denotes the identity matrix of size m.
The following lemma gives the characterization of the polynomials that belong to

the ideal IA. Necessary condition was already stated in [60], we show it here again
for completeness.

Lemma 3.5. f ∈ IA ∩�[X] if and only if f ∈ �[X] and Θ(f)≡ 0 mod Jq.

Proof. Let f ∈ IA. Thus we have

f (X,Y) =
n�

i=1

λi
�
Θ(xi)− xi
�
+

m�

j=1

β j(y
q
j −1) where λ1, . . . ,λn,β1, . . . ,βm ∈ �[X,Y].

Then

Θ(f) = f (Θ(x1), . . . ,Θ(xn), y1, . . . , ym)

=
n�

i=1

Θ(λi)
�
Θ(xi)−Θ(xi)
�
+

m�

j=1

Θ(β j)(y
q
j − 1)

=
m�

j=1

Θ(β j)(y
q
j − 1)≡ 0 mod Jq.

To prove the converse, first note that given u ∈ �n
q a monomial X�u = xu1

1 · · · xun
n

can be written, for some B1, . . . , Bn ∈ �[X,Y], as:

xu1
1 · · · xun

n =
�
Θ(x1) + (x1 −Θ(x1))

�u1 · · ·�Θ(xn) + (xn −Θ(xn))
�un

= Θ(x1)u1 · · ·Θ(xn)un + B1(x1 −Θ(x1)) + . . .+ Bn(xn −Θ(xn)).

Thus for all polynomial f ∈ �[X] there exists C1, . . . , Cn ∈ �[X,Y] such that

f (X) = f (Θ(x1), . . . ,Θ(xn)) +
n�

i=1

Ci(xi −Θ(xi)) = Θ(f) +
n�

i=1

Ci(xi −Θ(xi)).

From the initial assumption we have Θ(f) ≡ 0 mod Jq, i.e. Θ(f) ∈ Jq ⊆ IA. There-
fore

f (x1, . . . , xn) = Θ(f) +
n�

i=1

Ci(xi −Θ(xi)) ∈ IA ∩�[X].

3.1. Relationship to integer linear programming 85

Definition 3.6. A term order �w on �[X,Y] is adapted to the problem IPA,w,q(b) if it
is an elimination order for �[X] and it is compatible with w. In other words, for any
u, v ∈ �n

q such that Θ(X�u)≡ Θ(X�v) mod Jq if w · u�w · v then Xu �w Xv.

Consider ��w
a Gröbner basis of the ideal IA w.r.t. an adapted monomial order

�w then the Conti-Traverso algorithm is extended to the modular case as follows:

Theorem 3.7. Given the monomial X�b and let Red�w
(X�b,��w

) = Xu� , then �u� will
give an optimal solution of the problem IPA,w,q(b).

Proof. See [60, Theorem 6].

Algorithm 15: Extended Conti-Traverso Algorithm
Data: The matrix A∈ �m×n

q and the vectors b ∈ �m
q , w ∈ �n.

Result: An optimal solution of IPA,w,q(b)
Define the ideal IA related with the constraint equations and a term order �w1

on �[X,Y] which is adapted to the problem IPA,w,q(b);
Compute the reduced Gröbner basis ��w

of IA w.r.t. �w;2

Compute Red�w
(Xb,��w

) = Xu;3

Return u ∈ �n;4

Note that in the previous description one requires m × n variables to describe
the elimination ideal IA ∩�[X] which is in the ambient space �[X] involving only n
variables. Now we present a natural description of the ideal associated to a modular
integer program so that we do not require the use of the extra variables in Y. Thus
we will restrict the whole computation inside �[X] and therefore this will allow us to
use the technique described in Section 3.3 for computing the Gröbner basis. Di Biase
and Urbanke [38] developed some ideas concerning this problem for the integer �-
kernel related to the problem IPA,w(b) in Equation (3.1). We will describe in this
section how to compute the �q-kernel of the problem IPA,w,q(b) in Equation (3.2)
considering only computations on the polynomial ring �[X].

Let B ∈ �k×n
q be a matrix and

�
w1, . . . ,wk
� ⊆ �n

q be a set of generators of its row
space. We will define the following ideal

I(B) =
�
{Xu1 −Xu2 | B ·�(u1 − u2)T ≡ 0 mod q}

�
(3.4)

i.e. all the binomials such that �(u1−u2) is in the modular kernel of B, i.e. ker�q
(B).

Let us consider the linear subspace
�

u ∈ �n
q | u · a= 0, ∀a row of the matrix B

�
and

B⊥ be a matrix whose rows generate such linear subspace.
The following proposition is a generalization of [11, Proposition 1] for the non-

binary case.

Proposition 3.8. The following conditions are equivalent:

1. Xa −Xb ∈ I(B⊥).

86 Modular codes

2. There exist t1, t2 in �[X] and λ1, . . . ,λk ∈ � such that

Xa+(q−1)btq
1 = tq

2

k�

i=1

Xλi�wi .

Proof. Consider the homomorphism

φ : �[X] −→ �n
q

defined by φ(Xa) = �a ∈ �n
q . One can easily check that the following two properties

hold:
φ(Xa) = φ(Xb)⇐⇒ ∃t1, t2 ∈ �[X] such that tq

1Xa = tq
2Xb, (3.5)

φ(Xa)−φ(Xb) = φ(Xa) + (q− 1)φ(Xb) = φ(Xa+(q−1)b). (3.6)

Furthermore, Xa − Xb ∈ I(B⊥) if and only if �(a − b) is a linear combination of
{w1, . . . ,wk}, i.e.

Xa −Xb ∈ I(B⊥)⇐⇒ φ(Xa −Xb) =
k�

i=1

λi,qwi = φ

�
k�

i=1

Xλi�wi

�
, (3.7)

where λi,q ∈ �q and �λi,q = λi for i = 1, . . . , k. We are now in a position to show the
result. Assume that statement 1 holds, i.e. Xa − Xb ∈ I(B⊥). Equations 3.7 and 3.6
imply that

φ(Xa+(q−1)b) = φ(Xa −Xb) = φ

�
k�

i=1

Xλi�wi

�
.

Hence, from 3.5 we deduce statement 2.
The converse inclusion is proved by reading the above backwards.

Again, let
�
w1, . . . ,wk
� ⊆ �n

q be a set of generators of the row space of a matrix
B ∈ �k×n

q .
Let us define the following binomial ideal:

�I =
� �

X�wi − 1
�

i=1,...,k ∪
�

xq
i − 1
�

i=1,...,n

�
. (3.8)

Theorem 3.9. �I = I(B⊥) = IB⊥ ∩�[X].
Proof. It is clear that �I ⊆ I(B⊥) since all binomials in the generating set of �I
belong to I(B⊥).

To show the converse, it suffices to use Proposition 3.8 together with the obser-
vation that

z1 − 1, z2 − 1 ∈ �I ⇐⇒ z1z2 − 1 ∈ �I (3.9)

since z1z2 − 1 = (z1 − 1)z2 + (z2 − 1). For detail, consider any binomial Xa − Xb

in I(B⊥). By Proposition 3.8, there exist t1, t2 ∈ �[X] and λ1, . . . ,λk ∈ � such that

3.1. Relationship to integer linear programming 87

Xa+(q−1)btq
1 = tq

2

�k
i=1 Xλi�wi . According to the Equation 3.9, we have

�k
i=1 X�wi−1 ∈

�I . Consequently, repeated application of the above equation enables us to write

�k
j=1 Xλ j�w j − 1=




k�

j=1

X�w j − 1





�

j|λ j>1

X(λ j−1)�w j




� �� �
B1

+
��

j|λ j>1 X(λ j−1)�w j − 1
�
=

= B1 +



�

j|λ j>1

X�w j − 1






�

j|λ j>2

X(λ j−2)�w j




� �� �
B2

+
��

j|λ j>2 X(λ j−2)�w j − 1
�

= . . .= B1 + B2 + . . .+
��

j|λ j>s−1 X�w j − 1
�
∈ �I ,

where s =max
�
λ j | j = 1, . . . , k

�
. In the same manner we can see that Xqb−1 ∈ �I .

Now Xa −Xb ∈ �I which is due to the fact that

Xa −Xb = Xb
�

Xa+(q−1)b − 1
�
−Xa
�

Xqb − 1
�

.

Our next goal is to determine the equality �I = IB⊥ ∩�[X].
Let ai j denote the entry in the i-th row and j-th column of B⊥ ∈ �m×n

q and a j

denote the j-th column of B⊥ which is an m-vector. First notice that:

• Θ
�

xq
i − 1
�
= Θ(Xqei − 1) = Yqv − 1 with v= (a1 j , . . . , amj) = aT

j ∈ �m
q .

Similarly to the previous case we can show that Yqv − 1 ∈ Jq.

• Θ�X�wi − 1
�
= 0 since BB⊥ = 0.

Therefore, Lemma 3.5 leads to �I ⊆ IB⊥ ∩�[X].
On the other hand, let us consider any binomial f = Xu − Xv ∈ IB⊥ ∩ �[X].

By Lemma 3.5 we have that Θ(f) = Y�B⊥uT − Y�B⊥vT ≡ 0 mod Jq. This gives that
f ∈ I(B⊥) = �I when combined with Lemma 3.3.

Remark 3.10. Note that the matrix B⊥ plays the role of the non negative matrix that
Di Biase and Urbanke look for in their paper, thus the previous theorem can be seen
as a generalization of the setting in [38] for getting rid of the variables concerning Y
in IB⊥ .

3.1.1 Integer linear programming approach to decoding binary
codes

Let q = 2 and H be the parity check matrix of a binary linear code. Then solving
the modular program IPH,1,2(b) where 1 = (1,1, . . . , 1) is equivalent to complete
decoding b.

This is the approach in [60] and we have just shown by Theorem 3.9 that (only
in the binary case) it is equivalent to the approach in [11]. Therefore, in the binary

88 Modular codes

case, this decoding scheme is equivalent to the gradient descent decoding given by
Ashikhmin and Barg [2] which has been proven to be equivalent to Liebler approach
[71] (see Section 2.4.1 for a proof). Unfortunately, Hamming metric can not be
stated as a linear programming objective for q > 2, i.e. min {w · u} �= min

�
wH(u)
�

where wH denotes the Hamming weight. In Chapter 4 we will see how this approach
can be generalized to any linear code.

In Section 3.2.1 we will prove that for any value of q, the Graver basis associ-
ated to these problems provides us the set of codewords of minimal support for the
corresponding modular code.

3.1.2 A note on Graver basis

Given an integer matrix A∈ �m×n. The lattice ideal of A, denoted by I(A) , is spanned
as a �-vector space by the set of binomials:

I(A) =
��

Xa −Xb | a,b ∈ �n and AaT = AbT
��
⊆ �[X].

This construction is adapted from [107].
Every vector u ∈ �n can be written uniquely as u= u+−u− where u+ and u− are

non-negative and have disjoint support. Therefore the above ideal can be rewritten
as

I(A) =
��

Xu+ −Xu− | u ∈ ker�(A)
��
⊆ �[X].

We define the Universal Gröbner basis of A, denoted by UGBA, as the union of all
reduced Gröbner basis �� of the ideal I(A) as � runs over all the term ordering.

Definition 3.11. A binomial Xu+ − Xu− in I(A) is primitive if there exists no other
binomial Xv+ −Xv− in I(A) such that Xv+ divides Xu+ and Xv− divides Xu− .

In other words, an integral vector u ∈ ker�(A) is said to be primitive if the greatest
common divisor of the components of the corresponding binomials (+’ve and −’ve)
is one.

We call the set of primitive binomials the Graver basis of A and denoted by GrA. A
circuit of A is a non-zero primitive vector u ∈ ker�(A) such that its support supp(u) is
minimal with respect to inclusion. Or equivalently, a circuit is an irreducible binomial
Xu+ − Xu− in I(A) which has minimal support. The set of circuits in I(A) is denoted
by �A.

Proposition 3.12. For every matrix A∈ �m×n we have �A ⊆ UGBA ⊆ GrA.

Proof. See for instance [107, Proposition 4.11]

Definition 3.13. Let u, v ∈ �n. We say that u is conformal to v and denoted by
u� v, if |ui | ≤ |vi | and ui · vi ≥ 0 for all i = 1, . . . , n.

That is, u and v lie in the same orthant of �n and each component of u is bounded
by the corresponding component of v in absolute value.

Note that the binomial Xu+ −Xu− in IA is primitive if the vector u= u+−u− ∈ �n

is minimal with respect to the order �. Thus, the Graver basis of an integer matrix A
is the set of conformal-minimal nonzero integer dependencies on A.

3.1. Relationship to integer linear programming 89

Remark 3.14. The Graver basis GrA and the universal Gröbner basis UGBA of A are
universal test-set for the family of integer programs IPA,w for every generic cost vector
w.

Definition 3.15. The Lawrence lifting of A∈ �m×n is defined as the enlarged matrix

Λ(A) =
�

A 0m×n
Idn Idn

�
∈ �(m+n)×2n

where Idn ∈ �n×n is the n-identity matrix and 0m×n ∈ �m×n is the all zero matrix.

The matrices A and Λ(A) have isomorphic kernels. Indeed,

ker�(Λ(A)) =
�
(u,−u) | u ∈ ker�(A)

�
.

The toric ideal I(Λ(A)) is an homogeneous prime ideal defined as

I(Λ(A)) =
��

Xu+Zu− −Xu−Zu+ | u ∈ ker�(A)
��
⊆ �[X,Z]

where Z represents the variables z1, z2, . . . , zn.

Theorem 3.16. For the Lawrence type matrix Λ(A) the following sets coincide:

1. The Graver basis of Λ(A).

2. The universal Gröbner basis of Λ(A).

3. Any reduced Gröbner basis of Λ(A).

4. Any minimal generating set of Λ(A) (up to scalar multiples).

Proof. See [107, Theorem 7.1].

Theorem 3.16 suggests the following algorithm for computing a Graver basis of
an integer matrix A. Choose any term order on the polynomial ring �[X,Z] and
compute a reduced Gröbner basis of Λ(A). By Theorem 3.16, any reduced Gröbner
basis of Λ(A) is also a Graver basis of Λ(A). Thus for each element in the Graver basis
XαZβ −XβZα, the element Xα −Xβ belongs to the Graver basis of A.

Algorithm 16: Algorithm for computing the Graver basis of A
Data: An integer matrix A∈ �m×n.
Result: The Graver basis of A, GrA.
Choose any term order on �[X,Z];1

Defined the Lawrence lifting of the matrix Λ(A);2

Compute a reduced Gröbner basis of I(Λ(A));3

Substitute the variable Z by 1;4

90 Modular codes

Now let us consider any modular matrix A ∈ �m×n
q , in a similar fashion we can

define the Lawrence lifting for the modulo q of A as

Λ(A)q =
�

A 0q,m×n
Idq,n Idq,n

�
∈ �(m+n)×2n

q

where Idq,n ∈ �n×n
q is the n-identity matrix and 0q,m×n ∈ �m×n

q is the all zero matrix
over the ring �q.

Remark 3.17. As pointed in Remark 3.4, we can see the ideal related to the �q-kernel
of Λ(A)q as an elimination ideal of the �-kernel of the matrix

� �A 0m×n q · Idm
Idn Idn 0n×m

�
∈ �(m+n)×(2n+m).

We have a similar result to Theorem 3.16 relating the �q-kernel of A and the
�q-kernel of Λ(A)q (see [60, Theorem 8]).

3.2 The lattice ideal associated with a modular code

Given an [n, k] code � we define the lattice ideal I(�) associated with � as the
ideal:

I(�) =
��

Xa −Xb | �(a− b) ∈ �
��
⊆ �[X].

Given a generator matrix G ∈ �k×n
q of � and let label its rows by

�
w1, . . . ,wk
� ⊆

�n
q . We have proved, see Theorem 3.9, that the ideal generated by the set of binomi-

als:
Im(�) =
�
{Xw j − 1} j=1,...,k ∪

�
xq

i − 1
�

i=1,...,n

�
⊆ �[X] (3.10)

match the ideal I(�).
Remark 3.18. If the vectors

�
w1, . . . ,wk
�⊆ �n

q are regarded as a set of �q-generators
of the row space of a matrix A∈ �k×n

q , then the above ideal defines also the ideal asso-
ciated to the family of modular problems IPA,q in Equation 3.2. In this particular case,
the above ideal will be denoted by I(A⊥). Theorem 3.9 expresses the equivalence
between the above ideals.

3.2.1 Minimal support codewords

The interest in the set of codewords of minimal support is due to its relationship with
the complete decoding problem which is an NP-problem [6], even if preprocessing
is allowed (see [23]). Moreover, its relationship with the so-called gradient-like
decoding algorithms [3, 11, 59]. Furthermore, it has applications in cryptography;
in particular, in secret sharing schemes based on linear codes where the codewords of
minimal support describe the minimal access structure (see [84] for further details).

Lemma 3.19. Two minimal support codewords in � � �n
q with the same support

should be one scalar multiple of the other.

3.2. The lattice ideal associated with a modular code 91

Proof. Given any m = (m1, . . . , mn) ∈ �� . Suppose that there is a zero divisor
element mi in m. Then mi is a non-zero element, i.e. i ∈ supp(m), and there exists
α ∈ �q \ {0} satisfying αmi = 0. Then αm ∈ � and supp(αm) ⊂ supp(m), which
contradicts the minimality of m unless αm = 0. Thus either all the non-zero entries
of m are zero divisors or all of them are units in �q. Moreover, an analysis similar to
the one above shows that if all the non-zero entries of m are zero divisors they must
be equal.

Now consider the case that all the non-zero entries of m are units in �q and
suppose the lemma were false. Then we could find another codeword m� of minimal
support of � such that supp(m) = supp(m�) but m �= λm� for any λ ∈ �q. Let us
choose β ∈ �q \ {0} such that mi = βm�i for at least one index i ∈ supp(m), then

m− βm� ∈ � \ {0} and supp(m− βm�)⊂ supp(m)

which contradicts the minimality of m.

Theorem 3.20. Let H ∈ �(n−k)×n
q be a parity check matrix for � . The set of codewords

of minimal support of the code � is a subset of the Graver basis of H.

Proof. Let m ∈�� and consider u the minimal element w.r.t. the order � in the set
of codewords of minimal support of the code � having the same support as m, i.e.

u=min
�
��m� |m� ∈�� and supp(m�) = supp(m)

�
.

Suppose the Theorem were false. Then the binomial Xu+ − Xu− in I(H) is not primi-
tive. Thus there exists another binomial Xv+ − Xv− in I(H) such that Xv+ divides Xu+

and Xv− divides Xu− . Or equivalently there exists a non-zero codeword �v ∈ � , such
that v� u contradicting the fact that m has minimal support.

The previous result gives us a procedure to compute the set of codewords of
minimal support for codes defined on �q. In particular for linear codes over �p with p
prime, but not for the case pr since �pr �≡ �pr . In the binary case, since the codewords
of minimal support are also minimal codewords, we have �H = UGBH = GrH . The
cases in which this equality holds and the obstructions for this property in the non
modular case are studied by Bogart, Jensen and Thomas [10].

Now the two following corollaries are straight forward.

Corollary 3.21. The set of codewords of minimal support of � can be computed from
the ideal
�
{X�w1Z�w1(q−1) − 1, . . . ,X�wk Z�wk(q−1) − 1} ∪ {xq

i − 1}ni=1 ∪ {z
q
i − 1}ni=1

�
⊆ �[X,Z]

where wi for i = 1, . . . , k are the rows of any generator matrix of � .

Proof. By Theorem 3.20 we know that the exponents of the binomials involved in the
Graver basis of a parity check matrix H of the code � give us the set of codewords of
minimal support of� . Moreover, as we have already seen, Theorem 3.16 suggests an
algorithm to compute the Graver basis of the ideal I(H) by just computing a Gröbner
basis of the ideal associated to the Lawrence lifting modulo q of the matrix H, which
by Theorem 3.9 is equal to the ideal proposed.

92 Modular codes

Corollary 3.22. Let � be an [n, k] modular code defined over �n
q and H ∈ �(n−k)×n

q
be a parity check matrix for� , then the set of codewords of minimal support of� is con-
tained on the projection of the first n coordinates of the set

�
w |w= �v, (q− 1) · v� ∈ � �

where � is a universal test-set of the modular linear integer program with coefficient
matrix

Λ(H)q =
�

H 0(n−k)×n
Idn Idn

�
∈ �(2n−k)×2n

q ,

where Idn denotes the identity matrix of size n and 0m×n the zero-matrix of size m× n,
both matrices defined over �q.

Proof. This result follows directly from Corollary 3.21 and the fact that the ideal
related to the �q-kernel of the Lawrence lifting for the modulo q of the matrix H,
denoted by Λ(H)q, can be seen as an elimination ideal of the �-kernel of the following
matrix as pointed in 3.17.

� �H 0(n−k)×n q · Idn−k
Idn Idn 0n×(n−k)

�
∈ �(2n−k)×(3n−k).

Example 3.23. Consider � the [7, 4,3] Hamming code over �2 with generator ma-
trix 



1 0 1 0 0 0 1
1 0 0 0 1 1 0
0 0 1 1 0 1 0
0 1 0 0 0 1 1


 ∈ �

4×7
2 .

We have 16 codewords of weights 0, 3, 4 or 7. All the 14 codewords of weight 3 and
4 are codewords of minimal support while the only non-minimal support codewords
are 0 and 1. By Remark 3.18, the ideal associated to � is defined as the following
binomial ideal:

I(�) =

� �
X(1,0,1,0,0,0,1) − 1, X(1,0,0,0,1,1,0) − 1,
X(0,0,1,1,0,1,0) − 1, X(0,1,0,0,0,1,1) − 1

�
∪
�

x2
i − 1
�

i=1,...,7

�

=
� �

x1 x3 x7 − 1, x1 x5 x6 − 1,
x3 x4 x6 − 1, x2 x6 x7 − 1

�
∪
�

x2
i − 1
�

i=1,...,7

�
⊆ �[X]

If we compute a Gröbner basis of I(�) w.r.t. a degree reverse lexicographic ordering
we get the following Gröbner basis:




x3 x7 + x1, x1 x7 + x3, x5 x6 + x1, x4 x6 + x3, x3 x6 + x4,
x2 x6 + x7, x1 x6 + x5, x4 x5 + x7, x3 x5 + x2, x2 x5 + x3,
x1 x5 + x6, x3 x4 + x6, x2 x4 + x1, x1 x4 + x2, x2 x3 + x5,

x1 x3 + x7, x1 x2 + x4



∪ {x

2
i − 1}7i=1,

which gives us the 7 minimal codewords of weight 3 of � :

3.2. The lattice ideal associated with a modular code 93

(0,1, 0,0, 0,1, 1), (1,0, 1,0, 0,0, 1), (1, 1,0, 1,0, 0,0), (0,1, 1,0, 1,0, 0),
(0,0, 1,1, 0,1, 0), (1, 0,0,0, 1,1, 0), (0, 0,0, 1,1, 0,1).

The degree reverse lexicographic Gröbner basis of the Lawrence lifting used for com-
puting the Graver basis has 155 elements representing the 7 words already in the
Gröbner test-set plus 7 minimal codewords of weight 4. Thus

�� =
�
(0,1, 0,1, 1,1, 0), (1, 0,1, 1,1, 0,0), (1,1, 1,0, 0,1, 0), (0, 1,1, 1,0, 0,1),

(1, 1,0, 0,1, 0,1), (1,0, 0,1, 0,1, 1), (0, 0,1, 0,1, 1,1)

�
.

Example 3.24. Let us consider the [6, 3,2]-code � defined over �3 with generator
matrix 


1 0 0 2 2 0
0 1 0 1 1 0
0 0 1 1 2 1


 ∈ �3×6

3 .

We have 27 codewords. By Remark 3.18, the ideal associated to � is defined as the
following binomial ideal:

I(�) =
� �

x1 x2
4 x2

5 − 1, x2 x4 x5 − 1,
x3 x4 x2

5 x6 − 1

�
∪
�

x3
i − 1
�

i=1,...,6

�
.

The Graver basis of this ideal w.r.t. the degree lexicographical ordering has 318
elements representing 22 codewords:




(0,0, 2,2, 1,2), (0, 0,1, 1,2, 1), (0, 1,0, 1,1,0), (0,2, 0,2, 2,0),
(0, 1,1, 2,0, 1), (0, 2,2, 1,0, 2), (0,2, 1,0, 1,1), (0,1, 2,0, 2,2)
(1, 0,0, 2,2, 0), (2, 0,0, 1,1, 0), (1,0, 1,0, 1,1), (2,0, 2,0, 2,2),
(1, 0,2, 1,0, 2), (2, 0,1, 2,0, 1), (1,1, 0,0, 0,0), (2,2, 0,0, 0,0),
(1, 2,0, 1,1, 0), (2, 1,0, 2,2, 0), (1,2, 1,2, 0,1), (2,1, 2,1, 0,2),
(1, 2,2, 0,2, 2), (2, 1,1, 0,1, 1)





This set represents all the codewords of � except the 4 codewords of weight 6 of �
which are not codewords of minimal support:
�
(1, 1,1, 1,2, 1), (2,2, 2,2, 1,2) (1,1, 2,2, 1,2), (2,2, 1,1, 2,1)

�

However, note that the codeword (1, 2,0, 1,1, 0) is an element of the Graver basis of
I(�) but is not a codeword of minimal support of � , since

supp(1, 1,0, 0,0, 0)⊂ supp(1, 2,0, 1,1, 0) where (1,1, 0,0, 0,0) ∈ � .

Therefore, the inclusion of Theorem 3.20 may or may not be strict for the non-binary
case.

Example 3.25. Consider � the [5,3, 1] modular code defined over �4 with genera-
tor matrix

G =




2 1 0 1 1
1 2 3 1 0
2 3 0 0 3


 ∈ �3×5

4 .

94 Modular codes

By Remark 3.18, the ideal associated to � is defined as the following binomial ideal:

I(�) =
� �

x2
1 x2 x4 x5 − 1, x1 x2

2 x3
3 x4 − 1,

x2
1 x3

2 x3
5 − 1

�
∪
�

x4
i − 1
�

i=1,...,5

�

This code has 64 codewords but only three of them are codewords of minimal sup-
port:

�� =
�
(0,2, 0,0, 2), (0,0, 0,1, 0), (2,0, 2,0, 0)

�
.

The Gröbner basis of I(�) w.r.t. the degree lexicographical ordering has 10 elements
representing among others the codewords

�
(0, 2,0, 0,2), (0, 0,0, 1,0)

�
.

However, the Graver basis of I(�) has 100 elements representing among others,
the 2 minimal support codewords already in the Gröbner test-set plus (2, 0,2, 0,0).
Therefore, the elements of the Graver basis represents a set of codewords that con-
tains the set of codewords of minimal support.

3.3 Computation of the Gröbner basis

In order to compute the set of codewords of minimal support of any modular code
� , we must compute a reduced Gröbner basis of the ideal related to the �q-kernel
of the Lawrence type matrix Λ(H)q where H is a parity check-matrix for � (i.e. a
Graver basis of H). Note that we know a set of generators of such ideal given by

I =
��

X�wi Z�wi(q−1) − 1
�

i=1,...,k
∪
�

xq
i − 1
�

i=1,...,n
∪
�

zq
i − 1
�

i=1,...,n

�
⊆ �[X,Z],

where
�
w1, . . . ,wk
�

label the rows of a generator matrix for � .
Hence, we can use the FGLM-techniques presented in [11]. On that paper the

algorithm was stated only for the binary case, but the generalization to the modulo
q is straight forward. We add here an study of this generalization.

Throughout this section we require some theory of Gröbner Bases for submodules
M ⊆ �[X]m. We define a term t in�[X]m as an element of the form t= Xvei where ei
denotes a standard basis of �m. A term ordering ≺ on �[X]m is a total well-ordering
such that if t1 ≺ t2 then Xut1 ≺ Xut2 for every pair of terms t1, t2 ∈ �[X]m and every
monomial Xu ∈ �[X]. Let ≺ be any monomial order on �[X] the following term
orderings are natural extensions of ≺ on �[X]m:

• Term-over-position order (TOP order) first compares the monomials by ≺ and
then the position within the vectors in �[X]m. That is to say,

Xαei ≺TOP Xβe j ⇐⇒ Xα ≺ Xβ or Xα ≺ Xβ and i < j .

• Position-over-term order (POT order) which gives priority to the position of the
vector in �[X]m. In other words,

Xαei ≺POT Xβe j ⇐⇒ i < j or i = j and Xα ≺ Xβ .

3.3. Computation of the Gröbner basis 95

The main ideas are as follows:

1. Fix a generator matrix G ∈ �k×n
q of the �q-modular code � whose rows are

labelled by
�
w1, . . . ,wk
�
.

2. Consider the set of binomials F =
�

f1, . . . , fk
�

defined as

fi = X�wi Z�wi(q−1) − 1 ∈ �[X,Z] for i = 1, . . . , k.

Hence, the set F ∪
�

xq
i − 1
�

i=1,...,n
∪
�

zq
i − 1
�

i=1,...,n generates the ideal
I . Moreover, not only the following set

�1 =





f̂1 =
�

f1, 1, 0, . . . , 0
� ∈ �[X,Z]k+1

...
f̂k =
�

fk, 0, . . . , 0, 1
� ∈ �[X,Z]k+1

is a basis for the syzygy module M with generating set F̂ =
�−1, f1, . . . , fk
�

in
�[X,Z]k+1, where the binomials

JX,Z =
� �

xq
i − 1
�

i=1,...,n
∪
�

zq
i − 1
�

i=1,...,n

�

are considered to be implicit rules for operations on the module M . But also
�1 is a Gröbner basis of M relative to a POT ordering ≺w,POT induced by an
ordering ≺ in �[X,Z] and the weight vector

w=
�
1, LT≺(f1), . . . , LT≺(fk)

�
.

In other words, XαZγei ≺w,POT XβZδe j if and only if

�
i < j
�

or
�

i = j and
�

XαZγ ≺ XβZδ, if i = 1
XαZγLT≺(fi)≺ XβZδLT≺(fi), otherwise.

�

Observe that the leading term of f̂i w.r.t. ≺w,POT is ei+1 where e j denotes the
unit vector of length k+ 1 whith a one in the j-th position.

Note that each syzygy corresponds to a solution of the following equation:

−β0 +
�k

i=1 βi fi = 0 with βi ∈ �[X,Z] for i = 0, . . . , k.

Hence the first component of any syzygy of the module M indicates an element
of the ideal generated by F .

It is easy to check that �1 is indeed a basis for M since any element g ∈ M can
be written as g=

�
g0, g1, . . . , gk
�

with g0 =
�k

i=1 gi fi . Or equivalently,

g= g1 f̂1 + . . .+ gk f̂k mod 〈JX,Z〉 ∈ 〈�1〉.

96 Modular codes

Moreover �1 is a Gröbner basis for M relative to the order ≺w,POT. Note that,
LT≺w,POT

(f̂i) = ei+1. Thus, for any f=
�
λ0,λ1, . . . ,λk
� ∈ M \ {0} we have that

LT≺w,POT
(f) = λimem+1 where supp(f) =

�
i0, i1, . . . , im
�⊆ {0, 1, . . . , k}

and m �= 0 since �
λ0 =

k�

i=1

λi fi �= 0,0, . . . , 0

�
/∈ M .

It is clear that the remainder of the division of an element f ∈ �[X,Z] by �1
or, equivalently, the normal form of f respect to �1, is zero except in the first
component. In other words, the linear combination that Fitzpatrick’s algorithm
[45] look for take place in the first component.

3. Use the generalized FGLM algorithm [42] running through the terms of�[X,Z]k+1

using a TOP ordering, to obtain a Gröbner basis �2 relative to the new order.
The first component of each element of �2 gives a corresponding element of
the desired Gröbner basis of I . To prove the above claim, let �2 =

�
g1, . . . , gs
�

be a Gröbner basis for M relative to the order ≺TOP where

gi =
�

gi0, . . . , gik
� ∈ �[X,Z]k+1 and gi0 =

�k
j=1 gi j f j .

Note that, for any h =
�
h0, h1, . . . , hk
� ∈ M , since �2 is a Gröbner basis for M ,

then
h= λ1 g1 + . . .+λs gs with λ1, . . . ,λs ∈ �[X,Z].

Hence,

LT≺TOP
(h) =max

≺TOP

�
LT≺(h0), . . . , LT≺(hk)

�
= LT≺(h0) ∈
��

LT≺
�

gi0
��

i=1,...,k

�
.

Three structures are used in the algorithm:

• The list List whose elements has the form v= (v[1],v[2]) where v[2] repre-
sents the polynomial in �[X,Z] which can be uniquely written as

v[2] = λ+
k�

i=1

λi fi with λ,λ1, . . . ,λk ∈ �[X,Z].

That is, the vector (λ,λ1, . . . ,λk) ∈ �[X,Z]k+1 corresponds to the coordinates
of v[2] on the module M . While v[1] corresponds to the first component of
such vector, i.e. following with the notation of the above lines: v[1] = λ.

• The list GT which turns out being a reduced Gröbner basis of I w.r.t. a degree
compatible ordering ≺T .

• The list � which correspond to the set of standard monomials of I w.r.t. ≺T .

3.3. Computation of the Gröbner basis 97

We also require the following subroutines:

• InsertNexts(w,List): inserts the products wt for t ∈ [X,Z] in List and
removes duplicates. Take account that the binomials JX,Z are considered as im-
plicit in the computation. Then the elements of List are sorted by increasing
order w.r.t. ≺T in the first component and in case of equality by comparing the
second component.

• NextTerm(List): removes the first element from the list List and returns it.

• Member(v, [v1, . . . ,vr]): returns j if v= v j and false, otherwise.

Remark 3.26. The ideal 〈JX,Z〉 is generated by the binomials expressing all modular
relations of �q. The operation X�aZ�bt with t ∈ [X,Z] and a,b ∈ �n

q modulo the ideal
〈JX,Z〉, is similar to compute (a,b) + u mod q where u is a unit vector defined as

u=

� �
e j ,0
�
∈ �2n

q , if t= x j with j = 1, . . . , n�
0,e j

�
∈ �2n

q , if t= zj with j = 1, . . . , n

Note that
�
e1, . . . ,en
�

denote the standard basis of �n
q .

See Theorem 4.40 for a complete proof for the correctness of Algorithm 17.
This algorithm for computing the reduced Gröbner basis of the ideal I is specially

well suited in our setting since it has the following advantages:

1. All the steps can be carried out as Gaussian elimination steps.

2. We can encode all the information of the problem in the exponents, thus we
can always take the base field as � = �2.

3. The total degree of the binomials involved is bounded by 2n × q since the
degree of each variable is at most q. Just take into account that the binomials
J belongs to our ideal I .

The last two items above (the growth of degrees and coefficients) are the most com-
mon drawbacks of the usual Gröbner basis computation but in this case they should
not be considered. The complexity of the algorithm was stated in [11, 15] and it
is �
�

N2qN−k
�

where k is the dimension of the code and N = 2n is the number of
variables involved in the algorithm.

Moreover, a slight modification of the Algorithm 17 allow us to compute just the
set of codewords of minimal support, see Algorithm 22.

On the next lines, we study a very simple code to see how Algorithm 17 works.
We present below just the most important steps. To see a complete example of this
algorithm we refer the reader to Example 4.43 where we show these techniques for
a linear code. Note that, on that case, the difference is mainly the set of generators
of the ideal associated to the code.

98 Modular codes

Algorithm 17: Adapted FGLM algorithm for computing a Graver basis of an
[n, k]-modular code �

Data: The rows
�
w1, . . . ,wk
�⊆ �n

q of a generator matrix of an [n, k] modular
code � defined and a degree compatible ordering <T on �[X,Z].

Result: A Graver basis of � w.r.t. ≺T .
r ←− 0;1

List←−
�
(1,1),
��

1,
��wi ,�wi(q− 1)

���
i=1,...,k

�
;2

GT ←− �;3

� ←− �;4

while List �= � do5

w←− NextTerm(List);6

if w[1] /∈ LT<T

�
GT
�

then7

j = Member(w[2],
�

v1[2], . . . ,vr[2]
�
);8

if j �= false then9

GT ←− GT ∪
�
w[1]− v j[1]
�

;10

for i = 1 to r11

if vi[1] is a multiple of w[1] then12

Removes vi[1] from �13

endif14

endfor15

else16

r ←− r + 1;17

vr ←−w;18

� ←−� ∪ �vr[1]
�
;19

List= InsertNexts(w,List);20

endif21

endif22

endw23

Example 3.27 (Toy example). Let � be the [3,2, 1] modular code defined over �3
with generator matrix:

G =
�

1 0 1
0 1 0

�
∈ �2×3

3 .

We find that

I =
� �

x1 x3z2
1z2

3 − 1,
x2z2

2 − 1

� � �
x3

i − 1
�

i=1,2,3

� �
z3

i − 1
�

i=1,2,3

�
.

We use Algorithm 17 to compute a reduced Gröbner basis GT of I w.r.t. the degrevlex
order with x3 > x2 > x1 > z3 > z2 > z1.

The algorithm is initialize with the following data:

3.3. Computation of the Gröbner basis 99

�2n
3 -Representation of the exponent of v[2]

v[1] 1 x1 x2 x3 z1 z2 z3 v[2]
1 1 1
1 1 1 2 2 x1 x3z2

1z2
3

1 1 2 x2z2
2

We introduce the variables z2 and x2 obtaining the following tables:

Introduce z2 �2n
3 -Representation of the exponent of v[2]

v[1] 1 x1 x2 x3 z1 z2 z3 v[2]
z2 1 z2
z2 1 1 2 1 2 x1 x3z2

1z2z2
3

z2 1 0 x2

Introduce x2 �2n
3 -Representation of the exponent of v[2]

v[1] 1 x1 x2 x3 z1 z2 z3 v[2]
x2 1 x2
x2 1 1 1 2 2 x1 x2 x3z2

1z2
3

x2 2 2 x2
2z2

2

Hence x2 − z2 is the first element of the reduced Gröbner basis GT .
Passing through all the terms of degree one of [X,Z] on increasing ordering w.r.t.

≺, we introduce then the terms of degree 2. In particular we introduce the monomi-
als z1z3 and x1 x3.

Introduce z1z3 �2n
3 -Representation of the exponent of v[2]

v[1] 1 x1 x2 x3 z1 z2 z3 v[2]
z1z3 1 1 z1z3
z1z3 1 1 x1 x3
z1z3 1 1 2 1 x2z1z2

2z3

Introduce x1 x3 �2n
3 -Representation of the exponent of v[2]

v[1] 1 x1 x2 x3 z1 z2 z3 v[2]
x1 x3 1 1 x1 x3
x1 x3 2 2 2 2 x2

1 x2
3z2

1z2
3

x1 x3 1 1 1 2 x1 x2 x3z2
2

Thus, x1 x3 − z1z3 is the second basis element in GT .

100 Modular codes

We continue on increasing ordering throughout the terms of degree 3 of [X,Z].
In the following lines, we show how the terms x1z2

1 , x3z2
1 , x2

1z1, x2
3z1, x1z2

3 , x3z2
3 ,

x2
1z3, x2

3z3 are inserted on the algorithm.

Introduce x1z2
1 �2n

3 -Representation of the exponent of v[2]

v[1] 1 x1 x2 x3 z1 z2 z3 v[2]
1 1 2 x1z2

1
1 2 1 1 2 x2

1 x3z1z2
3

1 1 1 2 2 x1 x2z2
1z2

2

Introduce x3z2
1 �2n

3 -Representation of the exponent of v[2]

v[1] 1 x1 x2 x3 z1 z2 z3 v[2]
1 1 2 x3z2

1
1 1 2 1 2 x1 x2

3z1z2
3

1 1 1 2 2 x2 x3z2
1z2

2

Introduce x2
1z1 �2n

3 -Representation of the exponent of v[2]

v[1] 1 x1 x2 x3 z1 z2 z3 v[2]
1 2 1 x2

1z1
1 0 1 0 2 x3z2

3
1 2 1 1 2 x2

1 x2z1z2
2

Introduce x2
3z1 �2n

3 -Representation of the exponent of v[2]

v[1] 1 x1 x2 x3 z1 z2 z3 v[2]
1 2 1 x2

3z1
1 1 0 0 2 x1z2

3
1 1 2 1 2 x2 x2

3z1z2
2

Introduce x1z2
3 �2n

3 -Representation of the exponent of v[2]

v[1] 1 x1 x2 x3 z1 z2 z3 v[2]
1 1 2 x1z2

3
1 2 1 2 1 x2

1 x3z2
1z3

1 1 1 2 2 x1 x2z2
2z2

3

3.4. Decomposition of modular codes 101

Introduce x3z2
3 �2n

3 -Representation of the exponent of v[2]

v[1] 1 x1 x2 x3 z1 z2 z3 v[2]
1 1 2 x3z2

3
1 1 2 2 1 x1 x2

3z2
1z3

1 1 1 2 2 x2 x3z2
2z2

3

Introduce x2
1z3 �2n

3 -Representation of the exponent of v[2]

v[1] 1 x1 x2 x3 z1 z2 z3 v[2]
1 2 1 x2

1z3
1 0 1 2 0 x3z2

1
1 2 1 2 1 x2

1 x2z2
2z3

Introduce x2
3z3 �2n

3 -Representation of the exponent of v[2]

v[1] 1 x1 x2 x3 z1 z2 z3 v[2]
1 2 1 x2

3z3
1 1 0 2 0 x1z2

1
1 1 2 2 1 x2 x2

3z2
2z3

After reduction, it is easily seen that the binomials x1z2
3 − x2

3z1, x3z2
3 − x2

1z1,
x2

1z3 − x3z2
1 and x1z2

1 − x3z3 are elements in GT .
Moreover, the inclusion of the terms x3

i and z3
i with i = 1, 2,3 gives the generators

of the ideal
〈JX,Z〉=
� �

x3
i − 1
�

i=1,...,3

� �
z3

i − 1
�

i=1,...,3

�
.

This ends the algorithm.

3.4 Decomposition of modular codes

In order to obtain a Gröbner test-set for the binary case or the set of codewords of
minimal support of a modular code � , we must compute a reduced Gröbner basis
of an ideal from which we know a generating set. Thus we can use the FGLM-based
trick described in Section 3.3. Note that the complexity of this algorithm is shown in
[11, 16] to be �

�
n2qn−k
�

where k is the number of rows of a generator matrix of
the code and n is the number of variables involved in our ideal, i.e. the length of the
code.

The main task of this section is to reduce the complexity of the previous algo-
rithms by using the decomposition of a given code as a “gluing” of smaller ones.
That is to say, our aim is to explicitly define a procedure that:

1. (Decomposition) Find a decomposition of an [n, k]-code � into the m-gluing
of two (or more) smaller codes, denoted by

��α
�
α∈A.

102 Modular codes

2. Compute��α , the set of codewords of minimal support of �α for each α ∈ A.

3. (Gluing) Compute�� from
�
��α
�
α∈A

.

In the binary case, a similar process can be defined to compute the Gröbner test-set
for � via the Gröbner test-set of the codes appearing in the decomposition of � as
the m-gluing of smaller codes. Furthermore, we would like to know under which
hypothesis this procedure turns out to be effective, i.e. when this algorithm is faster
than computing a reduced Gröbner basis of the original code � . Note that parallel
computing is implicitly well suited for step 2, since the computation can be carried
out in parallel for each component of the gluing.

We start by describing the decomposition of a code as the m-gluing of several
smaller codes where m is a positive integer. The concept of “glue” was first used
by A. Thomas [109] and Rosales [97] in the context of semigroups presentations.
Recently some generalizations have been made of this concept in [49].

The connection between linear codes and matroids will turn out to be funda-
mental for the development of the subsequent results. We will relate the m-gluing
operation with the m-sum operation described by Kashyap in [63, 65], which for
some particular cases turns out to be the same operation.

In the following three subsections we then study some individual cases. We start
by studying the simplest case, that is to say when a code is a direct sum or the 0-
gluing of two codes (see Subsection 3.4.1), then we study the 1-gluing operation in
Subsection 3.4.2 and the 3-gluing of codes in detail in Section 3.4.3. Note that the
2-gluing operation does not exist according to the definition proposed in this section.

Finally, we generalize the previous results from which we draw conclusions about
the effectiveness of using the decomposition in our goal of reducing the complexity
of computing the set of codewords of minimal support of an arbitrary code over �q
and we discuss some lines of future work.

For any vector x ∈ �n
q and a subset J = {i1, . . . , im} ⊆ {1, . . . , n} consisting of m

ordered integers, we denote by xJ =
�

xi1 , . . . , xim

�
∈ �m

q the restriction of x to the
coordinates indexed by J and by J the relative complement of J in {1, . . . , n}.

We can puncture an [n, k]-code � by deleting columns from a generator matrix
of � or equivalently by deleting the same set of coordinates in each codeword. Let
us consider a subset J of {1, . . . , n} the punctured code �J is the set of codewords of
� restricted to the positions of J , i.e.

�J =
�
cJ | c ∈ �
�

.

In the field case, if J consist of m elements then the punctured code �J has
parameters [n − m, k�, d �] with d −m≤ d � ≤ d and k−m≤ k� ≤ k where d
and d � are the minimal distances of � and �J respectively. Therefore, in puncturing
a code normally we keep its dimension fixed but we vary its length and redundancy.

We can shorten an [n, k]-code � by deleting columns from a parity check matrix
of � . The shortened code � .J is obtained by puncturing at J the set of codewords

3.4. Decomposition of modular codes 103

that have a zero in the J -locations i.e.

� .J =
�
cJ | c ∈ � and cJ = 0

�
.

To compute a generator matrix of � .{ j}, we first find a generator matrix of the orig-
inal code that has a unique row in which the j-column is nonzero. Then delete that
row and the j-column leaving the sought matrix. This process can be generalized
also to subsets with more than one element.

Again in the field case, if J consist of m elements then the shortened code � .J has
parameters [n−m, k�, d �] and minimal distance d � with k−m≤ k� ≤ k and d ≤ d � .

Hence, via the operation of puncturing and the method of shortening we can
obtain codes of shorter length from � . Take notice of some properties of these
operations such as the shortened code � .J is a subcode of the punctured code �J
(i.e. � .J ⊆ �J), the following statement on the dimension: dim(� .J) + dim(�J) =
dim(�) or the fact that shortening a code is dual to puncturing, to be precise,

��J
�⊥ =
�
�⊥
�

.J and
�� .J
�⊥ =
�
�⊥
�

J
.

From now on, for any positive integer i, let �i be an [ni , ki]-code over �q whose
coordinates are indexed by the set Ii (note that the sets of indices do not need to be
disjoint). We will use c(i) to denote the i-th coordinate of a codeword c.

We define the sum code of two modular codes �1 and �2 as the code

�1 ⊕�2 =
�
c=
�
c1 � c2
� | c1 ∈ �1 and c2 ∈ �2

�
.

where c=
�
c1 � c2
�
=
�
ci | i ∈ I1 ∪ I2
�

is defined as follows:

ci =





c(i)1 for i ∈ I1 \ I2

c(i)2 for i ∈ I2 \ I1

c(i)1 + c(i)2 for i ∈ I1 ∩ I2

for all c1 = (c
(i)
1 | i ∈ I1) ∈ �1 and c2 = (c

(i)
2 | i ∈ I2) ∈ �2 .

Given two vectors a ∈ �m1
q and b ∈ �m2

q whose coordinates are indexed by the
sets I1 and I2 respectively, we denote their concatenation by (a | b) ∈ �m1+m2

q . Note
that (a � b) = (a | b) if and only if I1 ∩ I2 = �.

Over finite fields, it is straightforward to prove that �1⊕�2 is a modular code of
length n1 + n2 − |I1 ∩ I2| and dimension

dim(�1 ⊕�2) = k1 + k2 − dim(�1.(I1∩I2)
∩�2.(I2∩I1)

). (3.11)

To prove this, note that the kernel of the following homomorphism

φ :
��1 | �2
� −→ �1 ⊕�2

defined by φ(c1,c2) = c1⊕ c2 is isomorphic to the code
�
�1.(I1∩I2)

∩�2.I1∩I2

�
. Indeed,

kerφ =
�
(x | y) ∈ ��1 | �2

�
: (x || y) = 0
�

=
�
(x | y) ∈ ��1 | �2

�
: xI1\I2

= yI2\I1
= 0 and xI1∩I2

+ yI1∩I2
= 0
�

=
�

z ∈ �n1+n2
q : z ∈
�
�1.(I1∩I2)

∩�2.I1∩I2

��
.

104 Modular codes

Hence, dim(�1 ⊕�2) = dim(�1 | �2)− dim(kerφ) as desired.
From �1 ⊕ �2 we can obtain a new code S(�1,�2) by shortening at the m =

|I1 ∩ I2| positions where �1 and �2 overlap. The codewords of this code will be
denoted by c1 �m c2 where c1 ∈ �1 and c2 ∈ �2. When the defined alphabet is a
finite field, Kashyap [65, Proposition 4.1] proves that S(�1,�2) is a linear code of
length n1 + n2 − 2|I1 ∩ I2| and dimension:

dim(S(�1,�2)) = dim(�1 ⊕�2)− dim(�1I1∩I2
⊕�2I1∩I2

)

= k1 + k2 − dim(�1.(I1∩I2)
∩�2.(I2∩I1)

)− dim(�1I1∩I2
⊕�2I1∩I2

).

To show the above claim, note that for any code � and a subset J of its index set,
the kernel of the projection map π : � −→ �J is isomorphic to � .J . Thus,
dim(� .J) = dim(�)− dim(�J). Now, taking � = �1 ⊕�2 and J = I1 ∩ I2, we have
that

dim
�
S(�1,�2)
�
= dim
��1 ⊕�2
�− dim
���1 ⊕�2
�

I1∩I2

�
.

This result together with Equation 3.11 gives the sought result.
We are interested in a particular case of the above construction, explained below.

Definition 3.28. Let m be a positive integer other than two and let �1 and �2 be
linear codes over �q of length at least 2m+1 such that |I1 ∩ I2|= m. If the following
conditions are satisfied:

1. 0 . . . 01 . . . 1� �� �
m

∈ ��1
and all possible m-bit words appear in the last m coordi-

nates of �1,

2. 1 . . . 1� �� �
m

0 . . . 0 ∈ ��2
and all possible m-bit words appear in the first m coordi-

nates of �2,

then the code S(�1,�2) is called the m-gluing modular code �1 g�m�2.

Remark 3.29. The main reason for imposing the above condition on the lengths of
the codes �1 and �2 is to ensure that the linear code � = �1 g�m�2 has greater
length than the maximum of the length of the original codes; i.e. n≥max{n1, n2}.
Remark 3.30. In the binary case, the above construction was studied in [63], where
the case m = 1 was called “1-sum" and the case m = 2 was called “3-sum". To avoid
any confusion we remark that this operation is not the same as the m-sum as defined
by Kashyap in [65], except when m= 1. Moreover, recall that Kashyap studied codes
defined over a finite field.

Let G1 =
�

g(1)1 , . . . , g(1)n1

�
∈ �k1×n1

q and G2 =
�

g(2)1 , . . . , g(2)n2

�
∈ �k2×n2

q be generator
matrices for any two linear codes �1 and �2, respectively, satisfying the conditions
of Definition 3.28, and let m be an integer such that 0 ≤ 2m < min{n1, n2}. These
two generator matrices can be composed to form a generator matrix of the code
� = �1 g�m�2 by:

3.4. Decomposition of modular codes 105

1. First, constructing the (k1 + k2)× (n1 + n2 −m)-size matrix

Ĝ =

�
g(1)1 . . . g(1)n1−m g(1)n1−m+1 . . . g(1)n1

0 . . . 0
0 . . . 0 g(2)1 . . . g(2)m g(2)m+1 . . . g(2)n2

�

2. Then, shortening the code generated by the rows in Ĝ at the m positions where
�1 and �2 overlap, resulting a generator matrix of the code � of length n1 +
n2 − 2m.

3.4.1 Direct sum of modular codes

Definition 3.31. Let �1 and �2 be [ni , ki]-codes over �q for i = 1,2 defined on
mutually disjoint index set I1 and I2, respectively, (i.e. I1 ∩ I2 = �). We can construct
the direct sum (or 0-gluing) code �1 g��2 with I1 ∪ I2 as its index set such that any
codeword c of � is defined by the concatenation c= (c1 � c2), that is

ci =

�
c(i)1 for i ∈ I1

c(i)2 for i ∈ I2
where





c1 =
�

c(i)1 | i ∈ I1

�
∈ �1

c2 =
�

c(i)2 | i ∈ I2

�
∈ �2

The following proposition states the connection between the direct sum of two
codes and the sum of its associated ideals.

Let X denotes the n1 variables
�

xi | i ∈ I1
�

and Y denotes the n2 variables
�

yj | j ∈ I2

�

then the binomial ideals associated to the codes �1 g��2, �1 and �2 are defined as
follows:

• I(�1) =
��

X�α −X�β | α− β ∈ �1

��
⊆ �[X].

• I(�2) =
��

Y�γ − Y�δ | γ−δ ∈ �2

��
⊆ �[Y].

• I(�1 g��2) =
��

X�αY�γ −X�βY�δ | (α− β � γ−δ) ∈ �1 g��2

��
⊆ �[X,Y].

In [74, Theorem 3.2] or equivalently in Theorem 3.9 we proved the equality
between the above ideals and the ideal associated to a code as defined in Equation
3.10.

Proposition 3.32. � = �1 g��2 if and only if I(�) = I(�1) + I(�2).

Proof. First, let us assume that � = �1 g� �2. Let Xα − Xβ be a binomial of I(�1)
then ��α− β� ∈ �1 or equivalently (�α−�β � 0) ∈ � , i.e. Xα − Xβ ∈ I(�). The
case I(�2)⊆ I(�) can be solved likeliwise. Thus I(�1) + I(�2)⊆ I(�).

Conversely, let XαYγ−XβYδ ∈ I(�) then (�α−�β � �γ−�δ) is a codeword of
� , that is to say that �α−�β ∈ �1 and �γ−�δ ∈ �2. Thus,

XαYγ −XβYδ = XαYγ −XβYγ +XβYγ −XβYδ

= (Xα −Xβ)Yγ + xβ (Yγ − Yδ) ∈ I(�1) + I(�2).

106 Modular codes

Therefore we have that I(�) = I(�1) + I(�2).
On the other hand, assume that I(�) = I(�1) + I(�2). Specifically

ker(H) =
�
ker(H1)× ker(H2)

�

where H, H1 and H2 are parity check matrices for � , �1 and �2 respectively. Given
c ∈ � by hypothesis HcT = 0 and it can be expressed as c= (cI1

� cI2
), or equivalently

cI1
HT

1 = cI2
HT

2 = 0; i.e. c= (cI1
� cI2
) with cI1

∈ �1 and cI2
∈ �2 .

Thus � ⊆ �1 g��2.
Contrariwise, let c1 ∈ �1 and c2 ∈ �2 then (c1 � c2) ∈ ker(H1) × ker(H2) ⊆

ker(H); i.e. (c1 � c2) ∈ � and we deduce the required result.

Corollary 3.33. Let � = �1 g��2 then I(�) is generated by the disjoint union of the
generators of each I(�i) with i = 1,2.

Proof. Trivial since the generators for each of the ideals I(�i) with i = 1, 2 do not
have common variables.

The above result is also true for a Gröbner basis and Graver basis. Thus, in the
binary case, we can study the test-sets for � by using the test-set for each �i with
i = 1,2. More generally, for every modular code � = �1 g� �2 defined over �q we
can obtain the set of codewords of minimal support of � via the set of codewords of
minimal support of �1 and �2.

Note also that the definition of direct sum can be easily extended to a finite family
of linear codes. Indeed, given a set of linear codes

��α
�
α∈A defined over �q of

parameters [nα, kα] and defined on mutually disjoint index sets Iα with α ∈ A, then
we can define the code g���α

�
α∈A and a similar study of this code can be done.

Example 3.34. Consider �H the [7, 4,3] Hamming code over �2. See Example 3.23
for a complete description of its Gröbner test-set and the set of codewords of minimal
support. Let us construct the code � = �H g� �H which turns out to be the binary
linear [14,8, 3]-code with generator matrix:

G =




1 0 0 0 0 1 1 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1




∈ �8×14
2 .

Associated to the code � we can define the following binomial ideal:

I(�) =
�




x1 x6 x7 − 1, x2 x5 x7 − 1, x3 x5 x6 − 1,
x4 x5 x6 x7 − 1, x8 x13 x14 − 1, x9 x12 x14 − 1,

x10 x12 x13 − 1, x11 x12 x13 x14 − 1



∪
�

x2
i − 1
�14

i=1

�
.

3.4. Decomposition of modular codes 107

The Graver basis of this ideal has 310 elements representing the set of codewords of
minimal support for the code� . Note that the 28 codewords of this set are formed by
the concatenation of a codeword of minimal support of the code �H and the vector
0 ∈ �7

2, i.e. they are of the form (c � 0) or (0 � c) with c belonging to��H
.

�� =





(0, 1,1, 1,1, 0,0, 0,0, 0,0, 0,0,0), (1,0, 1,1, 0,1, 0,0, 0,0, 0,0, 0,0),
(1, 1,0, 0,1, 1,0, 0,0, 0,0, 0,0,0), (1,1, 0,1, 0,0, 1,0, 0,0, 0,0, 0,0),
(1, 0,1, 0,1, 0,1, 0,0, 0,0, 0,0,0), (0,1, 1,0, 0,1, 1,0, 0,0, 0,0, 0,0),
(0, 0,0, 1,1, 1,1, 0,0, 0,0, 0,0,0), (0,0, 0,0, 0,0, 0,0, 1,1, 1,1, 0,0),
(0, 0,0, 0,0, 0,0, 1,0, 1,1, 0,1,0), (0,0, 0,0, 0,0, 0,1, 1,0, 0,1, 1,0),
(0, 0,0, 0,0, 0,0, 1,1, 0,1, 0,0,1), (0,0, 0,0, 0,0, 0,1, 0,1, 0,1, 0,1),
(0, 0,0, 0,0, 0,0, 0,1, 1,0, 0,1,1), (0,0, 0,0, 0,0, 0,0, 0,0, 1,1, 1,1),
(1, 1,1, 0,0, 0,0, 0,0, 0,0, 0,0,0), (1,0, 0,1, 1,0, 0,0, 0,0, 0,0, 0,0),
(0, 1,0, 1,0, 1,0, 0,0, 0,0, 0,0,0), (0,0, 1,0, 1,1, 0,0, 0,0, 0,0, 0,0),
(0, 0,1, 1,0, 0,1, 0,0, 0,0, 0,0,0), (0,1, 0,0, 1,0, 1,0, 0,0, 0,0, 0,0),
(1, 0,0, 0,0, 1,1, 0,0, 0,0, 0,0,0), (0,0, 0,0, 0,0, 0,1, 1,1, 0,0, 0,0),
(0, 0,0, 0,0, 0,0, 1,0, 0,1, 1,0,0), (0,0, 0,0, 0,0, 0,0, 1,0, 1,0, 1,0),
(0, 0,0, 0,0, 0,0, 0,0, 1,0, 1,1,0), (0,0, 0,0, 0,0, 0,0, 0,1, 1,0, 0,1),
(0, 0,0, 0,0, 0,0, 0,1, 0,0, 1,0,1), (0, 0,0, 0,0, 0,0, 1,0,0, 0,0, 1,1)





Similarly, for the Gröbner basis of I(�) we obtain 56 elements representing 14 code-
words of weight 3 form by the concatenation of a codeword of the Gröbner basis of
�H and the vector 0 ∈ �7

2.

Therefore, if we end with a decomposition of the code � as a direct sum of
several smaller codes �i with i ∈ A, the cost of computing the set of codewords of
minimal support of � is reduced to the cost of computing the Graver basis for every
code �i that appears on its decomposition. Furthermore, since this procedure can
be parallelized, we can reduce the time required for computing the set of codewords
of minimal support of � to the time needed to compute the Universal test-set of the
largest length code �i with i ∈ A that appears on its decomposition. In the binary
case we have a similar procedure to reduce the time required for computing the
Gröbner test-set for � .

Remark 3.35. In Example 3.34 Sage [104] on a Mac Os X it took 0.02 CPU time to
compute the set of codewords of minimal support of � = �H g��H while just 0.01
CPU time were enough to compute the set of codewords of minimal support of �H .
Therefore, in this toy example we have reduced the time by a half.

Remark 3.36. The test to determine if a linear code � over �q is expressible as a
direct sum of a family of linear codes

��α
�
α∈A is given by the following steps.

1. Take any generator or parity check matrix of � , say M = (mi j) ∈ �m×n
q .

2. Bring M into systematic form M =
�

Im A
�

using row operations and col-
umn permutations.

108 Modular codes

3. Associate a bipartite graph T = (R ∪ C; ET) to the matrix M by setting the
variables C =
�

c1, . . . , cn
�

to the columns of M , the variables R=
�

r1, . . . , rm
�

to
the rows of M and defining any edge of T as e =

�
ci , rj

�
with ci ∈ C and rj ∈ R

whenever mi j �= 0. The connected components of T then induces the required
structure of the codes �α. If T is connected then � cannot be expressed as the
direct sum of two or more linear codes.

Observe that if we consider a parity-check matrix of � in systematic form, then the
graph T is the corresponding Tanner Graph of � . This test has previously been used
by Kashyap in [63].

Example 3.37. Let us consider the [7, 4]-code � defined over �5 with parity check
matrix

H�2
=




1 0 0 1 2 0 0
0 1 0 0 0 2 0
0 0 1 0 0 4 4


 ∈ �3×7

5 .

Figure 3.1 represents the Tanner graph of the parity check matrix H.

v1

v2 c1 c1 = v1 + v4 + 2v5 = 0

v3

v4 c2 c2 = v2 + 2v6 = 0

v5

v6 c3 c3 = v3 + 4v6 + 4v7 = 0

v7

Figure 3.1: Tanner graph of the parity check matrix H.

Note that this graph has two connected components which describe two codes �1
and �2 defined over �5 with parity check matrices

H�1
=
�

1 1 2
�
∈ �1×3

5 and H�2
=
�

1 0 2 0
0 1 4 4

�
∈ �2×4

5

and index sets I1 = {1,4, 5} and I2 = {2, 3,6, 7} , respectively. These two codes
verified that � = �1 ⊕�2.

3.4. Decomposition of modular codes 109

The ideals associated to these codes are:

I(�1) =
��

x1 x4 x2
5 − 1
�
∪
�

x5
i − 1
�

i=1,4,5

�
⊆ �2[x1, x4, x5]

I(�2) =
��

x2 x2
6 − 1, x3 x4

6 x4
7

�
∪
�

x5
i − 1
�

i=2,3,6,7

�
⊆ �2[x2, x3, x6, x7].

If we compute a Graver basis of the above ideals we get the set of codewords of
minimal support of each code. That is:

• All codewords of �1 has minimal support. Thus,

��1
=
�
(1, 1,2) (2, 2,4) (3,3, 1) (4,4, 3)

�

• The code �2 has 12 minimal support codewords given by

��2
=




(1, 0,2, 0) (2,0, 4,0) (3,0, 1,0) (4, 0,3,0)
(0, 1,4, 4) (0,2, 3,3) (0,3, 2,2) (0, 4,1,1)
(1, 2,0, 3) (2,4, 0,1) (3,1, 0,4) (4, 3,0,2)



 .

Similarly we can compute the set of 16 codewords of minimal support of � de-
fined by

�� =





(1, 0,0, 1,2, 0,0) (2,0, 0,2, 4,0, 0) (3,0, 0,3, 1,0, 0) (4, 0,0, 4,3, 0,0)
(0, 1,0, 0,0, 2,0) (0,2, 0,0, 0,4, 0) (0,3, 0,0, 0,1, 0) (0, 4,0, 0,0, 3,0)
(0, 0,1, 0,0, 4,4) (0,0, 2,0, 0,3, 3) (0,0, 3,0, 0,2, 2) (0, 0,4, 0,0, 1,1)
(0, 1,2, 0,0, 0,3) (0,2, 4,0, 0,0, 1) (0,3, 1,0, 0,0, 4) (0, 4,3, 0,0, 0,2)



 .

Note that all codewords of�� are of the form:
�
c1 || 0
�

with c1 ∈��1
or
�
0 || c2
�

with c2 ∈��2
.

3.4.2 1-gluing of modular codes

Definition 3.38. Let �1 and �2 be modular codes over �q of length at least 3 such
that |I1 ∩ I2| = 1. We will assume w.l.o.g. that the common index corresponds to
the last coordinate of �1 and the first coordinate of �2. Moreover, if the following
conditions are satisfied:

1. (0, . . . , 0, 1) is not a codeword of �1 and the last coordinate of �1 is neither
identically zero nor a zero divisor.

2. (1, 0, . . . , 0) is not a codeword of �2 and the first coordinate of �2 is neither
identically zero nor a zero divisor.

Then the 1-gluing modular code �1 g�1�2 can be defined as the modular code
S(�1,�2) over �q.

110 Modular codes

The following lemma allows us to characterize the set of codewords of the code
�1 g�1�2.

Lemma 3.39. c ∈ �1 g�1�2 if and only if there exist two codewords c1 ∈ �1 and
c2 ∈ �2 such that c(n1)

1 + c(1)2 = 0 and c= c1 �1 c2.

Proof. Any vector c ∈ � = �1 g�1�2 can be extended to a vector ĉ of �1 ⊕�2 by
inserting a zero in the n1-th position. In other words, we found two codewords
c1 ∈ �1 and c2 ∈ �2 such that

ĉ= (ĉi | i ∈ I1 ∪ I2) with ĉi =





c(i)1 1≤ i < n1

0= c(n1)
1 + c(1)2 i = n1

c(i−n1+1)
2 n1 < i ≤ n1 + n2 − 1

Therefore c= c1 �1 c2 with c(n1)
1 + c(1)2 = 0.

Conversely, let c1 and c2 be codewords of �1 and �2, respectively, such that
c(n1)

1 + c(1)2 = 0. Then the vector (c1 � c2) shortened on the n1-th coordinate is by
definition a codeword of � = �1 g�1�2.

Let X denote the n1 − 1 variables
�

x1, . . . , xn1−1

�
, Y denote the n2 − 1 variables�

y2, . . . , yn2

�
and Z denote one extra variable. Then the binomials ideal associated

to each of the following codes �1 g�1�2, �1.{n1}
and �2.{1} are defined as follows:

• I(�1 g�1�2) =
��

X�αY�β −X�γY�δ | �α− γ | β −δ� ∈ �
��
⊆ �[X,Y].

• I(�1) =
��

X�αZ�αn1 −X�βZ�βn1 |
�
α− β | αn1

− βn1

�
∈ �1

��
⊆ �[X,Z] thus

I(�1.{n1}
) =
��

X�α −X�β | α− β ∈ �1.{n1}

��
⊆ �[X].

• I(�2) =
��

Z�γ1Y�γ − Z�δ1Y�δ | �γ1 −δ1 | γ−δ
� ∈ �2

��
⊆ �[Z,Y] thus

I(�2.{1}) =
��

Y�γ − Y�δ | γ−δ ∈ �2.{1}

��
⊆ �[Y].

The following proposition states the connection between the 1-gluing of two
codes and the sum of its associated ideals.

Proposition 3.40. � = �1 g�1�2 if and only if

I(�) = I(�1.{n1}
) + I(�2.{1}) +
�
X�γx − Y�γy
�

,

where:

• γx ∈ �(n1−1)
q , X�γx − Z ∈ I(�1) and λ1γx + λ2c1 �= 0 for all λ1, λ2 ∈ �q \ {0}

and c1 ∈ �1.{n1}
.

3.4. Decomposition of modular codes 111

• γy ∈ �(n2−1)
q , Z− Y�γy ∈ I(�2) and λ1γy + λ2c2 �= 0 for all λ1, λ2 ∈ �q \ {0}

and c2 ∈ �2.{1} .

Proof. Let us assume that � = �1 g�1�2. We claim that

I(�) = I(�1.{n1}
) + I(�2.{1}) +
�
X�γx − Y�γy
�

.

Let Xα − Xβ be a binomial of I(�1.{n1}
), then ��α− β� ∈ �1.{n1}

; or equivalently,��(α− β) | 0� ∈ �1. Therefore, by Lemma 3.39,
���α− β� , 0
� �1 0 is a codeword

of � with 0 ∈ �n2
q . Hence Xα − Xβ ∈ I(�). The case I(�2.{1}) ⊆ I(�) can be solved

likewise.
Furthermore, since X�γx−Z and Z−Y�γy belongs to I(�1) and I(�2), respectively;

by definition we have that
�
γx | −1
� ∈ �1 and
�

1 | −γy

�
∈ �2. Thus, by Lemma

3.39,
�
γx | −γy

�
∈ � i.e. X�γx − Y�γy ∈ I(�).

We have actually proved that I(�1.{n1}
) + I(�2.{1}) +
�
X�γx − Y�γy
�⊆ I(�).

Conversely, let XαYβ −XγYδ be a binomial of I(�) then
��(α− γ) | �(β −δ)� is

a codeword of � . By Lemma 3.39 there exist two codewords
��(α− γ) | ∗1
� ∈ �1

and
�∗2 | �(β −δ)
� ∈ �2 with ∗1,∗2 ∈ �q and ∗1+∗2 = 0. We distinguish two cases:

1. If ∗1 = ∗2 = 0, that is to say,
��(α− γ) | 0� ∈ �1 and

�
0 | �(β −δ)� ∈ �2 or,

equivalently, Xα −Xγ ∈ I(�1.{n1}
) and Yβ − Yδ ∈ I(�2.{1}). Thus

XαYβ −XγYδ = XαYβ −XγYβ +XγYβ −XγYδ

= (Xα −Xγ)Yβ +Xγ(Yβ − Yδ) ∈ I(�1.{n1}
) + I(�2.{1}).

2. If ∗1 �= 0 �= ∗2, that is to say,
��(α− γ) | ∗1
� ∈ �1 and
�∗2 | �(β −δ)
� ∈ �2 or,

equivalently, XαZ�∗1 − Xγ ∈ I(�1) and Z�∗2Yβ − Yδ ∈ I(�2). Since
�
γx | −1
� ∈

�1 then
��(α− γ) | ∗1
�
+ ∗1
�
γx | −1
�
=
��(α− γ) + ∗1γx | 0

� ∈ �1.

So if we remove the n1-th coordinate we have that (�(α− γ) + ∗1γx) ∈ �1.{n1}

or, equivalently, XαX�(∗1γx) −Xγ ∈ I(�1.{n1}
). Similarly we prove that

(0 | �(β −δ) + ∗2γy) = (0 | �β −∗1γy −�δ) ∈ �2,

i.e. Yβ − YδY�(∗1γy) ∈ I(�2.{1}).

Thus XαYβ −XγYδ can be written as:

XαYβ −XαYδY�(∗1γy) +XαYδY�(∗1γy) −XαX�(∗1γx)Yδ +XαX�(∗1γx)Yδ −XγYδ

= Xα
�

Yβ − YδY�(∗1γy)
�
−XαYδ
�

X�(∗1γx) − Y�(∗1γy)
�
+ Yδ
�

XαX�(∗1γx) −Xγ
�

which gives XαYβ −XγYδ ∈ I(�1.{n1}
) + I(�2.{1}) +
�
X�γx − Y�γy
�

since

X�(∗1γx) − Y�(∗1γy) =
�
X�γx − Y�γy
�
��∗1�

i=1

X(�∗1−i)�γx Y(i−1)�γy

�
.

112 Modular codes

On the other hand, let H, H1 and H2 be parity check matrices of � , �1 and �2,
respectively. By definition the matrices Ĥ1 obtained by deleting the last column of
H1 and Ĥ2 by deleting the first column of H2, are parity check matrices of �1.{n1}

and
�2.{1} , respectively.
The following assumption is straightfoward:

If I(�) = I(�1.{n1}
) + I(�2.{1}) +
�
X�γx − Y�γy
�

, then

ker(H) =
��

ker(Ĥ1)× ker(Ĥ2)
�∪
��
γx ,−γy

���
. (3.12)

Let us assume that I(�) = I(�1.{n1}
) + I(�2.{1}) +
�
X�γx − Y�γy
�

and let c be a
codeword of � then HcT = 0. By Equation 3.12, there exist λ1, λ2 ∈ �q such that
c = λ1
�
ĉ1 | ĉ2
�
+ λ2

�
γx | −γy

�
with
�
ĉ1 | ĉ2
� ∈ ker(Ĥ1) × ker(Ĥ2); that is to say,

ĉ1 ∈ �1.{n1}
and ĉ2 ∈ �2.{1} or, equivalently, (ĉ1 | 0) ∈ �1 and (0 | ĉ2) ∈ �2. Therefore,

c= c1 �1 c2 ∈ �1 g�1�2 where

c1 =
�
λ1ĉ1 +λ2γx | 1

� ∈ �1 and c2 =
�
−1 | λ1ĉ2 −λ2γy

�
∈ �2.

Hence � ⊆ �1 g�1�2.

Conversely, let c1 ∈ �1 and c2 ∈ �2 such that c(n1)
1 + c(1)2 = 0. We can define the

vector c1 ||1 c2 = (ĉ1 | ĉ2) where ĉ1 denotes the restriction of c1 to the coordinates
indexed by {1, . . . , n1 − 1} and ĉ2 denotes the restriction of c2 to the coordinates
indexed by {2, . . . , n2}.
If c(n1)

1 = 0 then c(1)2 = 0, or equivalently ĉ1 ∈ �1.{n1}
and ĉ2 ∈ �2.{1} i.e.

c1 ||1 c2 ∈ ker(Ĥ1)× ker(Ĥ2)⊆ ker(H).

Otherwise, since
�
γx | −1
� ∈ �1, then Ĥ1γ

T
x = H(n1)

1 where H(n1)
1 denotes the last

column of the matrix H1 ∈ �(n1−k1)×n1
q . Therefore,

0= H1cT
1 = Ĥ1ĉT

1 + c(n1)
1 H(n1)

1 = Ĥ1ĉT
1 + c(n1)

1 Ĥ1γ
T
x .

That is, ĉ1 + c(n1)
1 γx ∈ ker(Ĥ1). Similarly we have that ĉ2 + c(1)2 γy ∈ ker(Ĥ2). Thus

ĉ=
�

ĉ1 + c(n1)
1 γx | ĉ2 − c(n1)

1 γy

�
∈ ker(Ĥ1)× ker(Ĥ2)

Or equivalently, c = c1 �1 c2 = ĉ + c(n1)
1 (γx | −γy) ∈ ker(H). Hence, the equality

� = �1 g�1�2 is proved.

Remark 3.41. By Definition 3.38 we can always find the binomials Xγx−Z and Z−Yγy

belonging to I(�1) and I(�2), respectively, verifying the required properties.

In the binary case, the following proposition allows us to compute the Gröbner
test-set for I(�) when � = �1 g� �2 by using the Gröbner test-set of each �i with
i = 1,2 w.r.t. the same degree compatible ordering.

3.4. Decomposition of modular codes 113

Proposition 3.42. Let � = �1 g�1�2. Compute a reduced Gröbner basis of I(�) w.r.t.
a degree compatible ordering ≺ in �[X,Y] induced by the order

x1 > . . .> xn1
> y2 > . . .> yn2

is equivalent to compute a reduced Gröbner basis of I(�1) w.r.t. ≺ in �[X,Z] induced
by the order x1 > . . . > xn1−1 > Z, then a reduced Gröbner basis of I(�2) w.r.t. ≺ in
�[Z,Y] induced by the order Z > y2 > . . . > yn2

and making all possible combinations
between the binomials of the two sets. Finally, if it were necessary, reduce it.

Proof. Let us fix an arbitrary degree compatible ordering ≺. Let �1 ⊆ �[X,Z] be a
reduced Gröbner basis of I(�1) w.r.t. ≺ induced by the variable orderring x1 > . . .>
xn1−1 > Z. Then this basis can be decomposed into two disjoints sets of binomials:

• � z
1 which contains all the binomials of �1 involving the variable Z.

• � z
1 which contains all the binomials of �1 that do not use the variable Z.

Since �1 is a reduced Gröbner basis it is easy to see that � z
1 is a reduced Gröbner

basis of I(�1.{n1}
).

Similarly, we can decompose the reduced Gröbner basis �2 ⊆ �[Z,Y] of I(�2)
w.r.t. ≺ induced the variable ordering Z > y2 > . . . > yn2

into to disjoints binomials
sets � z

2 and � z
2 .

It suffices to prove that
�
� z

1 ||1 0, 0 ||1 � z
1 , � z

1 ||1 � z
2

�
is a Gröbner basis of

I(�) w.r.t. ≺ induced by the order x1 > . . .> xn1−1 > y2 > . . .> yn2
. This statement

is trivial, otherwise we could find a codeword c in � which is not of the form c1 ||1 c2

with c(n1)
1 + c(1)2 = 0 which contradicts Lemma 3.39.

The next proposition describes the set of codewords of minimal support of a 1-
gluing code. In its proof we use some notions from �q-representable matroid theory,
thus our results are restricted to linear codes defined over �q with q prime.

Proposition 3.43. Let � = �1 g�1�2 be a linear code defined over �q with q prime,
then the following statements are equivalent:

1. c ∈�� .

2. c belongs to one of the following sets:

• A=
�
(c1 | 0) : c1 ∈��1.{n1}

and 0 ∈ �n2−1
q

�
.

• B =
�
(0 | c2) : c2 ∈��2.{1}

and 0 ∈ �n1−1
q

�
.

• C =
�
c1 �1 c2 : c1 ∈��1

, c2 ∈��2
and c(n1)

1 �= 0 �= c(1)2

�
.

Proof. Let Gi ∈ �ki×ni
q and Hi ∈ �(ni−ki)×ni

q be a generator and a parity check matrix,
respectively of the code �i with i = 1, 2. Using Proposition 3.40 it is easy to check
that

H =
�

Ĥ1 A
0 B

�
∈ �(n−k)×n

q

114 Modular codes

is a parity check matrix of � , where:

• Ĥ1 is a submatrix of H1 obtained by deleting its last column, that is to say it is
a parity check matrix of the code �1.{n1}

.

• Similarly, Ĥ2 is a submatrix of H2 obtained by deleting its first column, i.e. Ĥ2
is a parity check matrix of the code �2.{1} .

• Now assume that B1 denotes the matrix formed by the rows of H2 where the
first element is zero, then B is obtained from B1 by deleting the first column.

• Furthermore, let A1 be an (n1−k1)×n2 matrix whose rows are linear combina-
tions of the rows of H2 in such a way that h(1)i,n1

= −ai,1 in �q, where ai, j denotes

the element of matrix A1 in row i and column j and in the same manner h(1)i, j
indicates the (i, j)-th element of the matrix H1. Then A is obtained from A1 by
deleting the first column.

Note that all rows of Ĥ2 are present in some way in the matrix
�

A
B

�
.

Let E1 and E2 be the index set of the columns of Ĥ1 and H \ Ĥ1 respectively. We
consider any codeword c from the set�� :

• If supp(c) ∩ E2 = � and taking into account that (α0 . . . 0) /∈ �2, then the only
possibility remaining (that does not contradict the minimality of c) is that there
exists c1 ∈��1.{n1}

such that c=
�
c1 | 0
�
.

• Similarly, if supp(c) ∩ E1 = �, there must exist a codeword c2 ∈ ��2.{1}
such

that c=
�
0 | c2
�
.

• If supp(c) intersects both E1 and E2, say Ê1 and Ê2, then we know by matroid
theory that the set of columns indexed by Ê1∪ Ê2 is a minimally dependent set.
Therefore the set of columns of Ĥ1 indexed by Ê1 are linearly independent,
so any codeword of �1 with support Ê1 ∪ {n1} is a codeword of the set��1

.
Likewise, any codeword of �2 with support {1} ∩ Ê2 is a codeword of the set
��2

.

In other words, if c= c1 �1 c2 with c(n1)
1 �= 0 then c1 ∈��1

and c2 ∈��2
.

Conversely, let c1 ∈ ��1
and c2 ∈ ��2

with c(n1)
1 + c(1)2 = 0 then we distinguish

two cases:

1. If c(n1)
1 = c(1)2 = 0, then

�
ĉ1 | 0
� ∈�� and
�
0 | ĉ2
� ∈�� where ĉ1 denotes the

restriction of c1 to the coordinates indexed by
�
1, . . . , n1 − 1
�

and ĉ2 denotes
the restriction of c2 to the coordinates indexed by

�
2, . . . , n2
�
. Or equivalently,

ĉ1 ∈ �1.{n1}
and ĉ2 ∈ �2.{1} . Otherwise we obtain a contradiction to the mini-

mality of c1 in �1 and similarly with the minimality of c2 in �2.

3.4. Decomposition of modular codes 115

2. If c(n1)
1 �= 0. Assume to the contrary that c = c1 ||1 c2 /∈�� . Then, there exists

ĉ ∈ � such that supp(ĉ)� supp(c). Furthermore, since ĉ ∈ � , by Lemma 3.39,
there exists ĉ1 ∈ �1 and ĉ2 ∈ �2 such that ĉ = ĉ1 ||1 ĉ2. Thus at least one of
the following expressions must hold:

supp
�

ĉ1|{1,...,n1−1}

�
� supp
�

c1|{1,...,n1−1}

�
or supp
�

ĉ2|{2,...,n2}

�
� supp
�

c2|{2,...,n2}

�

As c(n1)
1 �= 0 �= c(1)2 then we deduce that

supp
�
ĉ1
�� supp
�
c1
�

and/or supp
�
ĉ2
�� supp
�
c2
�

which contradicts the minimality of c1 in �1 and / or the minimality of c2 in
�2.

Let us consider first an easy example showing the ideas stated above.

Example 3.44. Let us consider the [3, 2,1]-code�1 and the [4,3, 1]-code�2 defined
over �5 with generator matrices:

G�1
=
�

0 1 0
2 3 4

�
∈ �2×3

5 and G�2
=




1 0 1 2
0 2 0 2
0 0 1 0


 ∈ �3×4

5 ,

respectively.
If we compute the Graver basis of the ideals associated to these codes we get the

set of codewords of minimal support of each code, i.e. ��1
and��2

, respectively.

��1
=




(403), (301),
(204), (102),
(010)



 and ��2

=





(0101), (0202), (0303), (0404),
(0010),
(4003), (2004), (3001), (1002),
(3400), (1300), (2100), (4200)





Since �1 and �2 satisfy the statement of Definition 3.38, then � = �1 g�1�2 is
well defined and it works out to be the [5,4, 1]-code with generator matrix

G� =




0 1 0 0 0
2 3 0 1 2
0 0 1 0 1
0 0 0 1 0


 ∈ �

4×5
5 .

A Graver basis of the ideal associated to this code gives us the set of 14 codewords of
minimal support of � . Following the notation of Proposition 3.43, this set consists
of:

• 1 codeword belonging to the set A: {(01000)}.

116 Modular codes

• 5 codewords belonging to the set B :
�
(00404), (00303), (00202), (00101), (00010)

�
.

• And 8 codewords belonging to the set C:
�
(40100), (30200), (20300), (10400),
(40004), (30003), (20002), (10001)

�

Example 3.45. Take �1 to be the [5,3, 1]-code defined over �3 with corresponding
generator and parity check matrices

G�1
=




0 1 0 1 0
1 2 0 2 0
1 0 1 1 1


 ∈ �3×5

3 and H�1
=
�

0 1 0 2 1
0 0 1 0 2

�
∈ �2×5

3 ,

respectively. Therefore, the ideal associated to�1 is defined as the following binomial
ideal:

I(�1) =
��

x2 x4 − 1, x1 x2
2 x2

4 − 1, x1 x3 x4 x5 − 1
�
∪
�

x3
i − 1
�5

i=1

�
.

The Graver basis of this ideal turns out to be the set of codewords of minimal support
of the code �1 which consists of 18 codewords. Sage [104] on a Mac Os X takes
under 3 seconds to compute this algorithm.

Let �2 be the [6, 3,2]-code over �3 with corresponding generator and parity
check matrices

G�2
=




1 0 0 0 1 2
0 1 0 1 0 0
0 0 1 2 2 1


 ∈ �3×6

3 and H�2
=




1 0 2 0 0 1
0 1 2 2 0 0
0 0 0 0 1 1


 ∈ �3×6

3 ,

respectively. Hence, the binomial ideal associated to �2 is defined as:

I(�2) =
��

x1 x5 x2
6 − 1, x2 x4 − 1, x3 x2

4 x2
5 x6 − 1
�
∪
�

x3
i − 1
�6

i=1

�
.

Sage takes about 0.23 seconds to determine a Graver basis of this ideal which gives
the set of 21 codewords of minimal support of the code �2.

These codes satisfy the statement of Definition 3.38, thus their 1-gluing code
� = �1 g�1�2 is the [9, 5,1]-code with generator matrix

G� =




0 1 0 1 0 0 0 0 0
1 2 0 2 0 0 0 0 0
1 0 1 1 0 0 0 2 1
0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 2 2 1



∈ �5×9

3 .

Associated to the code � we can define the following binomial ideal:

I(�) =
��

x2 x4 − 1, x1 x2
2 x2

4 − 1, x1 x3 x4 x2
8 x9 − 1,

x5 x7 − 1, x6 x2
7 x2

8 x9 − 1

�
∪
�

x3
i − 1
�9

i=1

�
.

3.4. Decomposition of modular codes 117

In this case Sage takes 21.13 seconds to determine the set of 50 codewords of mini-
mal support of � .

Therefore, we conclude that if we know a decomposition of our original code �
as � = �1 g�1�2, then computing the set of codewords of minimal support of the
codes �1 and �2 and running parallel computations is 7 times faster than computing
a complete Graver basis for � .

Remark 3.46. Suppose that, after row operations and column permutations (denoted
by π), the generator matrix of an [n, k]-code � is expressible as a matrix of the
following form:

M =




A1 0
v1 v2
0 A2


 ∈ �k×n

q ,

where the matrix Ai has size (ki − 1)× (ni − 1) and the vector vi is an (ni − 1)-tuple
of �q-elements, for i = 1,2. Then � = �1 g�1�2, where �i are the linear codes of
parameters [ni , ki] defined over the index set Ii =

�
j ∈ {1, . . . , n} | π(j) ∈ {1, . . . , ni}

�
for i = 1, 2 and with corresponding generator matrices:

G�1
=
�

A1 0
v1 ∗1

�
∈ �k1×n1

q and G�2
=
�

0 A2
∗2 v2

�
∈ �k2×n2

q ,

such that ∗1 + ∗2 = 0.

3.4.3 3-gluing of modular codes

Definition 3.47. Let �1 and �2 be linear codes over �q of length at least 7 such that
|I1 ∩ I2| = 3. We will assume w.l.o.g. that the common indexes corresponds to the
last three coordinates of �1 and the last three coordinates of �2

If the following conditions are satisfied:

1. (0, . . . , 0, 1, 1, 1) ∈ ��1
and all possible 3-bit words appear in the last 3 coor-

dinates of �1.

2. (1,1, 1,0, . . . , 0) ∈ ��2
and all possible 3-bit words appear in the first 3 coor-

dinates of �2.

Then the 3-gluing modular code �1 g�3�2 can be defined as the modular code
S(�1,�2) over �q.

Analogous to the 1-gluing case we have the following characterization for the set
of codewords of the code �1 g�3�2.

Lemma 3.48. c ∈ �1 g�3�2 if and only if there exist two codewords c1 ∈ �1 and
c2 ∈ �2 such that c(n1)

1 + c(3)2 = c(n1−1)
1 + c(2)2 = c(n1−2)

1 + c(1)2 = 0 and c= c1 ||3 c2.

Proof. This proposition is a straight forward generalization of Lemma 3.39.

118 Modular codes

In this subsection let X denote the n1 − 3 variables {x1, . . . , xn1−3} and Y denote
the n2 − 3 variables {y4, . . . , yn2

}. We have the following result which states the
connection between the 3-gluing of two codes and the sum of its associated ideals.

Proposition 3.49. � = �1 g�3�2 if and only if

I(�) = I(�1.{n1−2,n1−1,n1}
) + I(�2.{1,2,3}) +

�
X�γx − Y�γy ,X�αx − Y�αy ,X�βx − Y�βy

�
,

where:

• (αx | 100), (βx | 010), (γx | 001) ∈ �1 and αx + βx + γx = 0.

• (100 | αy), (010 | βy), (001 | γy) ∈ �2 and αy + βy + γy = 0.

Proof. Note that this Proposition is a natural extension of Proposition 3.40.

Next proposition is related to the set of codewords of minimal support of a 3-
gluing. Similar to the 1-gluing case we restrict our result to linear codes defined over
�q with q prime, or equivalently, for any code defined on �q with q prime.

Proposition 3.50. Let � = �1 g�3�2 be a linear code defined over �q with q prime. If
c ∈�� then c belongs to one of the following sets:

• A=
��

c1 | 0
�

: c1 ∈��1.{n1−2,n1−1,n1}
and 0 ∈ �n2−3

q

�
.

• B =
��

0 | c2
�

: c1 ∈��2.{1,2,3}
and 0 ∈ �n1−3

q

�
.

• C =
�
c1 ||3 c2 : c1 ∈��1

, c2 ∈��2
and c(1)2 , c(2)2 , c(3)2 ∈ �q \ {0}

�
.

Proof. Similarly to the proof in Proposition 3.43, let Gi ∈ �ki×ni
q and Hi ∈ �(ni−ki)×ni

q
be a generator and a parity check matrix, respectively, of the code �i with i = 1,2.
Using Proposition 3.49 it is easy to check that

H =
�

Ĥ1 A
0 B

�
∈ �(n−k)×n

q

is a parity check matrix for � , where:

• Ĥ1 is a submatrix of H1 obtained by deleting its last three columns, that is Ĥ1
is a parity check matrix of the code �1.{n1−2,n1−1,n1}

.

• Similarly Ĥ2 is a submatrix of H2 obtained by deleting its first three columns,
i.e. Ĥ2 is a parity check matrix of the code �2.{1,2,3} .

• Now let B1 denote the matrix formed by the rows of H2 where the first three el-
ements are zero, then B is obtained from B1 by deleting the first three columns.

3.4. Decomposition of modular codes 119

• Furthermore, let A1 be an (n1 − k1) × n2 matrix whose rows are formed by
linear combinations of the rows of H2 in such a way that
�

H(n1−2)
1 H(n1−1)

1 H(n1)
1

�
=
�

A(1)1 A(2)1 A(3)1

�

where H(i)1 denotes the i-th column of H1 and A(j)1 indicates the j-th column of
A1. Then A is obtained from A1 by deleting the first three columns.

Note that all rows of Ĥ2 are present in some way in the matrix
�

A
B

�
.

Let E1 and E2 be the index set of the columns of Ĥ1 and H \ Ĥ1 respectively. We
consider any codeword c of the set�� .

• If supp(c)∩ E2 = � then there exists a codeword c1 belonging to��1.{n1−2,n1−1,n1}

such that c =
�
c1 | 0
�
. Since (1110 . . . 0) ∈��2

, the other possibility we have
is when

c1 =
�
ĉ1 | 000
�
+ (0 . . . 0111)

with
�
ĉ1 | 000
� ∈ �1, but notice that c1 ||3 (1110 . . . 0) =

�
ĉ1 | 0
�

where ĉ1 must
belong to��1.{n1−2,n1−1,n1}

, otherwise we obtain a contradiction to the minimality
of c.

• Equivalent, for the case supp(c) ∩ E1 = �, there must exist a codeword c2
belonging to��2.{1,2,3}

such that c=
�
0 | c2
�
.

• If supp(c) intersects both E1 and E2, say E1 and E2, then we know by matroid
theory that the set of columns indexed by Ê1∪ Ê2 is minimally dependent. That
is to say, the set of columns of Ĥ1 indexed by Ê1 are linearly independent, so
any codeword of �1 with support

�
E1 ∪ {n1 − 2}, E1 ∪ {n1 − 1}, E1 ∪ {n1}

�

is a codeword of the set��1
. Likewise any codeword of �2 with support

�
{1} ∪ E2, {2} ∪ E2, {3} ∪ E2

�

is a codeword of the set��2
.

Since c ∈ � = �1 g�3�2, by Lemma 3.48 we know that there exist c1 ∈ �1 and
c2 ∈ �2 such that c= c1 ||3 c2, but this decomposition is not unique in general.
We can distinguish two cases:

1. If there exists a codeword ĉ1 ∈ �1 of the form
�

c|E1
| ∗00
�

,
�

c|E1
| 0 ∗ 0
�

or
�

c|E1
| 00∗
�

,

then we have that ĉ1 ∈��1
. W.l.o.g. we can assume that ĉ1 =

�
c|E1
| ∗00
�

.
If there is not a codeword ĉ2 ∈ �2 of the form

�
−∗ 00 | c|E2

�
such that

c= ĉ1 �3 ĉ2 then we would have that a codeword of the form

c1 − ĉ1 − (∗1 −∗) (0 | 111) =
�
0 | 0,∗2 −∗1 + ∗,∗3 −∗1 + ∗

�

120 Modular codes

where (∗1,∗2,∗3) are the last three elements of c1, must belongs to the
code �1 which contradicts the minimality of the codeword (0 . . . 0111) in
�1 except for the case ∗2 = ∗3 = ∗1 − ∗. However, in this special case we
would have that

c2 + ∗2 (111 | 0) =
�
−∗1 +∗2, 0, 0 | c|E2

�

is a codeword of the code �2 which contradicts the last hypothesis we
made.

2. Otherwise we would have that the set of columns of Ĥ1 indexed by

E1 ∪ {n1 − 2}, E1 ∪ {n1 − 1} and E1 ∪ {n1}

are linearly independent. So any codeword of �1 with support

E1 ∪ {n1 − 2, n1 − 1}, E1 ∪ {n1 − 2, n1} and E1 ∪ {n1 − 1, n1}

is a codeword of the set��1
. Moreover, we can always define a codeword

with this characteristics since αx +βx +γx = 0 then c|E1
can be expressed

uniquely as

c|E1
= ĉ1 +λ1αx +λ2βx +λ3γx

= ĉ1 + (λ1 −λ3)αx + (λ2 −λ3)βx

with ĉ1 ∈ �1.{n1−2,n1−1,n1}
and similarly for the vector c|E2

.

In both cases we find c1 ∈��1
and c2 ∈��2

such that c= c1 ||3 c2.

Remark 3.51. The converse is not true in general. In the following example we will
see that it is not always true that if c1 ∈��1

and c2 ∈��2
with

c(n1−2)
1 + c(1)2 = c(n1−1)

1 + c(2)2 = c(n1)
1 + c(3)2

then c= c1 �3 c2 belongs to�� .

Example 3.52. Let �1 be the binary linear [7, 4]-code with generator matrix

G1 =




0 1 0 1 0 0 0
1 0 1 0 1 0 0
1 0 0 0 0 0 1
0 0 1 0 0 1 0


 ∈ �

4×7
2 .

Associated to the code �1 we can define the following binomial ideal:

I(�1) =
��

x2 x4 − 1, x1 x3 x5 − 1, x1 x7 − 1, x3 x6 − 1
�∪
�

x2
i − 1
�7

i=1

�
.

3.4. Decomposition of modular codes 121

The Graver basis of this ideal represents the set of codewords of minimal support for
the code �1, which turns out to be:

��1
=
�
(0101000), (1000001), (0010010), (1010100),

(1000110), (0010101), (0000111)

�
.

Now let �2 be the binary linear [7,4]-code with generator matrix

G2 =




1 0 0 1 0 1 0
0 1 0 1 0 0 0
0 0 1 0 0 1 0
0 0 0 0 1 0 1


 ∈ �

4×7
2 .

Associated to the code �2 we can define the following binomial ideal:

I(�2) =
��

x1 x4 x6 − 1, x2 x4 − 1, x3 x6 − 1, x5 x7 − 1
�∪
�

x2
i − 1
�7

i=1

�
.

The Graver basis of this ideal represents the set of codewords of minimal support for
the code �2, which turns out to be:

��2
=
�
(0000101), (1001010), (0101000), (0010010),

(1100010), (1011000), (1110000)

�
.

Since �1 and �2 verify the requirement of Definition 3.47, then their 3-gluing
code can be constructed. The code � = �1 g�3�2 is the binary linear [8, 4] code
with generator matrix:

G =




0 1 0 1 0 0 0 0
1 0 1 0 1 0 1 0
1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1


 ∈ �

4×8
2 .

Associated to the code � we can define the following binomial ideal:

I(�) =
��

x2 x4 − 1, x3 x5 x7 − 1, x1 x7 − 1, x6 x8 − 1
�∪
�

x2
i − 1
�8

i=1

�

The Graver basis of this ideal represents the set of codewords of minimal support for
the code � , which is:

�� = {(01010000), (00101000), (10000010), (00000101)} .

Note that c1 = (1010100) and c2 = (1001010) belongs to��1
and��2

, respec-
tively, but c= c1 ||3 c2 = (10101010) does not belongs�� .

122 Modular codes

3.4.4 General case

In the general case, we have the following characterization for the set of codewords
of the code �1 g�m�2.

Lemma 3.53. c ∈ �1 g�m�2 if and only if there exist two codewords c1 ∈ �1 and
c2 ∈ �2 such that

c(n1)
1 + c(m)2 = c(n1−1)

1 + c(m−1)
2 = . . .= c(n1−m+1)

1 + c(1)2 = 0

and c= c1 ||m c2.

Proof. This proposition is a straight forward generalization of Lemma 3.39.

In this section let X denotes the n1 −m variables {x1, . . . , xn1−m} and Y denotes
the n2 −m variables {ym+1, . . . , yn2

}. We have the following result which states the
connection between the m-gluing of two codes and the sum of its associated ideals.

Proposition 3.54. � = �1 g�m�2 if and only if

I(�) = I(�1.{n1−m+1,...,n1}
) + I(�2.{1,2,...,m}) +

�
X�α1 − Y�β1 , . . . ,X�αm − Y�βm

�
,

with:

• (α1 | e1), . . . , (αm | em) ∈ �1 and α1 + . . .+αm = 0.

• (e1 | β1), . . . , (em | βm) ∈ �2 and β1 + . . .+ βm = 0.

Where {e1, . . . ,em} denotes the canonical basis of �m
q .

Proof. Note that this Proposition is a natural extension to Proposition 3.40.

Note that we have investigated the problem of reducing the complexity of com-
puting the set of codewords of minimal support for an arbitrary code over �q.

If the decomposition of a code � defined over �q, with q prime, as an m-gluing
of smaller codes with m≤ 3 is known, then by definition the linear codes that appear
in the decomposition have smaller length than � by Remark 3.29 and the compu-
tations may be carried out in parallel. Thus we have found an effective method to
achieve our goal since the complexity of the problem is reduced from � (n22n−k) to
� (m22m−k�) where m = max{n1, n2} < n and k� ≤ k. The idea for future work is try
to devise a test for the m-gluing condition whose complexity is competitive with the
computation of the whole Gröbner basis.

However, there are still open problems related to our goals. Firstly, the decompo-
sition theory has been presented in the context of modular codes. In particular, we
obtained interesting results for linear codes defined on finite fields �q with q prime.
However, it seems that if we can define a Gröbner test set for codes over an arbitrary
finite field (indeed we achieve to do it in Chapter 4) then it would be possible to
develop a general decomposition theory for these codes analogous to that for prime
finite fields exposed in this chapter.

3.4. Decomposition of modular codes 123

Furthermore, we would like to know an efficient algorithm that produces, if pos-
sible, a decomposition of any linear code as the m-gluing of codes of smaller length.
We suspect that such a decomposition can be obtained in polynomial time. The test
to determine if an [n, k]-code � is expressible as an m-gluing of two codes �1 and
�2, for m≥ 3, is equivalent to finding a generator matrix of the studied code which,
after row operations and column permutation (denoted by π), is expressible as a
matrix of the following form:

M =




A1 0
B1 B2
0 A2


 ∈ �k×n

q ,

where the rank of Bi is m− 1, for i = 1, 2. Then � = �1 g�m�2 where �i are linear
codes of parameters [ni , ki] defined over the index set

Ii =
�

j ∈ {1, . . . , n} | π(j) ∈ {1, . . . , ni}
�

for i = 1,2,

with generator matrices

G�1
=
�

A1 0
B1 ∗1 Im

�
∈ �k1×n1

q and G�2
=
� ∗2 Im B2

0 A2

�
∈ �k2×n2

q

respectively, such that ∗1 + ∗2 = 0 and Im denotes the identity matrix of size m.
Similar tests for m = 0 and m = 1 are defined in Remark 3.36 and Remark 3.46,
respectively.

Finally, another open problem is to obtain the set of codewords of minimal sup-
port for codes � from smaller codes �1 and �2 when � = �1 g�m�2 with m> 3.

124 Modular codes

4
Linear codes: Applications

Contents
4.1 The ideal associated to any linear code 126
4.2 Computing a Gröbner representation 133
4.3 Decoding linear codes . 139

4.3.1 Reduced Gröbner basis . 139
4.3.2 Reduced and Border basis . 142
4.3.3 Gradient Descent Decoding 144

4.4 FGLM technique to compute a Gröbner basis 146
4.5 Set of codewords of minimal support 164
4.6 Applications to other classes of codes 169

4.6.1 Modular codes . 169
4.6.2 Multiple Alphabets . 173
4.6.3 Additive codes . 175

Throughout this chapter � will be an [n, k] linear code defined over a finite field
�q. In this chapter we associate a binomial ideal to any arbitrary linear code given
by the rows of a generator matrix and the relations given by the additive table of the
defining field. The binomials involved in the reduced Gröbner basis of such ideal w.r.t.
a degree ordering induce a uniquely defined test-set for the code which allows the
description of an algebraic decoding algorithm. While the binomials involved in the
Graver basis provides a universal test-set which turns out to be a set containing the

125

126 Linear Codes: Applications

set of codewords of minimal support of the code. This chapter yields a generalization
of [11, 14, 74] where these ideas were stated just for the binary case or for modular
codes.

In the following, we present the structure of the chapter. First, in Section 4.1, we
describe the structure of the binomial ideal I+(�) associated to an arbitrary linear
code� , which we prove that it can be described by a finite set of generators provided
by a basis of the subspace � and the binomials attached to the additive table of the
base field �q. Moreover, we show that the above ideal is also generated by the set of
binomials associated with the vectors that belong to the �q-kernel of a matrix, which
is the kernel of a ring homomorphism given by an elimination ideal. Note that this
idea is an extension of that proposed by Ikegami and Kaji [60] to solve linear integer
programming with modulo arithmetic conditions. Actually it is a generalization of
the works [11, 74] to the non-modular case.

In Section 4.2 we present a structure associated to the class of linear codes called
a Gröbner representation which will be an essential structure in the decoding process.

In Section 4.3, we show that the reduced Gröbner basis of I+(�) relative to a
degree compatible ordering allows us a complete decoding algorithm that has some
resemblances with the two gradient descent decoding algorithms known for binary
codes. See Section 2.4 and the references given there. In this chapter, the test-set
of a code is replaced by the Gröbner basis and addition is replaced by the reduction
induced by the basis. The idea behind both algorithms can be stated in a Gröbner
basis free theory Step by Step decoding, which is an old but quite recurrent technique
in Coding Theory. A primer study on it can be found in [94].

Next, in Section 4.4, we discuss an alternative for the computation of the Gröbner
basis of I+(�) w.r.t. a degree compatible ordering. This algorithm is based on the
computation of the syzygy module of the ideal I+(�). It is an adaptation of the
FGLM techniques presented in [11] for the binary case. A brief description of this
technique as well as a complexity estimation can be found here. However we can
not expect that the algorithm behaves in polynomial time since it will also do the
complete decoding algorithm for general linear codes which is an NP-hard problem.
But the proposed algorithm is better suited than the standard Buchberger algorithm
for computing Gröbner basis.

In Section 4.5, we consider the Graver basis associated to I+(�) which turns out
to be a set containing the set of codewords of minimal support of � .

Finally, in Section 4.6 we apply the results obtained in this chapter to other classes
of codes such as modular codes, codes defined over multiple alphabets or additive
codes. Recall that modular codes were already discussed in Chapter 3 but this new
approach allows the computation of a Gröbner test-set.

4.1 The ideal associated to any linear code

As usual by �, �, �s and �q, where q is a prime power, we denote an arbitrary finite
field, the ring of integers, the ring of integers modulo s and any representation of a
finite field with q elements, respectively. For every finite field �q the multiplicative

4.1. The ideal associated to any linear code 127

group �∗q of nonzero elements of �q is cyclic. A generator of the cyclic group �∗q is
called a primitive element of �q. Therefore, �q consist of 0 and appropriate powers
of that primitive element (see for instance [99]).

Let α be a primitive element of �q and
�
e1, . . . ,eq−1

�
be the canonical basis of

�q−1. We will use the following characteristic crossing functions:

∇ : {0,1}q−1 −→ �q , ∆ : �q −→ {0,1}q−1

The map ∆ replaces the class of the elements a = α j ∈ �∗q by the vector e j and
0 ∈ �q by the zero vector 0 ∈ �q−1. Whereas the map ∇ recovers the element
j1α+ . . .+ jq−1α

q−1 = j1α+ . . .+ jq−2α
q−2+ jq−1 of �q from the (q−1)-tuple of binary

elements
�

j1, . . . , jq−1

�
. These maps will be used with matrices and vectors acting

coordinate-wise.

Remark 4.1. Take into account that �q contains φ(q−1) primitive elements, where φ
is Euler’s function (i.e. the number of integers less than and relative prime to q− 1).
Recall that, if the integer n has the prime factorization n= pr1

1 . . . prs
s , then

φ(n) = n
�

1− 1
p1

�
. . .
�

1− 1
ps

�
=
�

p1 − 1
�

pr1−1
1 . . .
�

ps − 1
�

prs−1
s .

Every primitive element of �q can serve as a defining element of the characteristic
crossing functions ∇ and ∆. The difference lies in that the elements of �q which
represents the components xi j appear in a different component of the vector variable
Xi , depending on the chosen primitive element.

Let X denotes n vector variables X1, . . . , Xn such that each variable Xi can be de-
composed into q− 1 components xi1, . . . , xiq−1 with i = 1, . . . , n. Let a = (a1, . . . , an)
be an n-tuple of elements of the field �q. We will adopt the following notation:

Xa = X a1
1 · · ·X an

n =
�

x11 · · · x1q−1

�∆a1 · · ·
�

xn1 · · · xnq−1

�∆an .

This relationship allows us to work with monomials whose exponents are form
by elements defined over the field �q as monomials with integer exponents, more
precisely {0,1}-exponents. Note that the degree of the monomial Xa is defined as the
support of the vector ∆a view as an n(q− 1)-tuple of zeros and ones.

Unless otherwise stated, we simply write � for an [n, k] linear code defined over
the finite field �q. We define the ideal associated to � as the binomial ideal:

I+(�) =
��

Xa −Xb | a− b ∈ �
��
⊆ �[X]. (4.1)

Given the rows of a generator matrix of � , labelled by w1, . . . ,wk, we define the
following ideal:

∆I =
� �

X(α
jwi) − 1
�

i=1,...,k
j=1,...,q−1

� �
�Xi

�
T+
��

i=1,...,n

�
⊆ �[X], (4.2)

128 Linear Codes: Applications

where �Xi

�
T+
�

consists of all the binomials on the variable Xi associated to the
relations given by the additive table of the field �q = 〈α〉, i.e.,

�Xi

�
T+
�
=
� �

xiu xiv − xiw | αu +αv = αw� � �xiu xiv − 1 | αu +αv = 0
� �

,

with i = 1, . . . , n.

Remark 4.2. There are as many different binomials in �Xi

�
T+
�

as 2-combinations
with repetitions from the set of variables

�
xi1, . . . , xiq−1

�
, i.e. we have
�q

2

�
different

binomials.

Theorem 4.3. I+(�) = ∆I .

Proof. It is clear that ∆I ⊆ I+(�) since all binomials in the generating set of ∆I
belong to I+(�). Note that the binomials from �Xi

�
T+
�

poses no problem because
they are multiples of the binomial X0 − 1 which fit in I+(�).

To show the converse it suffices to show that each binomial Xa − Xb of I+(�)
belongs to ∆I . By the definition of I+(�) we have that a− b ∈ � . Hence

a− b= λ1w1 + . . .+λkwk with λ1, . . . ,λk ∈ �q.

Note that, if the binomials z1 − 1 and z2 − 1 belongs to the ideal ∆I then z1z2 − 1=
(z1 − 1)z2 + (z2 − 1) also belongs to ∆I . On account of the previous line, we have:

X(a−b) − 1 =
�

X(λ1w1) − 1
� k�

i=2

X(λiwi) +

�
k�

i=2

X(λiwi) − 1

�

=
�

X(λ1w1) − 1
� k�

i=2

X(λiwi) +
�

X(λ2w2) − 1
� k�

i=3

X(λiwi) + . . .+

+
�

X(λk−1wk−1) − 1
�

X(λkwk) +
�

X(λkwk) − 1
�

.

If at least one λi is nonzero with i = 1, . . . , k, then the last equation forces that

X(a−b) − 1 ∈
��

X(α
jwi) − 1
�

i=1,...,k
j=1,...,q−1

�
.

Otherwise a− b= 0, and thus,

X(a−b) − 1 ∈
��
�Xi

�
T+
��

i=1,...,n

�
.

We have actually proved that Xa − Xb =
�

X(a−b) − 1
�

Xb ∈ ∆I , which completes the
proof.

Remark 4.4. Let B ∈ �m×n
q be a matrix, B⊥ be the matrix whose rows generate the

null-space of B and {w1, . . . ,wk} be a set of generators of the row space of the matrix
B. We can define the following binomial ideal:

I(B) =
��

Xu −Xv | B⊥(u− v)T = 0 in �q

��
.

4.1. The ideal associated to any linear code 129

Therefore, the construction presented above for linear codes can be generalized for
any matrix defined over an arbitrary finite field, i.e. we have actually proved that
I(B) = ∆I .

Let B be a m × n matrix defined over �q. Let X denotes n vector variables
X1, . . . , Xn such that Xi =

�
xi1 · · · xiq−1

�
for 1 ≤ i ≤ n and Y denotes m vector vari-

ables Y1, . . . , Ym such that Yj =
�

yj1 · · · yjq−1

�
for 1 ≤ j ≤ m. For a vector u ∈ �n

q we
define θ (u) = BuT ∈ �m

q . The ring homomorphism

Θ : �[X] −→ �[Y]

is then defined by Θ(Xu) = Yθ (u) = YBuT
. More generally, for every polynomial

f =
�

cvX v of the ring of polynomials �[X] we have that

Θ
�

f
�
= f
�
Θ(X1), . . . ,Θ(Xn)

�
=
�

cvY
θ (v).

Let �Yj

�
T+
� ⊆ �[Yj] be the binomial ideal consisting of all the binomials on the

variables
�

yj1, . . . , yjq−1

�
associated to the relations given by the additive table of

the field �q = 〈α〉 with 1≤ j ≤ m and let

�Y
�

T+
�
=

�
m�

i=1

�Yi

�
T+
�
�

be a binomial ideal in the polynomial ring �[Y]. We have the following result:

Lemma 4.5. Let us consider the matrix B ∈ �m×n
q and the vectors u ∈ �n

q and b ∈ �m
q .

BuT = b in �q if and only if Θ(Xu) = Yb modulo the ideal �Y
�

T+
�
.

Proof. This Lemma is a generalization of [60, Lemma 1]. Let b = BuT in �q then
bi =
�n

j=1 bi juj in �q for 1 ≤ i ≤ m, where bi j denotes the element of matrix B in
row i and column j . Let α be a primitive element of �q. We distinguish two cases.

• Case 1: bi = 0 /∈ �∗q = 〈α〉. Then it is clear that
�n

j=1 bi juj = 0, and thus

Y∆bi
i = 1= Y

∆
�n

j=1 bi juj

i .

• Case 2: bi �= 0. Then we have that bi = αsi and
�n

j=1 bi juj = αri with
αsi − αri = αsi + αr̂i = 0 and αri + αr̂i = 0 for 1 ≤ i ≤ m, or equivalently
yi,si

yi,r̂i
− 1, yi,ri

yi,r̂i
− 1 ∈ �Yi

�
T+
�
, i.e.

�
yi,si

yi,r̂i
− 1
�

yi,ri
= yi,si

− yi,ri
∈ �Yi

�
T+
�

.

Hence Y
∆
�n

j=1 bi juj

i − Y∆bi
i ∈ �Yi

�
T+
�
.

Thus, Θ(Xu) = Yb modulo the ideal �Y
�

T+
�
. The converse inclusion is proved by

reading the above backwards.

130 Linear Codes: Applications

Another ideal associated to the matrix B ∈ �m×n
q is defined by

IB =
� �
Θ(Xi)− Xi
�

i=1,...,n ∪
�
�Yj

�
T+
��

j=1,...,m

�
⊆ �[X,Y]. (4.3)

Lemma 4.6. f ∈ IB ∩�[X] if and only if f ∈ �[X] and Θ(f)≡ 0 mod �Y
�

T+
�
.

Proof. By Remark 4.2, for each j = 1, . . . , m we have
�q

2

�
different binomials in

�Yj

�
T+
�
. We will denote by rj,l(Yj) the polynomial at position l with respect to

certain order in �Yj

�
T+
�

with j = 1, . . . , m.
Let f ∈ IB, by representing f with the generators of IB, we have that

f (X,Y) =
n�

i=1

λi
�
Θ(Xi)− Xi
�
+

m�

j=1

(q2)�

l=1

β j,l r j,l(Yj)

with
�
λi
�

i=1,...,n and
�
β j,l

�
j=1,...,m

l=1,...,(q2)
∈ �[X,Y].

Then

Θ(f) = f (Θ(X1), . . . ,Θ(Xn), Y1, . . . , Ym)

=
n�

i=1

Θ(λi)
�
Θ(Xi)−Θ(Xi)
�
+

m�

j=1

(q2)�

l=1

Θ(β j)rj,l(Yj)

=
m�

j=1

(q2)�

l=1

Θ(β j)rj,l(Yj)≡ 0 mod �Y
�

T+
�

.

To prove the converse, first note that given any vector u =
�
u1, . . . , un
� ∈ �n

q the
monomial Xu can be written, for some B1, . . . , Bn ∈ �[X,Y], as:

X u1
1 · · ·X un

n = (Θ(X1) + (X1 −Θ(X1)))u1 · · · (Θ(Xn) + (Xn −Θ(Xn)))un

= Θ(X1)u1 · · ·Θ(Xn)un + B1(X1 −Θ(X1)) + . . .+ Bn(Xn −Θ(Xn)).

Hence, for all polynomial f ∈ �[X] there exists polynomials C1, . . . , Cn ∈ �[X,Y]
such that f (X) = f (Θ(X1), . . . ,Θ(Xn)) +

�n
i=1 Ci(Xi − Θ(Xi)). Moreover, from the

initial assumption we have that Θ(f) = f (Θ(X1), . . . ,Θ(Xn))≡ 0 mod �Y
�

T+
�
, and

thus,

f (X1, . . . , Xn) = f (Θ(X1), . . . ,Θ(Xn))� �� ���
�Yj (T+)
�

j=1,...,m

�
⊂IB

+
n�

i=1

Ci(Xi −Θ(Xi))

� �� �
IB

∈ IB

Remark 4.7. Lemmas 4.6 and 4.5 are technical results valid for any matrix B. How-
ever, on the following result we applied the above lemmas to a matrix A⊥ where A is
a generator matrix of the linear code � .

4.1. The ideal associated to any linear code 131

Theorem 4.8. ∆I = IA⊥ ∩�[X]
Proof. It is easy to check that ∆I ⊆ IA⊥ ∩�[X]. By Lemma 4.6 it suffices to make the
following observations:

• Θ
�

X(α
jwi) − 1
�
= YA⊥(α jwi) − 1 = 0 since A · A⊥ = 0 for 1 ≤ j ≤ q − 1 and

1≤ i ≤ k.

• Let Aj ∈ �m
q denotes the jth column of A. We distinguish two different types of

generators in �Xi

�
T+
�
:

– xiu xiv − xiw such that αu +αv = αw . Then we have that

Θ
�

xiu xiv − xiw
�
= Θ
�

X α
u+αv

i

�
−Θ
�

X α
w

i

�
= Θ
�

Xei(αu+αv)
�
−Θ
�

Xeiα
w�

= YAT
i (α

u+αv) − YAT
i α

w
= YAT

i
�

yiu yiv − yiw
� ∈ �Y
�

T+
�

– xiu xiv − 1 such that αu +αv = 0. Therefore,

Θ
�

xiu xiv − 1
�
= Θ
�

X α
u+αv

i

�
− 1= YAT

i
�

yiu yiv − 1
� ∈ �Y
�

T+
�

Conversely, let f = Xu − Xv ∈ IA⊥ ∩ �[X] with u,v ∈ �n
q . Lemma 4.6 implies

that Θ(f) = YA⊥uT − YA⊥vT ≡ 0 mod �Y
�

T+
�
. Hence, by Lemma 4.5 we have that

A⊥uT = A⊥vT in �q, thus f ∈ I(A⊥) = ∆I by Theorem 4.3.

Example 4.9. Let us consider the [7,2] linear code � over �3 with generator matrix

G =
�

1 0 1 2 1 1 1
0 1 2 2 1 0 2

�
∈ �2×7

3 ,

where the primitive element α = 2 generates the finite field �3 =
�

0,α= 2,α2 = 1
�

which gives us the following additive table:

T+ 1 2
1 1 0
2 0 2

Or equivalently,
�
α+α= α2, α2 +α= 0, α2 +α2 = α

�
. Therefore, we obtain

the following binomials associated to the previous rules:

�Xi

�
T+
�
=
�

x2
i1 − xi2, xi1 xi2 − 1, x2

i2 − xi1

�
with i = 1, . . . , 7.

Let us label the rows of G by w1 and w2. By Theorem 4.3, the ideal associated to the
linear code � may be defined as the following binomial ideal:

I+(�) =
� �

Xα
jwi − 1
�

i=1,2,3
j=1,2

� �
�Xi

�
T+
��

i=1,...,7

�

=

�




x12 x32 x41 x52 x62 x72 − 1,
x11 x31 x42 x51 x61 x71 − 1,

x22 x31 x41 x52 x71 − 1,
x21 x32 x42 x51 x72 − 1




� �

�Xi

�
T+
��

i=1,...,7

�

132 Linear Codes: Applications

Example 4.10. Consider � the [3,1] linear code defined over �9 with generator
matrix

G =
�

1 α α+ 1
�
∈ �1×3

9

Let α be a root of the irreducible polynomial f (z) = z2 + z + 1. In particular, α is a
primitive element of �9, i.e. �9 = �3[α]. In other words,

�9 =
�

0,α,α2 = α+ 1,α3 = 2α+ 1,α4 = 2,α5 = 2α,α6 = 2α+ 2,α7 = α+ 2,α8 = 1
�

.

This representation yields to the following additive table:

T+ 1 2 3 4 5 6 7 8
1 5 3 8 7 0 4 6 2
2 6 4 1 8 0 5 7
3 7 5 2 1 0 6
4 8 6 3 2 0
5 1 7 4 3
6 2 8 5
7 3 1
8 4

Or equivalently,





α+α= α5 α+α2 = α3 . . . α+α8 = α2

α2 +α2 = α6 . . . α2 +α8 = α7

...
α8 +α8 = α4

Therefore, we obtain the following binomials associated to the previous rules:

�Xi

��+
�
=





x2
i1 − xi5, xi1 xi2 − xi3, xi1 xi3 − xi8, xi1 xi4 − xi7, xi1 xi5 − 1, xi1 xi6 − xi4,

xi1 xi7 − xi6, xi1 xi8 − xi2,
x2

i2 − xi6, xi2 xi3 − xi4, xi2 xi4 − xi1, xi2 xi5 − xi8, xi2 xi6 − 1, xi2 xi7 − xi5,
xi2 xi8 − xi7,

x2
i3 − xi7, xi3 xi4 − xi5, xi3 xi5 − xi2, xi3 xi6 − xi1, xi3 xi7 − 1, xi3 xi8 − xi6,

x2
i4 − xi8, xi4 xi5 − xi6, xi4 xi6 − xi3, xi4 xi7 − xi2, xi4 xi8 − 1,

x2
i5 − xi1, xi5 xi6 − xi7, xi5 xi7 − xi4, xi5 xi8 − xi1,

x2
i6 − xi2, xi6 xi7 − xi8, xi6 xi8 − xi5,

x2
i7 − xi3, xi7 xi8 − xi1,

x2
i8 − x34





for i = 1,2, 3.
Let us label the row of G by w1. By Theorem 4.3, the ideal associated to the linear

4.2. Computing a Gröbner representation 133

code � may be defined as the following binomial ideal:

I+(�) =
� �

Xα
jw1 − 1
�

j=1,...,8

� �
�Xi

�
T+
��

i=1,...,7

�

=

�





x18 x21 x32 − 1
x11 x22 x33 − 1
x12 x23 x34 − 1
x13 x24 x35 − 1
x14 x25 x36 − 1
x15 x26 x37 − 1
x16 x27 x38 − 1
x17 x28 x31 − 1





� �
�Xi

�
T+
��

i=1,2,3

�

4.2 Computing a Gröbner representation

For simplicity of notation, in what follows, we write
�
e1, . . . ,en
�

for the canonical
basis of �n and

�
u1, . . . ,un(q−1)

�
for the canonical basis of �n(q−1).

Definition 4.11. An ordering ≺ on �n
q is a weight compatible ordering if for any

a, b ∈ �n
q we say a ≺ b if wH(a)< wH(b) or wH(a) = wH(b) and ∆a≺1 ∆b

where ≺1 is any admissible order on �n.

Definition 4.12. A Gröbner representation of an [n, k] linear code � is a pair�� ,φ
�

where:

• � is a transversal of the cosets in �n
q/� (i.e. one element of each coset)

verifying that 0 ∈ � and for each n ∈ � \{0} there exists i ∈ �1, . . . , n(q− 1)
�

such that n= n� +∇ui with n� ∈ � .

• φ : � × �ui
�n(q−1)

i=1 −→ � is a function called Matphi function that
maps each pair (n,ui) to the element of � representing the coset that con-
tains n+∇ui .

Remark the resemblance with Definition 2.1 which explains the relationship with
Gröbner Bases. As usual, the function Matphi can be seen as the multiplication tables
of the corresponding standard monomials times the variables xi j with 1 ≤ i ≤ n and
1≤ j ≤ q− 1.

Note that by Theorem 4.3 we know a set of generators of the ideal I+(�) given
by ��

X(α
jwi) − 1
�

i=1,...,k
j=1,...,q−1

��
�Xi

�
T+
��

i=1,...,n

�
,

Such Gröbner representation can be computed with a slight modification of the
FGLM algorithm using Algorithm 18. For the binary code, this extension can be found
in [16]. Let ≺ be a weight compatible ordering, there are three functions needed to
understand the Algorithm 18:

134 Linear Codes: Applications

• InsertNext[w, List] adds to List all the sums w+∇ui with i /∈ supp(∆w),
keeps the increasing order of the list List w.r.t. ≺ and removes duplicates.

• NextTerm[List] returns the first element of the list List and deletes it from
List.

• Member[v,
�
v1, . . . ,vr
�
] returns j if v= v j and false otherwise.

Remark 4.13. A weight compatible ordering ≺ is in general not admissible on �n
q .

Note that a ≺ b does not always imply that ac ≺ bc for all c ∈ �n
q . However ≺ is

a notherian order on �n
q since �n

q is finite. Moreover, for all a ∈ �n
q we have that

deg (Xa) = wH(∆a), that is, a weight compatible ordering on �n
q can be viewed as a

total degree ordering on �[X].

Algorithm 18: Computing a Gröbner representation of an �q-linear code

Data: A weight compatible ordering ≺ and the parity check matrix H of a
linear code �

Result: (� ,φ) a Gröbner representation for �
List←− [0]; S←− �; � ←− �; r ←− 0;1

while List �= � do2

w←− NextTerm[List];3

s←−wHT ;4

j←− Member[s, S];5

if j �= false then6

for k ∈ supp(∆w) : w=w� +∇uk with w� ∈ �7

φ(w�,uk)←−w j;8

endfor9

else10

r ←− r + 1;11

wr ←−w;12

� ←−� ∪ {wr};13

S←− S ∪ {s};14

List= InsertNexts[w,List];15

for k ∈ supp(∆w) : w=w� +∇uk with w� ∈ �16

φ(w�,uk)←−w;17

φ(w,uk)←−w�;18

endfor19

endif20

endw21

Theorem 4.14 (Correctness of Algorithm 18). Algorithm 18 computes a Gröbner rep-
resentation (� ,φ) for a given linear code � defined over a finite field �q.

4.2. Computing a Gröbner representation 135

Proof. Let us first prove that � is a transversal of the cosets in �n
q/� that satisfies

the properties of Definition 4.12. For this purpose we need to show the following
items:

1. 0 ∈ � .

2. |� |= qn−k.

3. Two different words of � determine different cosets in �n
q/� .

4. For all n ∈ � \{0} there exists i ∈ {0, . . . , n(q−1)} such that n= n�+∇ui with
n� ∈ � .

The first property is guaranteed by Step 1 and Step 13. Note that Step 4 computes
the syndrome of the new element and Step 5 checks whether the syndrome has
already been considered in the algorithm. Hence, the third property is satisfied. The
last property of � is a consequence of Step 13 and Step 15. To prove the second
property we need to consider the following recursive function: cf : �n

q −→ �
where cf(0) = 0 and

cf (v) = φ
�

cf(w),uis

�
if ∆v= ui1 + . . .+ uis−1� �� �

∆w

+uis .

cf is well defined for all vectors v ∈ �n
q beginning with cf(0) = 0. Moreover observe

that cf(v) and v have the same syndrome for all v=∇
�

ui1 + . . .+ uis

�
∈ �n

q .

H (cf(v))T = H
�
φ
�

cf
�
∇
�

ui1 + . . .+ uis−1

��
,uis

��T

= H
�

cf
�
∇
�

ui1 + . . .+ uis−1

��
+∇uis

�T

= H
�

cf
�
∇
�

ui1 + . . .+ uis−1

���T
+ H
�
∇uis

�T

= . . . = H (cf (0))T + H
�
∇
�

ui1 + . . .uis

��T
= HvT

The second equality is the result of applying the definition of the Matphi function. By
Step 15, all possible values of cf(v) with v ∈ �n

q are achieved. Thus we may conclude
that there will be as many canonical forms as different syndromes in �n

q/� . In other
words, |� |= qn−k.

The task is now to show that the Matphi function computed by the algorithm ful-
fils Definition 4.12. Let n ∈ � and i ∈ �1, . . . , n(q− 1)

�
. There are two possibilities

for the pair (n,ui):

• If H
�
n+∇ui
�T has previously been considered in the algorithm, then φ(n,ui)

is defined in Step 8 satisfying that H
�
φ(n,ui)
�T = H
�
n+∆ui
�T .

• Otherwise, φ(n,ui) is defined in Step 18.

136 Linear Codes: Applications

The fact that only the index k, such that k ∈ supp(n), is deemed to maintain the
increase order of n > n� with n = n� + ∇uk and thus does not define twice the
element φ(n,ui).

We have seen that |� | = qn−k. Moreover, each time that a new word is added
to the set � , n(q − 1) products are inserted in the list List. Therefore we have
|List| ≤ n(q−1)qn−k so we deduce that after a finite number of steps the algorithm
ends.

Example 4.15. Let us consider the [5,2, 3] linear code � over �3 with generator
and parity check matrices

G =
�

1 0 1 0 1
0 1 1 2 2

�
∈ �2×5

3 , H =




1 0 0 1 2
0 1 0 1 0
0 0 1 2 2


 ∈ �3×5

3

respectively.
Let ≺ be a weight compatible ordering induced by the lexicographic ordering

(lex) on �n
q , Algorithm 18 computes a Gröbner representation (� ,φ) of � which

is represented on Tables 4.1 and 4.2. Note that on the representation of the function
Matphi φ in Table 4.2, the first entry corresponds to the element ni ∈ � , following
the order established in the Table 4.1, and the second points to the values φ(ni ,u j)
for j = 1, . . . , 10. That is, [n j , [φ(n j ,u1), . . . ,φ(n j ,u10)]].

Set of canonical forms �
Weight 0 [0]

Weight 1
[(2, 0,0,0, 0)], [(1, 0,0, 0,0)], [(0,2, 0,0, 0)], [(0, 1,0, 0,0)],
[(0, 0,2,0, 0)], [(0, 0,1, 0,0)], [(0,0, 0,2, 0)], [(0, 0,0, 1,0)],
[(0, 0,0,0, 2)], [(0, 0,0, 0,1)],

Weight 2

[(2,0,0,1,0)], [(2,0,0,0,1)], [(1,0,0,2,0)], [(0,2,0,2,0)],
[(0,2,0,0,1)], [(0,1,0,1,0)], [(0,1,0,0,2)], [0,1,0,0,1],
[(0,0,2,2,0)], [(0,0,2,0,1)], [(0,0,1,1,0)],
[(0,0,0,2,2)], [(0,0,0,2,1)], [(0,0,0,1,2)], [(0,0,0,1,1)]

Table 4.1: Set � of Example 4.15

An equivalent way of obtaining the pair (� ,φ) is to compute a reduced Gröbner
basis of the following binomial ideal:

I(�) =
��

x12 x32 x52 − 1, x11 x31 x51 − 1,
x22 x32 x41 x51 − 1, x21 x31 x42 x52 − 1

���
�Xi

�
T+
��

i=1,...,5

�
⊆ �[X]

w.r.t. the degree reverse lexicographical (degrevlex) order with x11 < x12 < x21 <
x22 < x31 < x32 < x41 < x42 < x51 < x52.

Theorem 4.16. Assume that � has been obtained using Algorithm 18. If w ∈ � then
w ∈ CL(�).

4.2. Computing a Gröbner representation 137

Function Maphi
[n1, [2,3, 4,5, 6,7, 8,9, 10,11]], [n2, [3,1, 21,26, 11,22, 16,12, 7,13]],
[n3, [1,2, 25,23, 13,10, 14,20, 22,6]], [n4, [21,25, 5,1, 24,14, 15,13, 16,17]],
[n5, [26,23, 1,3, 12,27, 22,18, 19,20]], [n6, [11,13, 24,12, 7,1, 21,19, 3,22]],
[n7, [22,10, 14,27, 1,6, 17,23, 13,2]], [n8, [16,14, 15,22, 21,17, 9,1, 24,25]],
[n9, [12,20, 13,18, 19,23, 1,8, 26,27]], [n10, [7, 22,16, 19,3, 13,24, 26,11, 1]],
[n11, [13,6, 17,20, 22,2, 25,27, 1,10]], [n12, [20, 9,6, 24,27, 5,2, 16,23, 15]],
[n13, [6,11, 18,9, 10,3, 4,14, 2,7]], [n14, [8, 16,27, 7,21, 24,20, 3,18, 21]],
[n15, [19,27, 22,8, 26,20, 13,4, 12,23]], [n16, [14, 8,19, 11,25, 18,12, 11,13, 4]],
[n17, [18,24, 20,11, 8,21, 23,7, 4,16]], [n18, [24, 17,9, 13,16, 25,5, 22,21, 14]],
[n19, [27,12, 10,16, 23,9, 6,21, 20,5]], [n20, [9, 12,11, 17,15, 26,13, 14,5, 19]],
[n21, [25,4, 26,2, 17,8, 19,6, 14,18]], [n22, [10, 7,8, 15,2, 11,18, 5,6, 3]],
[n23, [5,26, 3,25, 9,19, 7,17, 14,12]], [n24, [17, 18,12, 6,14, 4,26, 10,25, 8]],
[n25, [4,21, 23,3, 18,16, 27,11, 8,24]], [n26, [23, 5,2, 21,20, 7,10, 24,27, 9]],
[n27, [15,19, 7,14, 5,13, 11,25, 9,26]]

Table 4.2: Function Matphi of Example 4.15

Proof. This Theorem is a direct consequence of the fact that a weight compatible
ordering on �n

q is a total degree ordering on �[X] (see Remark 4.13). Suppose,
contrary to our claim, that there exists an element w in � such that w /∈ CL(�).
Hence, there must exist a word ŵ ∈ �n

q with strictly smaller Hamming weight in the
same coset as w. Therefore, ŵ is considered before than w in Algorithm 18. And
this clearly forces that ŵ is the representative of the coset w+� instead of w, which
contradicts the fact that w ∈ � .

In [16], another Gröbner representation associated to the class of linear codes
defined over an arbitrary finite field was presented. The main difference lies in the
chosen representation of the finite field. Let �q be a finite field with q = pm elements

and p prime, we could adopt the convention that �q =
�p[X]
(f (X)) where f (X) is chosen

such that f (X) is an irreducible polynomial over �p of degree m. Let β be a root
of f (X), then an equivalent formulation of �q is �p[β], i.e. any element of �q is
represented as a0 + a1β + . . .+ am−1β

m−1 with ai ∈ �p for i ∈ {0, . . . , m− 1}.
Let Y denotes n variables Y1, . . . , Yn such that each variable Yi is decomposed into

m variables yi1, . . . , yim. Let b= (b1, . . . , bn) be an n-tuple of elements of the field �q

where bi = ai0 + ai1β + . . .+ aim−1β
m−1 with ai j ∈ �p.

On that paper the authors selected the following notation:

Yb = Y b1
1 · · ·Y bn

n =
�

ya10
11 · · · y

a1m−1
1m

�
· · ·
�

yan0
n1 · · · yanm−1

nm

�

where they replace the elements ai j ∈ �p ≡ �p, which belongs to the class of
0,1, . . . , p−1 by the same symbol regarded as an integer (i.e. ai j = �ai j). Therefore,
again, we identify monomials whose exponents belongs to �n

q with monomials with
integer exponents.

138 Linear Codes: Applications

If we take the following ideal as the binomial ideal associated with the code � :

I(�) =
�
Ya − Yb | a− b ∈ �

�
⊆ �[Y],

then a reduced Gröbner basis of I(�) w.r.t. an error-vector ordering ≺e defines the
set � .

Note that the number of variables is smaller in that case (mn variables instead
of (q − 1)n). However, with this notation the representative elements of � is not
necessarily a coset leader when the leader weight is bigger than the error correcting
capacity t, as we will see in the following example.

However, since the multiplicative structure of Matphi is independent of the par-
ticular set of canonical forms, then Matphi is equivalent in both representations. That
is, we could consider the function Matphi defined over the set of cosets instead of a
particular set of canonical forms.

Example 4.17. Let us consider the finite field �4. We can use two different field
representation:

1. Let α be a primitive element of �4, then �4 contains all powers of α and the
zero element, i.e. �4 =

�
0,α,α2,α3 = 1
�

.

2. Let β be a root of an irreducible binary polynomial of degree 2 namely f (z) =
z2 + z + 1. Then the elements of �4 =

�[z]
f (z) are the 4 binary polynomials of

degree at most one, i.e. �4 =
�

0, 1,β ,β + 1= β2
�

.

Note that β has order 3 (i.e. is a primitive element of �4), but it is not always the
case that a root of an irreducible polynomial is a primitive element.

Let us consider the [5, 2,1] linear code over �4 with generator matrix:

G =
�

1 0 α 1 α
0 1 α2 0 α

�
=
�

1 0 β 1 β
0 1 β + 1 0 β

�
∈ �2×5

4 .

In [16, Example 18] the authors compute a Gröbner representation for the code �
on account of the fact that �4 =

�2[z]
f (z) . They get 64 elements representing the set � .

Note that there is an element in � , the element n64 = (1+ β , 1,β , 0, 0), which does
not belong to the set of coset leaders of the code � .

However, with our new approach all the elements of � are coset leaders. There-
fore, if we compute a reduced Gröbner basis of the following binomial ideal

I(�) =
�




x13 x31 x43 x51 − 1, x23 x32 x51 − 1,
x11 x32 x41 x52 − 1 x21 x33 x52 − 1,
x12 x33 x42 x53 − 1, x22 x31 x53 − 1



∪
�
�Xi

�
T+
��

i=1,...,5

�

where

�Xi

�
T+
�
=
�

x2
i1 − 1, xi1 xi2 − xi3, xi1 xi3 − xi2, x2

i2 − 1, xi2 xi3 − xi1, x2
i3 − 1
�

w.r.t. the degrevlex order we obtain as representative on the set � of the coset
(1+ β , 1,β , 0, 0) +� the element (0,0, 0,α2,α2) which is a coset leader.

4.3. Decoding linear codes 139

4.3 Decoding linear codes

4.3.1 Reduced Gröbner basis

Throughout this section, let � = �g1, . . . , gs
�

be the reduced Gröbner basis of I+(�)
with respect to �, where we take � to be any degree compatible ordering with
X1 < . . .< Xn. Moreover, for all i ∈ {1, . . . , s} we define

gi = Xg+i −Xg−i with Xg+i > Xg−i and g+i − g−i ∈ � .

The following lemma expresses the equivalence of the linear code � and the
Gröbner basis � .

Lemma 4.18. Xc1 −Xc2 ∈ 〈�〉 if and only if c1 − c2 ∈ � .

Proof. It follows from the fact that if � is a Gröbner basis for I+(�), then � is a basis
of I+(�).
Theorem 4.19. Let t be the error-correcting capacity of � . If deg

�
Red≺(Xa,�)� ≤ t,

then the vector e ∈ �n
q verifying that Xe = Red≺(Xa,�) is the error vector corresponding

to the received word a ∈ �n
q . In other words, c = a− e ∈ � is the closest codeword to

a ∈ �n
q . Otherwise a contains more than t errors.

Proof. According to the definition of reduction of a polynomial with respect to � ; since
Xe = Red≺(Xa,�) there exists polynomials f1, . . . , fs ∈ �[X] such that

Xa = f1 g1 + . . .+ fs gs +Xe, or equivalently Xa −Xe ∈ 〈�〉 .
Lemma 4.18 now leads to a− e ∈ � .

Assume that there exists e2 ∈ �n
q such that a − e2 ∈ � and wH(e2) < wH(e);

i.e. the total degree of Xe2 is strictly smaller than the total degree of Xe, deg (Xe2) <
deg (Xe). Then by Lemma 4.18 there exists f̂1, . . . , f̂s ∈ �[X] such that Xa = f̂1 g1 +
. . .+ f̂s gs +Xe2 , which contradicts the uniqueness of the normal form.

We have actually proved that the exponent of the normal form of Xa is the
minimal element with respect to � having the same syndrome as a. Therefore,
if deg(Xe) ≤ t then it is clear that there cannot be another element ê such that
wH(ê) ≤ t (or equivalently, deg(Xê) ≤ t) and a− ê ∈ � . Indeed, this would mean
that there exists two solutions for the linear system with weight at most t, which is
not possible since t is the error-correcting capacity of the code. Otherwise a contains
more than t errors.

Remark 4.20. In any case, Red≺ (Xa,�) = Xe provides a coset leader even if wH(e)≥
t as we have proved in Theorem 4.16. Note that this was the main difference with
what was presented in [16].

Proposition 4.21. Let t be the error-correcting capacity of � , then

t = min
�

wH(g+i) | gi ∈ � \
�
�Xi

�
T+
��

i=1,...,n

�
+ 1

= min
�

deg(gi) | gi ∈ � \
�
�Xi

�
T+
��

i=1,...,n

�
+ 1.

140 Linear Codes: Applications

Proof. This Proposition is analogous to [11, Theorem 3]. Let c be a minimum weight
nonzero codeword of � , i.e. wH(c) = d, where d is the minimum distance of � . Let
Xc1 and Xc2 be two monomials in �[X] such that Xc = Xc1Xc2 and wH(c1) = t + 1,
that is to say Xc1 � Xc2 .

Then Xc1Xc2−1 ∈ I+(�), or equivalently Xc1−X−c2 ∈ I+(�). Note that wH(c2) =
wH(−c2), thus Xc1 � X−c2 . Therefore, we get that Xc1 belongs to the initial ideal
in
�

I+(�)
�
, so there must exists an index i ∈ {1, . . . , s} such that the leading term of

gi ∈ � divides Xc1 , and thus, wH(g+i)≤ wH(c1) = t − 1.
Now suppose that there exists gi ∈ � with i ∈ {1, . . . , s} such that wH(g+i)< t−1.

By definition, g+i − g−i ∈ � , but wH(g+i − g−i) ≤ wH(g+i)−wH(g−i) < 2(t − 1) < d,
which contradicts the definition of minimum distance of � .

Proposition 4.22. wH(g+i)−wH(g−i)≤ 1 for all i ∈ {1, . . . , s}.

Proof. Without loss of generality we assume that i = 1. We can distinguish two cases:

• The case when supp(g+1)∩ supp(g−1) = �.
Let xi j be any variable that belongs to the support of Xg+1 , i.e. Xg+1 = xi jXw with
wH(w)+1= wH(g+1). There must exist l ∈ {1, . . . , q−1} such that xi j xil −1 ∈
�Xi

�
T+
�
. Thus xil

�
Xg+1 −Xg−1
�
= Xw − xilXg−1 . If Xw � xilXg−1 , then Xw ∈

LT(� \{g1}), which contradicts the fact that � is reduced. Hence, xilXg−1 � Xw

or equivalently wH(g−1)+1> wH(w) = wH(g+1)−1, which completes the proof.

• A similar argument applies to the case i ∈ supp(g+1)∩ supp(g−1).

In other words, g1 = Xg+1 − Xg−1 = xi jXa − xilXb. There must exists an integer
m ∈ {1, . . . , q − 1} such that xi j xim − 1 and xil xim − xiv belongs to �Xi

�
T+
�
.

Thus xim g1 = Xa − xivXb ∈ I+(�). Suppose that Xa � xivXb, then Xa ∈ LT(� \
{g1}), is a contradiction. Therefore, wH(b) + 1 ≥ wH(a) which establishes the
desired formula.

Note that it may happen that l = j. In this case we would have that wH(b) ≥
wH(a), i.e. wH(g−i)≥ wH(g−i) which is impossible except for the case of equal-
ity.

Definition 4.23. The monomial
�n

i=1

�q−1
j=1 x

βi j

i j is said to be in standard form if�q−1
j=1 βi j = 1 for all i = 1, . . . , n. In other words, the exponents of each variable xi j is

0 or 1, and two variables xi j and xil do not appear in the same monomial.

Definition 4.24. The reduction in one step→ using � is defined as follows. For any
w ∈ [X]:

1. Reduce w to its standard form w� using the relations �X
�

T+
�
.

2. Reduce w� w.r.t. � by the usual one step reduction.

4.3. Decoding linear codes 141

This reduction process is well defined since it is confluent and noetherian as we
will show in the following theorem:

Theorem 4.25. Let w ∈ [X] be an arbitrary term. Then:

i) The reduction process→ is noetherian.

ii) If w→w1, w→w2 and w1, w2 are irreducible words modulo→, then w1 =w2.

Proof. Let w=w0→w1→ . . .→wk→ . . . be a descending chain of reductions. Note
that from wi → wi+1 it follows that wi � wi+1, where ≺ is a total degree ordering.
Since the total degree ordering is admissible, there is no infinite strict descending
chain of elements. Therefore,→ is noetherian and i) follows.
Let us now prove that ii) holds. An easy verification shows that the one step reduc-
tion keeps the syndrome invariant. To this end, consider w=w1w2 and w1−v1 ∈ � ;
then w is reduced to w� = v1w2 where S(v1) = S(w1) and u ∈ �n

q denotes the vector
such that u= Xu. Hence

S(w) = S(w1) + S(w2) = S(v1) + S(w2) = S(w�).

Moreover, by definition, all the irreducible elements belongs to � . Thus, under the
conditions stated by ii), we have that S(w1) = S(w2) = S(w). But by the properties
of � , there exists only one element of each coset in � , so w1 = w2 and ii) is
proven.

Remark 4.26. The irreducible element corresponding to w will be called the normal
form of w w.r.t. � and it will be denoted by Red(w,�). The above theorem states that
Red(w,�) is unique and computable by a typical Buchberger’s reduction process.

Example 4.27. Continuing with Example 4.9, note that the code has Hamming dis-
tance 5 so it corrects up to 2 errors. A reduced Gröbner basis � for the ideal I+(�)
w.r.t. the degrevlex order with

x11 < x12� �� �
X1

< x21 < x22� �� �
X2

< . . .< x71 < x72� �� �
X7

has 193 elements. It is easy to check that the binomial G1 = x31 x62 x71 − x11 x22 and
all the generators of the ideal �X

�
T+
�

are elements of the reduced Gröbner basis.
Let us take the codeword c = (1,2, 2,0, 0,1, 2) and add the error vector e =

(2,2, 0,0, 0,0, 0). Then the received word is y = (0,1, 2,0, 0,1, 2) = c + e which
corresponds to the monomial w = x22 x31 x62 x71. Let us reduce w using � :

w = x22 x31 x62 x71
G1=x31 x62 x71−x11 x22−−−−−−−−−−−→ x11 x22 x22

x2
22−x21∈�X2(T+)−−−−−−−−−→ x11 x21

The normal form of w modulo � is x11 x21 which has weight 2, then (2,2, 0,0, 0,0, 0)
is the error vector corresponding to w and the closest codeword is x12 x21 x32 x62 x71
or c= y+ e.

142 Linear Codes: Applications

Remark 4.28. In Section 3.2 we have defined another ideal Im(�) associated with
modular codes, i.e. codes defined over �q, in particular for codes over �q with q
prime, but not for the case pr since �pr �= �pr . However, for q �= 2 such ideal does not
allow complete decoding since the reduction does not provide the minimum Ham-
ming weight representative in the coset. In the following lines we give an example
of what is discussed in this note.

Example 4.29. Continuing with the Example 4.9, now suppose that we consider our
code as a linear code over the alphabet �3 = �3. Then we can define the lattice
ideal associated with � as the ideal generated by the following set of binomials (see
Theorem 3.9 for the definition of this ideal and the references given there)

Im(�) =
� �

y1 y3 y2
4 y5 y6 y7 − 1,

y2 y2
3 y2

4 y5 y2
7 − 1

� � �
y3

i − 1
�

i=1,...,7

�
⊆ �[y1, . . . , y7]

If we compute a reduced Gröbner basis � of Im(�) w.r.t. a degrevlex ordering
with y1 < y2 < . . .< y7 we obtain 62 binomials. The elements

G1 = y2
3 y6 y2

7 − y2
1 y2 and G2 = y2

1 y2
2 − y4 y2

5 y6

are elements of our reduced Gröbner basis.
Similarly to Example 4.27, let us take the codeword c= (1, 2,2, 0,0,1, 2) and add

the error e = (2,2, 0,0, 0,0, 0). Then the received word is y = (0, 1,2, 0,0, 1,2) =
c+ e which corresponds to the monomial w = y2 y2

3 y6 y2
7 . Let us reduce w using � :

w = y2 y2
3 y6 y2

7

G1=y2
3 y6 y2

7−y2
1 y2−−−−−−−−−→ y2

1 y2
2

G2=y2
1 y2

2−y4 y2
5 y6−−−−−−−−−→ y4 y2

5 y6

The normal form of w modulo � is y4 y2
5 y6 which does not correspond to the error

vector.

Proposition 4.30. The set � =
�
g+i − g−i | i = 1, . . . , s

�
is a test-set for � .

Proof. Let a ∈ �n
q and suppose that a /∈ D(0). Then there exists a non-zero codeword

c ∈ � such that wH(a − c) < wH(a). Hence there exists a vector e = a − c ∈ �n
q

such that Xa − Xe ∈ I+(�) with Xa � Xe, i.e. deg (Xa) = wH(a) > wH(e) = deg (Xe).
Thus, we get that Xa is a multiple of LT≺(gi) for some i = 1, . . . , s. Or equivalently,
supp
�
∆g+i
�
⊆ supp (∆a), i.e. wH(a− g+i) = wH(a)−wH(g+i). And consequently,

wH(a− g+i + g−i)≤ wH(a)−wH(g+i) +wH(g−i)< wH(a).

Note that the second inequality is due to the fact that Xg+i � Xg−i . Moreover, on the
first inequality, the equality holds if and only if supp(a− g+i)∩ supp(g−i) = �.

4.3.2 Reduced and Border basis

Definition 4.31. Let � be an [n, k] linear code defined over the finite field �q.
Associated to the Gröbner representation (� ,φ) for � obtained by Algorithm 18 we

4.3. Decoding linear codes 143

can define the Border basis�(�) for � as the set:

�(�) =




�
n1 +∇ui ,n2
�
������

n1 +∇ui �= n2, n1,n2 ∈ �
S(n1 +∆ui) = S(n2)
i ∈ �1, . . . , n(q− 1)

�



 .

Note that both components of an element b = (b1,b2) ∈ �(�) belong to the
same coset, that is, b1 − b2 is a codeword of the code. Moreover, the Border basis is
related with the function Matphi:

�(�) =
�
�
n+∇ui ,φ(n,ui)

� ����
n ∈ � ,

i ∈ �1, . . . , n(q− 1)
�
�
\ {0}.

Remark 4.32. The Border of a code � is associated to the � -Border basis of the ideal
I+(�) where � = [X]/LT≺

�
I+(�)
�

(see Definition 1.44).

Let b= (b1,b2) ∈�(�), we define the head and the tail of b as:

head(b) = b1 ∈ �n
q and tail(b) = b2 ∈ �n

q .

As pointed above, head(b)− tail(b) is a codeword of � for all b ∈�(�).
The information in the Border is somehow redundant. We will now introduce

a smaller structure analogous to the reduced Gröbner basis of I(�) w.r.t. a degree
compatible ordering.

Definition 4.33. The subset �(�) of the Border basis �(�) is called the reduced
Border of the code � if it fulfills the following conditions:

1. For each element in the Border b ∈ �(�) there exists an element h ∈ �(�)
such that supp (head(h))⊆ supp (head(b)).

2. For every two different elements h1 and h2 in�(�), neither supp
�
head(h1)
�⊆

supp
�
head(h2)
�

nor supp
�
head(h2)
�⊆ supp
�
head(h1)
�

is verified.

Remark 4.34. The definition of reduced basis of the code � and reduced Gröbner
basis of I(�) are very similar. Indeed, let � be a reduced Gröbner basis of I(�) w.r.t.
a degree compatible ordering ≺, then b ∈ �(�) if and only if Xhead(b) −Xtail(b) ∈ � .

Theorem 4.35. Let us consider the set of codewords in � given by

MRed≺(�) = {head(b)− tail(b) | b ∈ �(�)} .

Then MRed≺(�) is a test-set for � .

Proof. This result is a direct consequence of Proposition 4.30 and Remark 4.34.

144 Linear Codes: Applications

Take the following recursive function cf : �n
q −→ � where cf(0) = 0 and

cf(v) = φ(cf(w),uis) if ∆v= ui1 + . . .+ uis−1� �� �
∆w

+uis ,

defined in the proof of Theorem 4.14. Note that Red(w,�) gives the same result as
cf(w). However, the first one uses reduced border for decreasing while the second
one uses either the function Matphi or the Border basis. In [42, 73, 88] it was
shown that reduction by means of Matphi or Border basis gives an efficient algorithm.
These two ways of understanding the reduction process will lead in the following
subsection to two different gradient descent decoding procedures. However, the two
algorithms can be seen as two different types of reductions associated to the Gröbner
representation of the code.
Remark 4.36. In the binary case, we show in Proposition 2.51 that the set MRed≺(�) is
a subset of the set of codewords of minimal support of � , denoted by�� . However
for q �= 2, the statement is not true in general. A counterexample will be given in the
following lines.

Example 4.37. Let � be an [6, 2,4] linear code defined over the finite field �3 with
generator matrix given by:

G =
�

1 0 2 0 1 1
0 1 1 2 0 2

�
∈ �2×6

3 .

If we compute a reduced Gröbner basis for I(�) w.r.t. a degree reverse lexicographic
order, we get 74 elements representing the following nonzero words in � :

(2, 1,2, 2,2,1) (1, 2,1,1, 1,2) (2,2, 0,1, 2,0) (1,1, 0,2, 1,0)
(2, 0,1,0, 2,2) (1,0, 2,0, 1,1) (0,1, 1,2, 0,2) (0,2, 2,1, 0,1)

Note that the first two codewords do not belong to�� .

4.3.3 Gradient Descent Decoding

Given an [n, k] linear code � defined over �q and its corresponding Gröbner repre-
sentation (� ,φ), we can accomplish two types of Gradient Descent Decoding Algo-
rithms which can be seen as two ways of understanding the reduction associated to
the Gröbner representation of the code.

Leader Gradient Descent Decoding

By Theorem 4.16, if a weight compatible ordering≺ is chosen, Algorithm 18 returns a
Gröbner representation (� ,φ) such that the representatives given by� corresponds
to coset leaders of � .

Definition 4.38. We shall define the reduction of an element n ∈ � relative to the
unit vector ui with i ∈ �1, . . . , n(q− 1)

�
as the element n� = φ(n,ui) ∈ � , denoted

by n−→i n�.

4.3. Decoding linear codes 145

Therefore, if we write each element y ∈ �n
q as y=∆
��s

j=1 ui j

�
, we can conclude

that iterating a finite number of reduction yields to a representative of the coset
y+� , that is, an element of the subset CL(y).

These ideas gives us a gradient descent decoding algorithm, described below as
Algorithm 19.

Algorithm 19: Leader Gradient Descent Decoding on �q-linear codes

Data: (� ,φ) a Gröbner representation for � obtained by Algorithm 18 and
the received word y ∈ �n

q
Result: A codeword c ∈ � that minimized the Hamming distance dH(c,y)
y=∇(ui1 + . . .+ uis);1

n←− 0;2

for j←− 1 to s3

n−→ j n� // i.e. n� = φ(n,ui j
);4

n←− n�;5

endfor6

Return: y− n ∈ �7

Note that at the end of Algorithm 19 we terminate with a coset leader n of the
coset y+� . This algorithm is related to the reduction by the function Matphi or the
Border basis.

Test-set Gradient Descent Decoding

Given a received word y ∈ �n
q and suppose that a test-set � of codewords of � has

been precomputed and stored in the memory. This algorithm recursively search an
element t ∈ � such that wH(y− t)< wH(y) and replaces y by y� = y− t.

Algorithm 20: Test-set Gradient Descent Decoding on �q-linear codes

Data: The received word y ∈ �n
q and a test-set � for �

Result: A codeword c ∈ � that minimized the Hamming distance dH(c,y)
c←− 0;1

while there exists t ∈ � such that wH(y− t)< wH(y) do2

c←− c+ t;3

y←− y+ t;4

endw5

Return: c6

Of course, y− t belongs to the same coset of y, since t ∈ � ⊆ � . The algorithm
terminates when we arrive to a coset leader corresponding to the coset y+� , that
is, when y� ∈ CL(y).

Note that this algorithm requires a nontrivial preprocessing for the construction
of a test-set of codewords. By Theorem 4.35 we know that the reduced basis of � ,
which is related to its Gröbner representation, is a test-set for the code.

146 Linear Codes: Applications

The main difference from Algorithm 20 is that it stays entirely in one coset of
the code and systematically seeks out a coset leader, while Algorithm 19 changes
between different coset of �n

q/� until it arrives to the 0-coset, i.e. the code itself.

4.4 FGLM technique to compute a Gröbner basis

In this section we present an algorithm to compute a reduced Gröbner basis of the
ideal I+(�) which is associated to a linear code � defined over the finite field �q.
This algorithm goes back to the work of Faugère et al. [42] and generalizes that of
[11, 45, 46].

We will follow the notation of the theory of Gröbner Bases for submodules intro-
duced in Section 3.3.

The main idea of the algorithm is to fix a generator matrix G ∈ �k×n
q of the

[n, k] linear code � defined over �q, whose rows are labelled by
�
w1, . . . ,wk
�
. Then

consider the set of binomials

F =
�

fi j = Xα
jwi − 1
�

i=1,...,k
j=1,...,q−1

⊆ �[X].

By Theorem 4.3, the set F ∪
�
�Xi

�
T+
��

i=1,...,n
generates the ideal I+(�). We claim

that the set
�1 =
�

gi j = v1 fi j + v((i−1)(q−1)+ j+1)

�
i=1,...,k

j=1,...,q−1
,

where vi denotes the unit vector of length k(q−1)+1 with a one in the i-th position,
is a basis for the syzygy module M in �[X]k(q−1)+1 with generating set

F̂ =
�
−1, f11, . . . , f1q−1, . . . , fk1, . . . , fkq−1

�
.

Where the binomials
�
�Xi

�
T+
��

i=1,...,n
are considered implicit on the operations.

Moreover, �1 is a Gröbner basis of M relative to a POT ordering ≺w induced by
an ordering ≺ in �[X] and the weight vector

w= (1, LT≺(f11), . . . , LT≺(fkq−1)).

Note that the leading term of gi j with respect to ≺w is v((i−1)(q−1)+ j+1).
Therefore, using the generalized FGLM algorithm [42] and running through the

terms of �[X]k(q−1)+1 using a TOP ordering we obtain a Gröbner basis �2 relative
to a new order. Note that each syzygy corresponds to a solution of the following
equation:

−β0 +
k�

i=1

q−1�

j=1

β(i−1)(q−1)+ j fi j = 0 with βi ∈ �[X] for i = 1, . . . , k(q− 1).

Hence, the first component of any syzygy of the module M indicates an element of
the ideal generated by F . Moreover, it is immediate that the normal form with respect

4.4. FGLM technique to compute a Gröbner basis 147

to �1 of any element is zero except in the first component, that is to say, the linear
combinations that Fitzpatrick’s algorithm [45] look for, take place in this component.

Let r = k(q− 1). Three structures are used in the algorithm:

• The list List whose elements are of the specific type v = (v[1],v[2]) where
v[2] represents an element in �[X] which can be expressed as

v[2] = λ+
r�

i=1

λi fi with λ,λ1, . . . ,λr ∈ �[X].

Thus, the coefficient vector
�
λ,λ1, . . . ,λr
� ∈ �[X]r+1 is the associated vector

of v[2] on the module M . Then v[1] represents the first component of such
vector.

• The list GT which ends up being a reduced Gröbner basis of I+(�) w.r.t. a
degree compatible ordering ≺T .

• The list� of terms that are reduced with respect to GT , i.e. the set of standard
monomials.

We also require the following subroutines:

• InsertNexts(w, List) inserts the product wx for x ∈ [X] in List and
removes the duplicates, where the binomials of

�
�Xi

�
T+
��

i=1,...,n
are consid-

ered as implicit in the computation. Then the elements of List are sorted by
increasing order w.r.t. ≺T in the first component of the pairs and in case of
equality by comparing the second component. Recall that

X= {X1, . . . , Xn}= {x11, . . . , x1q−1, . . . , xn1, . . . , xnq−1}.

• NextTerm(List) removes the first element from the list List and returns it.

• Member(v,[v1, . . . ,vr]) returns j if v= v j or false otherwise.

Remark 4.39. Note that the computation of Xa xi j modulo the ideal �X
�

T+
�
, with

a ∈ �n
q , acts like the operation a+α jei in the finite field �n

q where
�
e1, . . . ,en
�

denotes
a standard basis of �n

q .

Theorem 4.40. Algorithm 21 computes a reduced Gröbner basis of the ideal associated
to a given linear code � of parameters [n, k] defined over �q.

Proof. The proof of the algorithm is an extension of that in [45, Algorithm2.1] and
therefore, is also a generalization of the FGLM algorithm [42]. Let G ∈ �k×n

q be a
generator matrix of � . We label the rows of G by

�
w1, . . . ,wk
�⊆ �n

q .
By Theorem 4.3 the ideal associated to the linear code � may be defined as the

following binomial ideal:

I+(�) =
� �

Xα
jwi
�

i=1,...,k
j=1,...,q−1

� �
�Xi

�
T+
��

i=1,...,n

�

=
� �

f1, . . . , fs
� � ��Xi

�
T+
��

i=1,...,n

�
.

148 Linear Codes: Applications

Algorithm 21: Adapted FGLM algorithm for I+(�)
Data: The rows

�
w1, . . . ,wk
�⊆ �n

q of a generator matrix of an [n, k] linear
code � defined over �q and a degree compatible ordering <T on �[X].

Result: A reduced Gröbner basis GT of the ideal I+(�) w.r.t. <T .

List←−
�
(1,1),
�
(1,α jwi)
�

i=1,...,k
j=1,...,q−1

�
; GT ←− �; � ←− �; r ←− 0;

1

while List �= � do2

w←− NextTerm(List);3

if w[1] /∈ LT<T

�
GT
�

then4

j = Member(w[2],
�

v1[2], . . . ,vr[2]
�
);5

if j �= false then6

GT ←− GT ∪
�
w[1]− v j[1]
�

;7

for i = 1 to r8

if vi[1] is a multiple of w[1] then9

Removes vi[1] from �10

endif11

endfor12

else13

r ←− r + 1;14

vr ←−w;15

� ←−� ∪ �vr[1]
�
;16

List= InsertNexts(w,List);17

endif18

endif19

endw20

We first show that GT is a subset of binomials of the ideal I+(�). The proof is
based on the following observation: Xa−Xb ∈ GT if and only if it corresponds to the
first component of a syzygy in the module M . In other words,

Xa −Xb =
s�

i=1

λi fi with λi ∈ �[X] , i = 1, . . . , r,

or equivalently, Xa −Xb ∈ I+(�).
Moreover, we claim that the initial ideal of I+(�) is generated by the leading

terms of polynomials in GT . Indeed, by Theorem 4.3, any binomial f (X) of the ideal
I+(�) can be written uniquely as a linear combination of vectors in the generator set
F =
�

f1, . . . , fs
�

modulo the ideal �X
�

T+
�
, i.e.

f (X) =
s�

i=1

λi fi(X) mod �X
�

T+
�

with λi ∈ �[X].

Therefore, LT<T

�
f (X)
�

is a multiple of the leading term of an element fr(X) =

4.4. FGLM technique to compute a Gröbner basis 149

Xα
jwi −1 ∈ F that appears on its decomposition. But the leading term of any element

fr = Xα
jwi −1 ∈ F cannot be in � . To see this, note that the first element introduced

in the set � is always (1,1). Moreover,

1= Xα
jwi + fr i.e. Red≺(Xα

jwi , F) = 1 and 1= 1+
�s

i=1 0 · fi

i.e. Red≺(1, F) = 1 which implies that Xα
jwi − 1 ∈ GT .

By definition, GT is reduced since we only consider on the algorithm terms which
are not divisible by any leading term of the Gröbner basis.

Finally, since I+(�) has finite dimension, then the number of terms in � is
bounded. Note that at each iteration of the main loop either the size of List de-
creases or the size of � increases, thus there are only a finite number of iterations.
This completes the proof of the algorithm.

Remark 4.41. Recall that the dimension of the quotient vector space �n
q/� is qn−k.

Moreover, if � can correct up to t errors, then every word e of weight wH(e) ≤ t is
the unique coset leader (vectors of minimal weight in their cosets) of its coset modulo
� . In other words, all monomials of degree less than t modulo the ideal �X

�
T+
�

should be a standard monomials for GT .
Note that the writing rules given by the ideal�X

�
T+
�

implies that “the exponent
of each variable xi j is 0 or 1” and “two different variables xi j and xil can not appear
in a monomial”. Thus, the number of standard monomials of a t-error correcting
code is at least

M =
t�

l=1

(q− 1)l
�

n
l

�
. (4.4)

Accordingly, if qn−k = M , then all cosets has a unique coset leader of weight smaller
or equal to t. Codes that achieve this equality are the so-called perfect codes. Other-
wise, there must appear some cosets leaders of weight at most ρ(�), where ρ(�)
denotes the covering radius of � , but never as the unique leader, or equivalently
there exists standard monomials of degree up to ρ(�). Recall that ρ(�) coincide
with the largest weight among all the cosets of � .

By Proposition 4.22 in the worst case, a minimal generator of the initial ideal
in<(I+(�)) has degree ρ(�) + 1 where < is a degree compatible ordering.

Theorem 4.42. Let � be an [n, k] linear code that corrects up to t errors and M be
defined by Equation 4.4. If the basis field operations need an unit time, then Algorithm
21 needs a total time of �

�
Dn2(q− 1)
�

, where

D =

� �t+1
i=1 (q− 1)i
�n

i

�
, if � is a perfect code.�ρ(�)+1

i=1 (q− 1)i
�n

i

�
, otherwise.

Proof. The main time of the algorithm is devoted to the management of InsertNexts.
In each main loop iteration this function first introduces n(q − 1) new elements to
the list List, then compares all the elements and finally eliminates redundancy.

150 Linear Codes: Applications

Note that comparing two monomials in �[X] is equivalent to comparing vectors
in �n

q , thus we need a time of � (n).
At iteration i, after inserting the new elements in the list List we would have at

most Di elements where

Di = (q− 1)k� �� �
Elements that

initialized List

+ i
�
n(q− 1)
�− i� �� �

At each iteration
the first element is removed

and we add n(q-1)new elements

By Remark 4.41 we have an upper bound D for the number of times that InsertNexts
should be called. This gives a total time of

� �n�(q− 1)k+ D
�
n(q− 1)
�− D
��∼ �
�

Dn2(q− 1)
�

.

The following example shows how Algorithm 21 works.

Example 4.43. Consider � the [4,2, 3] ternary code with generator matrix

G� =
�

1 0 1 2
0 1 2 2

�
∈ �2×4

3

We find that

I+(�) =
� �

x12 x32 x41 − 1, x11 x31 x42 − 1
x22 x31 x41 − 1, x21 x32 x42 − 1

� � �
�Xi

�
T+
��

i=1,2,3,4

�

with �Xi

�
T+
�
=
�

x2
i1 − xi2, xi1 xi2 − 1, x2

i2 − xi1

�
for i = 1,2, 3,4.

We compute the reduced Gröbner basis of I+(�) w.r.t. the degrevlex order
with x11 < x12� �� �

X1

< x21 < x22� �� �
X2

< x31 < x32� �� �
X3

< x41 < x42� �� �
X4

.

We get 36 binomials representing all the codewords of the code:
�

x11 x22 − x31, x11 x32 − x21, x22 x32 − x12,
x12 x21 − x32, x12 x31 − x22, x21 x31 − x11

�
→
�
(2,1, 1,0)
(1,2, 2,0)

�

�
x11 x21 − x42, x11 x41 − x22, x21 x41 − x12,
x12 x22 − x41, x12 x42 − x21, x22 x42 − x11

�
→
�
(2,2, 0,2)
(1,1, 0,1)

�

�
x11 x31 − x41, x11 x42 − x32, x31 x42 − x12,
x12 x32 − x42, x12 x41 − x31, x32 x41 − x11

�
→
�
(2,0, 2,1)
(1,0, 1,2)

�

�
x22 x31 − x42, x22 x41 − x32, x31 x41 − x21,
x21 x32 − x41, x21 x42 − x31, x32 x42 − x22

�
→
�
(0,1, 2,2)
(0,2, 1,1)

�

4.4. FGLM technique to compute a Gröbner basis 151

�Xi

�
T+
�

for i = 1,2, 3,4 −→ (0, 0,0,0)

Now we apply Algorithm 21 and we compare the obtained result.
The algorithm is initialized with the following data:

�n3-Representation of the exponent of v[2]

v[1] 1 X1 X2 X3 X4 v[2]
1 1 1
1 1 0 1 2 x12 x32 x41
1 0 1 2 2 x22 x31 x41
1 2 0 2 1 x11 x31 x42
1 0 2 1 1 x21 x32 x42

Note that at each step, we add new elements to the list List which we represent
in a table. Moreover, at each Step the first element form the the list List is removed
by the subroutine NextTerm and the elements are sorted by increasing order w.r.t.
the deglex order in the first component of the pairs, and in case of equality by
comparing the second component.

1. NextTerm(List) = (1, 1)

v1 = (1, 1)

� = {1}

List= InsertNexts(v1,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 2 x11
x12 1 x12
x21 2 x21
x22 1 x22
x31 2 x31
x32 1 x32
x41 2 x41
x42 1 x42

2. NextTerm(List) = (1, x11 x31 x42)

v2 = (1, x11 x31 x42)

� = {1}

List= InsertNexts(v2,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 1 0 2 1 x12 x31 x42
x12 0 0 2 1 x31 x42
x21 2 2 2 1 x11 x21 x31 x42
x22 2 1 2 1 x11 x22 x31 x42
x31 2 0 1 1 x11 x32 x42
x32 2 0 0 1 x11 x42
x41 2 0 2 0 x11 x31
x42 2 0 2 2 x11 x31 x41

3. NextTerm(List) = (1, x12 x32 x41)

v3 = (1, x12 x32 x41)

� = {1}

List= InsertNexts(v3,List).

152 Linear Codes: Applications

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 0 0 1 2 x32 x41
x12 2 0 1 2 x11 x32 x41
x21 1 2 1 2 x12 x21 x32 x41
x22 1 1 1 2 x12 x22 x32 x41
x31 1 0 0 2 x12 x41
x32 1 0 2 2 x12 x31 x41
x41 1 0 1 1 x12 x32 x42
x42 1 0 1 0 x12 x32

4. NextTerm(List) = (1, x21 x32 x42)
v4 = (1, x21 x32 x42)
� = {1}
List= InsertNexts(v4,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 2 2 1 1 x11 x21 x32 x42
x12 1 2 1 1 x12 x21 x32 x42
x21 0 1 1 1 x22 x32 x42
x22 0 0 1 1 x32 x42
x31 0 2 0 1 x21 x42
x32 0 2 2 1 x21 x31 x42
x41 0 2 1 0 x21 x32
x42 0 2 1 2 x21 x32 x41

5. NextTerm(List) = (1, x22 x31 x41)
v5 = (1, x22 x31 x41)
� = {1}
List= InsertNexts(v5,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 2 1 2 2 x11 x22 x31 x41
x12 1 1 2 2 x12 x22 x31 x41
x21 0 0 2 2 x31 x41
x22 0 2 2 2 x21 x31 x41
x31 0 1 1 2 x22 x32 x41
x32 0 1 0 2 x22 x41
x41 0 1 2 1 x22 x31 x42
x42 0 1 2 0 x22 x31

6. NextTerm(List) = (x11, x11)

v6 = (x11, x11)

� = �1, x11
�

List= InsertNexts(v6,List).

�n3-Representation of the exponent of v[2]

v[1] 1 X1 X2 X3 X4 v[2]
x11 x11 1 0 0 0 x12
x11 x12 1 0 0 0 0 1
x11 x21 2 2 0 0 x11 x21
x11 x22 2 1 0 0 x11 x22
x11 x31 2 0 2 0 x11 x31
x11 x32 2 0 1 0 x11 x32
x11 x41 2 0 0 2 x11 x41
x11 x42 2 0 0 1 x11 x42

7. NextTerm(List) = (x11, x32 x41)

v7 = (x11, x32 x41)

� = �1, x11
�

List= InsertNexts(v7,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x11 2 0 1 2 x11 x32 x41
x11 x12 1 0 1 2 x12 x32 x41
x11 x21 0 2 1 2 x21 x32 x41
x11 x22 0 1 1 2 x11 x32 x41
x11 x31 0 0 0 2 x41
x11 x32 0 0 2 2 x31 x41
x11 x41 0 0 1 1 x32 x42
x11 x42 0 0 1 0 x32

8. NextTerm(List) = (x11, x12 x31 x42)

v8 = (x11, x12 x31 x42)

� = �1, x11
�

List= InsertNexts(v8,List).

4.4. FGLM technique to compute a Gröbner basis 153

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x11 0 0 2 1 x31 x42
x11 x12 1 0 2 1 x12 x31 x42
x11 x21 1 2 2 1 x12 x21 x31 x42
x11 x22 1 1 2 1 x12 x22 x31 x42
x11 x31 1 0 1 1 x12 x32 x42
x11 x32 1 0 0 1 x12 x42
x11 x41 1 0 2 0 x12 x31
x11 x42 1 0 2 2 x12 x31 x41

9. NextTerm(List) = (x11, x11 x21 x32 x42)
v9 = (x11, x11 x21 x32 x42)
� = �1, x11
�

List= InsertNexts(v9,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x11 1 2 1 1 x12 x21 x32 x42
x11 x12 0 2 1 1 x21 x32 x42
x11 x21 2 1 1 1 x11 x22 x32 x42
x11 x22 2 0 1 1 x11 x32 x42
x11 x31 2 2 0 1 x11 x21 x42
x11 x32 2 2 2 1 x11 x21 x31 x42
x11 x41 2 2 1 0 x11 x21 x32
x11 x42 2 2 1 2 x11 x21 x32 x41

10. NextTerm(List) = (x11, x11 x22 x31 x41)
v10 = (x11, x11 x22 x31 x41)
� = �1, x11
�

List= InsertNexts(v10,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x11 1 1 2 2 x12 x22 x31 x41
x11 x12 0 1 2 2 x22 x31 x41
x11 x21 2 0 2 2 x11 x31 x41
x11 x22 2 2 2 2 x11 x21 x31 x41
x11 x31 2 1 1 2 x11 x22 x32 x41
x11 x32 2 1 0 2 x11 x22 x41
x11 x41 2 1 2 1 x11 x22 x31 x42
x11 x42 2 1 2 0 x11 x22 x31

11. NextTerm(List) = (x12, x12)

v11 = (x12, x12)

� = �1, x11, x12
�

List= InsertNexts(v11,List).

�n3-Representation of the exponent of v[2]

v[1] 1 X1 X2 X3 X4 v[2]
x11 x12 1 0 0 0 0 1
x12 x12 2 0 0 0 x11
x12 x21 1 2 0 0 x12 x21
x12 x22 1 1 0 0 x12 x22
x12 x31 1 0 2 0 x12 x31
x12 x32 1 0 1 0 x12 x32
x12 x41 1 0 0 2 x12 x41
x12 x42 1 0 0 1 x12 x42

12. NextTerm(List) = (x12, x31 x42)

v12 = (x12, x31 x42)

� = �1, x11, x12
�

List= InsertNexts(v12,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x12 2 0 2 1 x11 x31 x42
x12 x12 1 0 2 1 x12 x31 x42
x12 x21 0 2 2 1 x21 x31 x42
x12 x22 0 1 2 1 x22 x31 x42
x12 x31 0 0 1 1 x32 x42
x12 x32 0 0 0 1 x42
x12 x41 0 0 2 0 x31
x12 x42 0 0 2 2 x31 x41

13. NextTerm(List) = (x12, x11 x32 x41)

v13 = (x12, x11 x32 x41)

� = �1, x11, x12
�

List= InsertNexts(v13,List).

154 Linear Codes: Applications

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x12 1 0 1 2 x12 x32 x41
x12 x12 0 0 1 2 x32 x41
x12 x21 2 2 1 2 x11 x21 x32 x41
x12 x22 2 1 1 2 x11 x22 x32 x41
x12 x31 2 0 0 2 x11 x41
x12 x32 2 0 2 2 x11 x31 x41
x12 x41 2 0 1 1 x11 x32 x42
x12 x42 2 0 1 0 x11 x32

14. NextTerm(List) = (x12, x12 x21 x32 x42)
v14 = (x12, x12 x21 x32 x42)
� = �1, x11, x12

�

List= InsertNexts(v14,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x12 0 2 1 1 x21 x32 x42
x12 x12 2 2 1 1 x11 x21 x32 x42
x12 x21 1 1 1 1 x12 x22 x32 x42
x12 x22 1 0 1 1 x12 x32 x42
x12 x31 1 2 0 1 x12 x21 x42
x12 x32 1 2 2 1 x12 x21 x31 x42
x12 x41 1 2 1 0 x12 x21 x32
x12 x42 1 2 1 2 x12 x21 x32 x41

15. NextTerm(List) = (x12, x12 x22 x31 x41)
v15 = (x12, x12 x22 x31 x41)
� = �1, x11, x12

�

List= InsertNexts(v15,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x12 0 1 2 2 x22 x31 x41
x12 x12 2 1 2 2 x11 x22 x31 x41
x12 x21 1 0 2 2 x12 x31 x41
x12 x22 1 2 2 2 x12 x21 x31 x41
x12 x31 1 1 1 2 x12 x22 x32 x41
x12 x32 1 1 0 2 x12 x22 x41
x12 x41 1 1 2 1 x12 x22 x31 x42
x12 x42 1 1 2 0 x12 x22 x31

16. NextTerm(List) = (x21, x21)

v16 = (x21, x21)

� = �1, x11, x12, x21
�

List= InsertNexts(v16,List).

�n3-Representation of the exponent of v[2]

v[1] 1 X1 X2 X3 X4 v[2]
x11 x21 2 2 0 0 x11 x21
x12 x21 1 2 0 0 x12 x21
x21 x21 0 1 0 0 x22
x21 x22 1 0 0 0 0 1
x21 x31 0 2 2 0 x21 x31
x21 x32 0 2 1 0 x21 x32
x21 x41 0 2 0 2 x21 x41
x21 x42 0 2 0 1 x21 x42

17. NextTerm(List) = (x21, x31 x41)

v17 = (x21, x31 x41)

� = �1, x11, x12, x21
�

List= InsertNexts(v17,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x21 2 0 2 2 x11 x31 x41
x12 x21 1 0 2 2 x12 x31 x41
x21 x21 0 2 2 2 x21 x31 x41
x21 x22 0 1 2 2 x22 x31 x41
x21 x31 0 0 1 2 x32 x41
x21 x32 0 0 0 2 x41
x21 x41 0 0 2 1 x31 x42
x21 x42 0 0 2 0 x31

18. NextTerm(List) = (x21, x22 x32 x42)

v18 = (x21, x22 x32 x42)

� = �1, x11, x12, x21
�

List= InsertNexts(v18,List).

4.4. FGLM technique to compute a Gröbner basis 155

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x21 2 1 1 1 x11 x22 x32 x42
x12 x21 1 1 1 1 x12 x22 x32 x42
x21 x21 0 0 1 1 x32 x42
x21 x22 0 2 1 1 x21 x32 x42
x21 x31 0 1 0 1 x22 x42
x21 x32 0 1 2 1 x22 x31 x42
x21 x41 0 1 1 0 x22 x32
x21 x42 0 1 1 2 x22 x32 x41

19. NextTerm(List) = (x21, x11 x21 x31 x42)
v19 = (x21, x11 x21 x31 x42)
� = �1, x11, x12, x21

�

List= InsertNexts(v19,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x21 1 2 2 1 x12 x21 x31 x42
x12 x21 0 2 2 1 x21 x31 x42
x21 x21 2 1 2 1 x11 x22 x31 x42
x21 x22 2 0 2 1 x11 x31 x42
x21 x31 2 2 1 1 x11 x21 x32 x42
x21 x32 2 2 0 1 x11 x21 x42
x21 x41 2 2 2 0 x11 x21 x31
x21 x42 2 2 2 2 x11 x21 x31 x41

20. NextTerm(List) = (x21, x12 x21 x32 x41)
v20 = (x21, x12 x21 x32 x41)
� = �1, x11, x12, x21

�

List= InsertNexts(v20,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x21 0 2 1 2 x21 x32 x41
x12 x21 2 2 1 2 x11 x21 x32 x41
x21 x21 1 1 1 2 x12 x22 x32 x41
x21 x22 1 0 1 2 x12 x32 x41
x21 x31 1 2 0 2 x12 x21 x41
x21 x32 1 2 2 2 x12 x21 x31 x41
x21 x41 1 2 1 1 x12 x21 x32 x42
x21 x42 1 2 1 0 x12 x21 x32

21. NextTerm(List) = (x22, x22)

v21 = (x22, x22)

� = �1, x11, x12, x21, x22
�

List= InsertNexts(v21,List).

�n3-Representation of the exponent of v[2]

v[1] 1 X1 X2 X3 X4 v[2]
x11 x22 2 2 0 0 x11 x22
x12 x22 1 2 0 0 x12 x22
x21 x22 1 0 0 0 0 1
x22 x22 0 1 0 0 x21
x22 x31 0 2 2 0 x22 x31
x22 x32 0 2 1 0 x22 x32
x22 x41 0 2 0 2 x22 x41
x22 x42 0 2 0 1 x22 x42

22. NextTerm(List) = (x22, x32 x42)

v22 = (x22, x32 x42)

� = �1, x11, x12, x21, x22
�

List= InsertNexts(v22,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x22 2 0 1 1 x11 x32 x42
x12 x22 1 0 1 1 x12 x32 x42
x21 x22 0 2 1 1 x21 x32 x42
x22 x22 0 1 1 1 x22 x32 x42
x22 x31 0 0 0 1 x42
x22 x32 0 0 2 1 x31 x42
x22 x41 0 0 1 0 x32
x22 x42 0 0 1 2 x32 x41

23. NextTerm(List) = (x22, x21 x31 x41)

v23 = (x22, x21 x31 x41)

� = �1, x11, x12, x21, x22
�

List= InsertNexts(v23,List).

156 Linear Codes: Applications

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x22 2 2 2 2 x11 x21 x31 x41
x12 x22 1 2 2 2 x12 x21 x31 x41
x21 x22 0 1 2 2 x22 x31 x41
x22 x22 0 0 2 2 x31 x41
x22 x31 0 2 1 2 x21 x32 x41
x22 x32 0 2 0 2 x21 x41
x22 x41 0 2 2 1 x21 x31 x42
x22 x42 0 2 2 0 x21 x31

24. NextTerm(List) = (x22, x11 x32 x42)
v24 = (x22, x11 x22 x31 x42)
� = �1, x11, x12, x21, x22

�

List= InsertNexts(v24,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x22 1 0 1 1 x12 x32 x42
x12 x22 0 0 1 1 x32 x42
x21 x22 2 2 1 1 x11 x21 x32 x42
x22 x22 2 1 1 1 x11 x22 x32 x42
x22 x31 2 0 0 1 x11 x42
x22 x32 2 0 2 1 x11 x31 x42
x22 x41 2 0 1 0 x11 x32
x22 x42 2 0 1 2 x11 x32 x41

25. NextTerm(List) = (x22, x12 x22 x32 x41)
v25 = (x22, x12 x22 x32 x41)
� = �1, x11, x12, x21, x22

�

List= InsertNexts(v25,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x22 0 1 1 2 x22 x32 x41
x12 x22 2 1 1 2 x11 x22 x32 x41
x21 x22 1 0 1 2 x12 x32 x41
x22 x22 1 2 1 2 x12 x21 x32 x41
x22 x31 1 1 0 2 x12 x22 x41
x22 x32 1 1 2 2 x12 x22 x31 x41
x22 x41 1 1 1 1 x12 x22 x32 x42
x22 x42 1 1 1 0 x12 x22 x32

26. NextTerm(List) = (x31, x31)

v26 = (x31, x31)

� = �1, x11, x12, x21, x22, x31
�

List= InsertNexts(v26,List).

�n3-Representation of the exponent of v[2]

v[1] 1 X1 X2 X3 X4 v[2]
x11 x31 2 0 2 0 x11 x31
x12 x31 1 0 2 0 x12 x31
x21 x31 0 2 2 0 x21 x31
x22 x31 0 1 2 0 x22 x31
x31 x31 0 0 1 0 x32
x31 x32 1 0 0 0 0 1
x31 x41 0 0 2 2 x31 x41
x31 x42 0 0 2 1 x31 x42

27. NextTerm(List) = (x31, x12 x41)

v27 = (x31, x12 x41)

� = �1, x11, x12, x21, x22, x31
�

List= InsertNexts(v27,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x31 0 0 0 2 x41
x12 x31 2 0 0 2 x11 x41
x21 x31 1 2 0 2 x12 x21 x41
x22 x31 1 1 0 2 x12 x22 x41
x31 x31 1 0 2 2 x12 x31 x41
x31 x32 1 0 1 2 x12 x32 x41
x31 x41 1 0 0 1 x12 x42
x31 x42 1 0 0 0 x12

28. NextTerm(List) = (x31, x21 x42)

v28 = (x31, x21 x42)

� = �1, x11, x12, x21, x22, x31
�

List= InsertNexts(v28,List).

4.4. FGLM technique to compute a Gröbner basis 157

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x31 2 2 0 1 x11 x21 x42
x12 x31 1 2 0 1 x12 x21 x42
x21 x31 0 1 0 1 x22 x42
x22 x31 0 0 0 1 x42
x31 x31 0 2 2 1 x21 x31 x42
x31 x32 0 2 1 1 x21 x32 x42
x31 x41 0 2 0 0 x21
x31 x42 0 2 0 2 x21 x41

29. NextTerm(List) = (x31, x11 x32 x42)
v29 = (x31, x11 x32 x42)
� = �1, x11, x12, x21, x22, x31

�

List= InsertNexts(v29,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x31 1 0 1 1 x12 x32 x42
x12 x31 0 0 1 1 x32 x42
x21 x31 2 2 1 1 x11 x21 x32 x42
x22 x31 2 1 1 1 x11 x22 x32 x42
x31 x31 2 0 0 1 x11 x42
x31 x32 2 0 2 1 x11 x31 x42
x31 x41 2 0 1 0 x11 x32
x31 x42 2 0 1 2 x11 x32 x41

30. NextTerm(List) = (x31, x22 x32 x41)
v30 = (x31, x22 x32 x41)
� = �1, x11, x12, x21, x22, x31

�

List= InsertNexts(v30,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x31 2 1 1 2 x11 x22 x32 x41
x12 x31 1 1 1 2 x12 x22 x32 x41
x21 x31 0 0 1 2 x32 x41
x22 x31 0 2 1 2 x21 x32 x41
x31 x31 0 1 0 2 x22 x41
x31 x32 0 1 2 2 x22 x31 x41
x31 x41 0 1 1 1 x22 x32 x42
x31 x42 0 1 1 0 x22 x32

31. NextTerm(List) = (x32, x32)

v31 = (x32, x32)

� = �1, x11, x12, x21, x22, x31, x32
�

List= InsertNexts(v31,List).

�n3-Representation of the exponent of v[2]

v[1] 1 X1 X2 X3 X4 v[2]
x11 x32 2 0 1 0 x11 x32
x12 x32 1 0 1 0 x12 x32
x21 x32 0 2 1 0 x21 x32
x22 x32 0 1 1 0 x22 x32
x31 x32 1 0 0 0 0 1
x32 x32 0 0 2 0 x31
x32 x41 0 0 1 2 x32 x41
x32 x42 0 0 1 1 x32 x42

32. NextTerm(List) = (x32, x11 x42)

v32 = (x32, x11 x42)

� = �1, x11, x12, x21, x22, x31, x32
�

List= InsertNexts(v32,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x32 1 0 0 1 x12 x42
x12 x32 0 0 0 1 x42
x21 x32 2 2 0 1 x11 x21 x42
x22 x32 2 1 0 1 x11 x22 x42
x31 x32 2 0 2 1 x11 x31 x42
x32 x32 2 0 1 1 x11 x32 x42
x32 x41 2 0 0 0 x11
x32 x42 2 0 0 2 x11 x41

33. NextTerm(List) = (x32, x22 x41)

v33 = (x32, x22 x41)

� = �1, x11, x12, x21, x22, x31, x32
�

List= InsertNexts(v33,List).

158 Linear Codes: Applications

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x32 2 1 0 2 x11 x22 x41
x12 x32 1 1 0 2 x12 x22 x41
x21 x32 0 0 0 2 x41
x22 x32 0 2 0 2 x21 x41
x31 x32 0 1 2 2 x22 x31 x41
x32 x32 0 1 1 2 x22 x32 x41
x32 x41 0 1 0 1 x22 x42
x32 x42 0 1 0 0 x22

34. NextTerm(List) = (x32, x12 x31 x41)
v34 = (x32, x12 x31 x41)
� = �1, x11, x12, x21, x22, x31, x32

�

List= InsertNexts(v34,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x32 0 0 2 2 x31 x41
x12 x32 2 0 2 2 x11 x31 x41
x21 x32 1 2 2 2 x12 x21 x31 x41
x22 x32 1 1 2 2 x12 x22 x31 x41
x31 x32 1 0 1 2 x12 x32 x41
x32 x32 1 0 0 2 x12 x41
x32 x41 1 0 2 1 x12 x31 x42
x32 x42 1 0 2 0 x12 x31

35. NextTerm(List) = (x32, x21 x31 x42)
v35 = (x32, x21 x31 x42)
� = �1, x11, x12, x21, x22, x31, x32

�

List= InsertNexts(v35,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x32 2 2 2 1 x11 x21 x31 x42
x12 x32 1 2 2 1 x12 x21 x31 x42
x21 x32 0 1 2 1 x22 x31 x42
x22 x32 0 0 2 1 x31 x42
x31 x32 0 2 1 1 x21 x32 x42
x32 x32 0 2 0 1 x21 x42
x32 x41 0 2 2 0 x21 x31
x32 x42 0 2 2 2 x21 x31 x41

36. NextTerm(List) = (x41, x41)

v36 = (x41, x41)

� = �1, x11, x12, x21, x22, x31, x32, x41
�

List= InsertNexts(v36,List).

�n3-Representation of the exponent of v[2]

v[1] 1 X1 X2 X3 X4 v[2]
x11 x41 2 0 0 2 x11 x41
x12 x41 1 0 0 2 x12 x41
x21 x41 0 2 0 2 x21 x41
x22 x41 0 1 0 2 x22 x41
x31 x41 0 0 2 2 x31 x41
x32 x41 0 0 1 2 x32 x41
x41 x41 0 0 0 1 x42
x41 x42 1 0 0 0 0 1

37. NextTerm(List) = (x41, x11 x31)

v37 = (x41, x11 x31)

� = �1, x11, x12, x21, x22, x31, x32, x41
�

List= InsertNexts(v37,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x41 1 0 2 0 x12 x31
x12 x41 0 0 2 0 x31
x21 x41 2 2 2 0 x11 x21 x31
x22 x41 2 1 2 0 x11 x22 x31
x31 x41 2 0 1 0 x11 x32
x32 x41 2 0 0 0 x11
x41 x41 2 0 2 2 x11 x31 x41
x41 x42 2 0 2 1 x11 x31 x42

38. NextTerm(List) = (x41, x21 x32)

v38 = (x41, x21 x32)

� = �1, x11, x12, x21, x22, x31, x32, x41
�

List= InsertNexts(v38,List).

4.4. FGLM technique to compute a Gröbner basis 159

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x41 2 2 1 0 x11 x21 x32
x12 x41 1 2 1 0 x12 x21 x32
x21 x41 0 1 1 0 x22 x32
x22 x41 0 0 1 0 x32
x31 x41 0 2 0 0 x21
x32 x41 0 2 2 0 x21 x31
x41 x41 0 2 1 2 x21 x32 x41
x41 x42 0 2 1 1 x21 x32 x42

39. NextTerm(List) = (x41, x12 x32 x42)
v39 = (x41, x12 x32 x42)
� = �1, x11, x12, x21, x22, x31, x32, x41

�

List= InsertNexts(v39,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x41 0 0 1 1 x32 x42
x12 x41 2 0 1 1 x11 x32 x42
x21 x41 1 2 1 1 x12 x21 x32 x42
x22 x41 1 1 1 1 x12 x22 x32 x42
x31 x41 1 0 0 1 x12 x42
x32 x41 1 0 2 1 x12 x31 x42
x41 x41 1 0 1 0 x12 x32
x41 x42 1 0 1 2 x12 x32 x41

40. NextTerm(List) = (x41, x22 x31 x42)
v40 = (x41, x22 x31 x42)
� = �1, x11, x12, x21, x22, x31, x32, x41

�

List= InsertNexts(v40,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x41 2 1 2 1 x11 x22 x31 x42
x12 x41 1 1 2 1 x12 x22 x31 x42
x21 x41 0 0 2 1 x31 x42
x22 x41 0 2 2 1 x21 x31 x42
x31 x41 0 1 1 1 x22 x32 x42
x32 x41 0 1 0 1 x22 x42
x41 x41 0 1 2 0 x22 x31
x41 x42 0 1 2 2 x22 x31 x41

41. NextTerm(List) = (x42, x42)

v41 = (x42, x42)

� = �1, x11, x12, x21, x22, x31, x32, x41, x42
�

List= InsertNexts(v41,List).

�n3-Representation of the exponent of v[2]

v[1] 1 X1 X2 X3 X4 v[2]
x11 x42 2 0 0 1 x11 x42
x12 x42 1 0 0 1 x12 x42
x21 x42 0 2 0 1 x21 x42
x22 x42 0 1 0 1 x22 x42
x31 x42 0 0 2 1 x31 x42
x32 x42 0 0 1 1 x32 x42
x41 x42 1 0 0 0 0 1
x42 x42 0 0 0 2 x41

42. NextTerm(List) = (x42, x12 x32)

v42 = (x42, x12 x32)

� = �1, x11, x12, x21, x22, x31, x32, x41, x42
�

List= InsertNexts(v42,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x42 0 0 1 0 x32
x12 x42 2 0 1 0 x11 x32
x21 x42 1 2 1 0 x12 x21 x32
x22 x42 1 1 1 0 x12 x22 x32
x31 x42 1 0 0 0 x12
x32 x42 1 0 2 0 x12 x31
x41 x42 1 0 1 2 x12 x32 x41
x42 x42 1 0 1 1 x12 x32 x42

43. NextTerm(List) = (x42, x22 x31)

v43 = (x42, x22 x31)

� = �1, x11, x12, x21, x22, x31, x32, x41, x42
�

List= InsertNexts(v43,List).

160 Linear Codes: Applications

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x42 2 1 2 0 x11 x22 x31
x12 x42 1 1 2 0 x12 x22 x31
x21 x42 0 0 2 0 x31
x22 x42 0 2 2 0 x21 x31
x31 x42 0 1 1 0 x22 x32
x32 x42 0 1 0 0 x22
x41 x42 0 1 2 2 x22 x31 x41
x42 x42 0 1 2 1 x22 x31 x42

44. NextTerm(List) = (x42, x11 x31 x41)
v44 = (x42, x11 x31 x41)
� = �1, x11, x12, x21, x22, x31, x32, x41, x42

�

List= InsertNexts(v44,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x42 1 0 2 2 x12 x31 x41
x12 x42 0 0 2 2 x31 x41
x21 x42 2 2 2 2 x11 x21 x31 x41
x22 x42 2 1 2 2 x11 x22 x31 x41
x31 x42 2 0 1 2 x11 x32 x41
x32 x42 2 0 0 2 x11 x41
x41 x42 2 0 2 1 x11 x31 x42
x42 x42 2 0 2 0 x11 x31

45. NextTerm(List) = (x42, x21 x32 x41)
v45 = (x42, x21 x32 x41)
� = �1, x11, x12, x21, x22, x31, x32, x41, x42

�

List= InsertNexts(v45,List).

Exponent of v[2]

v[1] X1 X2 X3 X4 v[2]
x11 x42 2 2 1 2 x11 x21 x32 x41
x12 x42 1 2 1 2 x12 x21 x32 x41
x21 x42 0 1 1 2 x22 x32 x41
x22 x42 0 0 1 2 x32 x41
x31 x42 0 2 0 2 x21 x41
x32 x42 0 2 2 2 x21 x31 x41
x41 x42 0 2 1 1 x21 x32 x42
x42 x42 0 2 1 0 x21 x32

46. NextTerm(List) = (x2
11, x12)

j = 11
GT =
�

x2
11 − x12

�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x2

11.

47. NextTerm(List) = (x11 x12, 1)
j = 1
GT = GT ∪
�

x11 x12 − 1
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x11 x12.

48. NextTerm(List) = (x11 x21, x11 x21)
v46 = (x11 x21, x11 x21)
List= InsertNexts(v46,List)

49. NextTerm(List) = (x11 x21, x11 x31 x41)
j = 44
GT = GT ∪
�

x11 x21 − x42
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x11 x21.

50. NextTerm(List) = (x11 x22, x11 x22)
v47 = (x11 x22, x11 x22)
List= InsertNexts(v47,List)

51. NextTerm(List) = (x11 x22, x11 x32 x42)
j = 29
GT = GT ∪
�

x11 x22 − x31
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x11 x22.

52. NextTerm(List) = (x11 x31, x41)
j = 36
GT = GT ∪
�

x11 x31 − x41
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x11 x31.

53. NextTerm(List) = (x11 x32, x11 x32)
v48 = (x11 x32, x11 x32)
List= InsertNexts(v48,List)

54. NextTerm(List) = (x11 x32, x12 x42)
v49 = (x11 x32, x12 x42)
List= InsertNexts(v49,List)

4.4. FGLM technique to compute a Gröbner basis 161

55. NextTerm(List) = (x11 x32, x31 x41)
j = 17
GT = GT ∪
�

x11 x32 − x21
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x11 x32.

56. NextTerm(List) = (x11 x41, x11 x41)
v50 = (x11 x41, x11 x41)
List= InsertNexts(v50,List)

57. NextTerm(List) = (x11 x42, x32 x42)
j = 22
GT = GT ∪
�

x11 x41 − x22
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x11 x41.

58. NextTerm(List) = (x11 x42, x32)
j = 31
GT = GT ∪
�

x11 x42 − x32
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x11 x42.

59. NextTerm(List) = (x2
12, x11)

j = 6
GT = GT ∪
�

x2
12 − x11

�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x2

12.

60. NextTerm(List) = (x12 x21, x12 x21)
v51 = (x12 x21, x12 x21)
List= InsertNexts(v51,List)

61. NextTerm(List) = (x12 x21, x12 x31 x41)
j = 34
GT = GT ∪
�

x12 x21 − x32
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x12 x21.

62. NextTerm(List) = (x12 x22, x12 x22)
v52 = (x12 x22, x12 x22)
List= InsertNexts(v52,List)

63. NextTerm(List) = (x12 x22, x12 x32 x42)
j = 39
GT = GT ∪
�

x12 x22 − x41
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x12 x22.

64. NextTerm(List) = (x12 x31, x12 x31)
v53 = (x12 x31, x12 x31)
List= InsertNexts(v53,List)

65. NextTerm(List) = (x12 x31, x32 x42)
j = 22
GT = GT ∪
�

x12 x31 − x22
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x12 x31.

66. NextTerm(List) = (x12 x32, x42)
j = 41
GT = GT ∪
�

x12 x32 − x42
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x12 x32.

67. NextTerm(List) = (x12 x41, x31)
j = 26
GT = GT ∪
�

x12 x41 − x31
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x12 x41.

68. NextTerm(List) = (x12 x42, x11 x32)
v54 = (x12 x42, x11 x32)
List= InsertNexts(v54,List)

69. NextTerm(List) = (x12 x42, x12 x42)
v55 = (x12 x42, x12 x42)
List= InsertNexts(v55,List)

70. NextTerm(List) = (x12 x42, x31 x41)
j = 17
GT = GT ∪
�

x12 x42 − x21
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x12 x42.

71. NextTerm(List) = (x2
21, x22)

j = 21
GT = GT ∪
�

x2
21 − x22

�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x2

21.

162 Linear Codes: Applications

72. NextTerm(List) = (x21 x22, 1)
j = 1
GT = GT ∪
�

x21 x22 − 1
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x21 x22.

73. NextTerm(List) = (x21 x31, x21 x31)
v56 = (x21 x31, x21 x31)
List= InsertNexts(v56,List)

74. NextTerm(List) = (x21 x31, x22 x42)
v57 = (x21 x31, x22 x42)
List= InsertNexts(v57,List)

75. NextTerm(List) = (x21 x31, x32 x41)
j = 7
GT = GT ∪
�

x21 x31 − x11
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x21 x31.

76. NextTerm(List) = (x21 x32, x41)
j = 36
GT = GT ∪
�

x21 x32 − x41
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x21 x32.

77. NextTerm(List) = (x21 x41, x21 x41)
v58 = (x21 x41, x21 x41)
List= InsertNexts(v58,List)

78. NextTerm(List) = (x21 x41, x22 x42)
v59 = (x21 x41, x22 x42)
List= InsertNexts(v59,List)

79. NextTerm(List) = (x21 x41, x31 x42)
j = 12
GT = GT ∪
�

x21 x41 − x12
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x21 x41.

80. NextTerm(List) = (x21 x42, x32)
j = 31
GT = GT ∪
�

x21 x42 − x32
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x21 x42.

81. NextTerm(List) = (x2
22, x21)

j = 16
GT = GT ∪
�

x2
22 − x21

�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x2

22.
82. NextTerm(List) = (x22 x31, x42)

j = 41
GT = GT ∪
�

x22 x31 − x42
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x22 x31.

83. NextTerm(List) = (x22 x32, x21 x41)
v60 = (x22 x32, x21 x41)
List= InsertNexts(v60,List)

84. NextTerm(List) = (x22 x32, x22 x32)
v61 = (x22 x32, x22 x32)
List= InsertNexts(v61,List)

85. NextTerm(List) = (x22 x32, x31 x42)
j = 12
GT = GT ∪
�

x22 x32 − x12
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x22 x32.

86. NextTerm(List) = (x22 x41, x32)
j = 31
GT = GT ∪
�

x22 x41 − x32
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x22 x41.

87. NextTerm(List) = (x22 x42, x22 x42)
v62 = (x22 x42, x22 x42)
List= InsertNexts(v62,List)

88. NextTerm(List) = (x22 x42, x32 x41)
j = 7
GT = GT ∪
�

x22 x42 − x11
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x22 x42.

89. NextTerm(List) = (x2
31, x32)

j = 31
GT = GT ∪
�

x2
31 − x32

�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x2

31.

4.4. FGLM technique to compute a Gröbner basis 163

90. NextTerm(List) = (x31 x32, 1)
j = 1
GT = GT ∪
�

x31 x32 − 1
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x31 x32.

91. NextTerm(List) = (x31 x41, x21)
j = 16
GT = GT ∪
�

x31 x41 − x21
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x31 x41.

92. NextTerm(List) = (x31 x42, x12)
j = 11
GT = GT ∪
�

x31 x42 − x12
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x31 x42.

93. NextTerm(List) = (x2
41, x42)

j = 41
GT = GT ∪
�

x2
41 − x42

�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x2

41.

94. NextTerm(List) = (x41 x42, 1)
j = 1
GT = GT ∪
�

x41 x42 − 1
�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x41 x42.

95. NextTerm(List) = (x2
42, x41)

j = 36
GT = GT ∪
�

x2
42 − x41

�

We eliminate from the list List all
the elements w ∈ List such that
w[1] is a multiple of x2

42.

At the end of this last step the list List is empty and the algorithm ends.

By Proposition 4.35, the set of codewords related with the exponents of a reduced
Gröbner basis of the ideal associated with a linear code � with respect to a degree
compatible ordering induced a test-set � for � . However, not all the codewords of
this test-set are codewords of minimal support, i.e. this set is somehow redundant.
We can reduce the number of codewords to the set � ∩�� , which is still a test-set
for the code � , using Algorithm 22. The obtained test-set will be called a minimal
Gröbner test-set.

Example 4.44. The reduced Gröbner basis � of the ideal I(�) associated to the
ternary code � of Example 4.15 contains 74 elements representing the following
nonzero codewords of � .

(2,1, 2,2, 2,1) (1,2, 1,1, 1,2) (2,2, 0,1, 2,0) (1,1, 0,2, 1,0)
(2,0, 1,0, 2,2) (1,0, 2,0, 1,1) (0,1, 1,2, 0,2) (0,2, 2,1, 0,1)

Note that the first two codewords do not belong to �� . The first codeword is re-
lated to the binomial x11 x22 x31 − x42 x52 x61 ∈ � . Note that x11 x22 x31 /∈ LT≺(�).
Notwithstanding

x11 x22 x31

x42 x52 x61
= x11 x22 x31 x41 x51 x62 ∈ LT≺(�)

since x11 x51− x31 x62 ∈ � . Moreover, the second codeword is related to the binomial
x12 x21 x32 − x41 x51 x62. Again, x12 x21 x32 /∈ LT≺(�), but

x12 x21 x32

x41 x51 x62
= x12 x21 x32 x42 x52 x61 ∈ LT≺(�)

164 Linear Codes: Applications

Algorithm 22: Algorithm for computing a minimal Gröbner test-set for �
Data: The rows

�
w1, . . . ,wk
�⊆ �n

q of a generator matrix of an [n, k] linear
code � defined over �q and a degree compatible ordering <T on �[X].

Result: A minimal Gröbner test-set for � w.r.t. <T .

List←−
�
(1,1),
�
(1,α jwi)
�

i=1,...,k
j=1,...,q−1

�
; GT ←− �; � ←− �;

1

while List �= � do2

w←− NextTerm(List);3

if w[1] /∈ LT<T

�
GT
�

then4

j = Member(w[2],
�

v1[2], . . . ,vr[2]
�
);5

if j �= false then6

if
�

w[1]/v j[1]
�
/∈ LT<T

�
GT
�

then7

GT ←− GT ∪
�
w[1]− v j[1]
�

;8

for i = 1 to r9

if vi[1] is a multiple of w[1] then10

Removes vi[1] from �11

endif12

endfor13

endif14

else15

r ←− r + 1;16

vr ←−w;17

� ←−� ∪ �vr[1]
�
;18

List= InsertNexts(w,List);19

endif20

endif21

endw22

since x21 x42− x32 x61 ∈ LT≺(�). Therefore, Algorithm 22 ensures a minimal Gröbner
test-set.

4.5 Set of codewords of minimal support

We define the Universal Gröbner basis of I+(�), denoted by �� , to be the union of
all reduced Gröbner Bases �≺ of I+(�) as ≺ runs over all terms orders over �[X].
A binomial Xu1 − Xu2 in I+(�) is called primitive if there exists no other binomial
Xv1 − Xv2 ∈ I+(�) such that Xv1 divides Xu1 and Xv2 divides Xu2 , or equivalently,
supp
�
∆v1
� �⊂ supp
�
∆u1
�

and supp
�
∆v2
� �⊂ supp
�
∆u2
�
.

Remark 4.45. Recall that the map ∆ transforms elements from the finite field �q into
a (q−1)-tuple of integers so the division algorithm in �[X] is the division algorithm
for polynomials in the usual sense.

4.5. Set of codewords of minimal support 165

Lemma 4.46. Every binomial in �� is primitive.

Proof. It is a straightforward generalization of [107, Lemma 4.6]. Let us fix an ar-
bitrary term ordering ≺ in �[X], and let �≺ be the reduced Gröbner basis of I+(�)
w.r.t. ≺. By definition, for any binomial Xu1 −Xu2 in �≺ with Xu1 � Xu2 , Xu1 is a min-
imal generator of the initial ideal in≺

�
I+(�)
�

and Xu2 is a standard monomial. Now
suppose that Xu1 −Xu2 is not primitive, or equivalently there exists another binomial
Xv1 − Xv2 in I+(�) such that Xv1 divides Xu1 and Xv2 divides Xu2 . We distinguish two
cases:

• If Xv1 � Xv2 , then Xu1 is not a minimal generator of the initial ideal in≺
�

I+(�)
�
.

• If Xv1 ≺ Xv2 , then Xu2 is not in standard form.

Both cases contradicts our assumption.

We call the set of all primitive binomials of I+(�) the Graver basis of I+(�) and
denote it by Gr� .

Corollary 4.47. �� ⊆ Gr�

Proof. The result is a direct consequence of Lemma 4.46.

The following theorem suggests an algorithm for computing the Graver basis of
the ideal I+(�). For this purpose we define the Lawrence lifting of the ideal I+(�) as
the ideal

IΛ(�) =
�
Xw1Zw2 −Xw2Zw1 |w1 −w2 ∈ �

�

in the polynomial ring �[X,Z]. Recall that

�[X,Y] = �[x11, . . . , x1q−1, . . . , xn1, . . . , xnq−1� �� �
X

, z11, . . . , z1q−1, . . . , zn1, . . . , znq−1� �� �
Z

].

Theorem 4.48. The set of binomials of the Graver basis of IΛ(�) coincides with any
reduced Gröbner basis of IΛ(�)
Proof. The proof starts with the observation that a binomial Xu1 −Xu2 is primitive in
the ideal I+(�) if and only if the corresponding binomial Xu1Zu2−Xu2Zu1 in the lifting
ideal IΛ(�) is primitive. Therefore, between the Graver basis of the ideals I+(�) and
IΛ(�) there exists the following relation:

GrΛ(�) =
�
Xu1Zu2 −Xu2Zu1 | Xu1 −Xu2 ∈ Gr�

�
.

Now, take any element g = Xu1Zu2−Xu2Zu1 in GrΛ(�). Let B be the set of all binomials
in IΛ(�) except g and assume that B generates the ideal IΛ(�). Therefore g can be
written as a linear combination of the elements of B. In other words, there exists
a binomial Xv1Zv2 − Xv2Zv1 in B such that one of its terms divides the leading term
of g. Replacing v = (v1,v2) by −v = (−v1,−v2) in �q if necessary, we may assume
that Xv1Zv2 divides Xu1Zu2 , contrary to the fact that Xu1 − Xu2 is primitive in I+(�).
So some non-zero scalar multiple of g must appear in any reduced Gröbner basis of
IΛ(�) which is also a minimal generating set of IΛ(�).

166 Linear Codes: Applications

Algorithm 23: Algorithm for computing the Graver basis of I+(�)
Data: An [n, k] linear code � defined over �q.
Result: The Graver basis of the ideal I+(�), Gr� .
Choose any term order ≺ on �[X,Z];1

Define the Lawrence ideal IΛ(�);2

Compute a reduced Gröbner basis of IΛ(�) w.r.t. ≺;3

Substitute the variable Z by 1;4

This theorem gives us an algorithm to compute a Graver basis of the ideal I+(�).
Note that Step 3 of the algorithm can be executed by applying Algorithm 21. Here is
another way of defining the ideal IΛ(�).

Theorem 4.49. Let � be an [n, k] linear code defined over �q and
�
w1, . . . ,wk
�

be the
rows of a generator matrix of � . We define the ideal:

I3 =
� �

Xα
jwi − Zα

jwi
�

i=1,...,k
j=1,...,q−1

� �
�Xi

�
T+
��

i=1,...,n

� �
�Zi

�
T+
��

i=1,...,n

�
.

Then IΛ(�) = I3.

Proof. The following result may be proved in the same way as Theorem 4.3. We
claim that all the binomials of the generating set of I3 belongs to IΛ(�). Indeed, the
exponents of all the binomials of the sets �Xi

�
T+
�

and �Zi

�
T+
�

correspond to the
codeword 0 ∈ � .

Conversely, we need to show that each binomial XaZb − XbZa in IΛ(�) belongs to
I3. Applying the definition of the ideal IΛ(�) we can rewrite a− b ∈ � as

a− b= λ1w1 + . . .+λkwk with λ1, . . . ,λk ∈ �q.

We have that

Xa−bZb−a − 1 =
�

Xλ1w1Z−λ1w1 − 1
� k�

i=2

Xλiwi Z−λiwi +

�
k�

i=2

Xλiwi Z−λiwi − 1

�

=
�

Xλ1w1Z−λ1w1 − 1
� k�

i=2

Xλiwi Z−λiwi +

+
�

Xλ2w2Z−λ2w2 − 1
� k�

i=3

Xλiwi Z−λiwi + . . .+

+
�

Xλk−1wk−1Z−λk−1wk−1 − 1
�

Xλkwk Z−λkwk +
�

Xλkwk Z−λkwk − 1
�

.

If at least one λi is nonzero with i = 1, . . . , k, then the last equation forces that

Xa−bZb−a − 1 ∈
��

Xα
jwi Z−α

jwi − 1
�

i=1,...,k
j=1,...,q−1

�
.

4.5. Set of codewords of minimal support 167

Otherwise a− b= 0 and we deduce that:

Xa−bZb−a − 1 ∈
� �
�Xi

�
T+
��

i=1,...,n

� �
�Zj

�
T+
��

j=1,...,n

�
.

Note that we have actually proved that XaZb − XbZa =
�

Xa−bZb−a − 1
�

XbZa ∈ I3
which completes the proof.

The following lemma is straightforward. However, for convenience of the reader
we write its proof, thus making our exposition self-contained.

Lemma 4.50. Two minimal support codewords in � with the same support should be
one scalar multiple of the other.

Proof. Suppose the lemma were false. Then we could find two codewords m1, m2 of
minimal support of � such that supp(m1) = supp(m2) but m1 �= λm2 for any λ ∈ �∗q.

Let us choose λ ∈ �∗q such that m(i)1 = λm(i)2 for at least one index i ∈ supp(m1), then

m1 −λm2 ∈ � \ {0} and supp(m1 −λm2)⊂ supp(m1)

which contradicts the minimality of m2.

Theorem 4.51. The set of codewords of minimal support of the code � is a subset of
the vectors related to the Graver basis of the ideal associated to � .

Proof. Let m ∈ �� . Suppose the theorem were false, then no binomial of type
Xm1 − Xm2 ∈ I+(�) with m1 −m2 = m would be primitive. Choose any binomial
Xm1 − Xm2 with m1 −m2 = m such that the below condition does not hold for i =
1, . . . , n:

If xir ∈ supp (Xm1) and xis ∈ supp (Xm2) then xir xis − 1 ∈ �Xi

�
T+
�

.

Therefore, there exists a different binomial Xv1−Xv2 ∈ I+(�) such that Xv1 divides
Xm1 and Xv2 divides Xm2 , or equivalently,

supp(∆v1)⊆ supp(∆m1) and supp(∆v2)⊆ supp(∆m2).

Hence, supp
�
∆(v1 − v2)
� ⊆ supp
�
∆(m1 −m2)
�

which contradicts the minimal-
ity of m.

Remark 4.52. We could get rid of the leftover codewords from the set obtained by
the above theorem using Algorithm 22.

Corollary 4.53. The set of codewords of minimal support of any linear code � can be
computed from the ideal

I3 =
� �

Xα
jwi − Zα

jwi
�

i=1,...,k
j=1,...,q−1

� �
�Xi

�
T+
��

i=1,...,n

� �
�Zi

�
T+
��

i=1,...,n

�
.

Proof. This result follows directly from Theorems 4.49 and 4.51.

168 Linear Codes: Applications

In the following example we will see how to use the Graver basis to obtain the
set of codewords of minimal support of a linear code.

Example 4.54. Consider � the [6,3] ternary code with generator matrix

G� =




1 0 0 2 2 0
0 1 0 1 1 0
0 0 1 1 2 1


 ∈ �3×6

3 .

This code has 33 = 27 codewords.

• The zero codeword.

• 16 codewords of minimal support. Note that by Lemma 4.50, if a codeword c
is a codeword minimal support codeword, then all its multiples are also code-
words of minimal support. So these 16 codewords represent 8 different sup-
ports.

1. (1, 0,0,2, 2,0) (2,0, 0,1, 1,0)
2. (0,1, 0,1, 1,0) (0,2, 0,2, 2,0)
3. (1,1, 0,0, 0,0) (2,2, 0,0, 0,0)
4. (0,0, 1,1, 2,1) (0,0, 2,2, 1,2)
5. (1,0, 1,0, 1,1) (2,0, 2,0, 2,2)
6. (2,0, 1,2, 0,1) (1,0, 2,1, 0,2)
7. (0,1, 1,2, 0,1) (0,2, 2,1, 0,2)
8. (0,2, 1,0, 1,1) (0,1, 2,0, 2,2)

• Another 10 codewords which do not have minimal support.

(2, 1,0,2, 2,0) (1,2, 0,1, 1,0) (2,1, 1,0, 1,1) (1,2, 2,0, 2,2)
(1, 2,1,2, 0,1) (2,1, 2,1, 0,2)
(2,2, 1,1, 2,1) (1,1, 2,2, 1,2) (1,1, 1,1, 2,1) (2,2, 2,2, 1,2)

Let α = 2 be a primitive element of �3 and let us label the rows of G by w1, w2 and
w3. By Theorem 4.3, the ideal associated to � may be defined as the following ideal:
� �

x∆(α
jwi) − 1
�

i=1,...,3
j=1,...,2

� �
�Xi

�
T+
��

i=1,...,n

�

where �Xi

�
T+
�

consists of the following binomials

�Xi

�
T+
�
=
�

x2
i1 − xi2, xi1 xi2 − 1, x2

i2 − xi1

�
with i = 1, . . . , 6.

If we compute a Gröbner basis of I+(�) w.r.t. a degrev ordering we get 41
binomials representing the following set of codewords:

(0,0, 0,0, 0,0)
(0,2, 2,1, 0,2) (0,1, 1,2, 0,1)
(0,1, 2,0, 2,2) (0,2, 1,0, 1,1)
(0,2, 0,2, 2,0) (0,1, 0,1, 1,0)
(0,0, 2,2, 1,2) (0,0, 1,1, 2,1)
(2,2, 0,0, 0,0) (1,1, 0,0, 0,0)

4.6. Applications to other classes of codes 169

Note that all nonzero codewords are codewords of minimal support but not all code-
words of minimal support are represented in the above set.

If we compute a Graver basis of I+(�), we obtain 4212 binomials representing
the following codewords:

(2, 1,2, 1,0, 2) (1, 2,1, 2,0, 1)
(1, 2,2, 0,2, 2) (2, 1,1, 0,1, 1)
(1, 0,2, 1,0, 2) (2, 0,1, 2,0, 1)
(2, 0,2, 0,2, 2) (1, 0,1, 0,1, 1)
(0, 2,2, 1,0, 2) (0, 1,1, 2,0, 1)
(0, 1,2, 0,2, 2) (0, 2,1, 0,1, 1)
(0, 0,2, 2,1, 2) (0, 0,1, 1,2, 1)
(2, 1,0, 2,2, 0) (1, 2,0, 1,1, 0)
(2, 0,0, 1,1, 0) (1, 0,0, 2,2, 0)
(0, 1,0, 1,1, 0) (0, 2,0, 2,2, 0)
(1, 1,0, 0,0, 0) (2, 2,0, 0,0, 0)
(0, 0,0, 0,0, 0)

Observe that the set�� is contained in the previous set.

4.6 Applications to other classes of codes

4.6.1 Modular codes

Chapter 3 is devoted to the study of modular codes � defined over the ring �s, in
other words, submodules of

�
�n

s ,+
�

. The important point in that chapter was the
fact that a Graver basis of the lattice ideal associated with a modular code provides
the set of codewords of minimal support of our modular code. In this subsection we
will provide a complete decoding procedure for them. Recall that the reduced Gröbner
basis of the lattice ideal associated to the modular code, following the method of
Chapter 3, does not allow decoding, see Example 4.29.

Throughout this subsection� will be a modular code of parameters [n, k] defined
over �s and let {e1, . . . ,es−1} be the canonical basis of �s−1. We will consider on this
section the following characteristic crossing functions:

∆ : �s −→ {0, 1}s−1 and ∇ : {0, 1}s−1 −→ �s

where the map ∆ replace the element j ∈ �s \ {0} by the vector e j ∈ �s−1 and 0 by
the zero vector 0 ∈ �s−1. Whereas the map ∇ recovers the element j1 + 2 j2 + . . .+
(s− 1) js−1 from the binary vector (j1, . . . , js−1).

Now let X denote n vector variables X1, . . . , Xn such that each variable Xi can be
decomposed into s − 1 components xi1, . . . , xis−1 with i = 1, . . . , n, representing the
nonzero elements of �s. Let a= (a1, . . . , an) be an n-tuple of elements in the ring �s.
We will adopt the following notation:

Xa = X a1
1 · · ·X an

n = (x11 · · · x1s−1)∆a1 · · · (xn1 · · · xns−1)∆an .

170 Linear Codes: Applications

This relationship allows us to work with monomials with non-integer exponents
as monomials with binary exponents. Note that the degree of the monomial Xa is
defined as the support of the vector a.

As we have already described in this chapter, we define the ideal associated to �
as the binomial ideal:

I+(�) =
�

Xa −Xb | a− b ∈ �
�
⊆ �[X].

Given the rows of a generator matrix of � , labelled by w1, . . . ,wk, we define the
following binomial ideal:

∆I =
�
{Xwi − 1}i=1,...,k

� �
�Xi

�
T+
��

i=1,...,n

�

where �Xi

�
T+
�

consists of all the binomials on the variable Xi associated to the
relations given by the additive table of the ring �s, i.e.

�Xi

�
T+
�
=
� �

xiu xiv − xiw | u+ v ≡ w mod s
�

�
xiu xiv − 1 | u+ v ≡ 0 mod s

�
�

with i = 1, . . . , n.

Proposition 4.55. The following conditions are equivalent:

1. Xa −Xb ∈ I+(�).

2. There exists λ1, . . . ,λk ∈ � such that Xa+(s−1)b =
�k

i=1 Xλiwi .

Proof. Given any binomial Xa − Xb in the ideal I+(�). By definition we have that
a− b = a+ (s − 1)b ∈ � . Hence, a+ (s − 1)b ≡ λ1,sw1 + . . .+ λk,swk mod s with
λi,s ∈ �s for i = 1, . . . , k. Therefore, a+ (s− 1)b ≡ λ1w1 + . . .+ λkwk mod s where
λi = �λi,s ∈ � for i = 1, . . . , k. The map � was defined on Chapter 2 and replaces
the class of 0,1, . . . , s− 1 in �s by the same symbols regarded as integers.

The converse inclusion is the above proof read backwards.

Theorem 4.56. I+(�) = ∆I

Proof. This theorem is a fairly straightforward generalization of Theorem 4.3 and
Theorem 3.9. It is clear that ∆I ⊆ I+(�) since all the binomials in the generating set
of ∆I belongs to I+(�).

To show the converse it suffices to show that each binomial Xa − Xb of I+(�)
belongs to ∆I . We will use Proposition 4.55 together with the observation that

z1 − 1, z2 − 1 ∈∆I ⇐⇒ z1z2 − 1 ∈∆I . (4.5)

Consider any binomial Xa−Xb ∈ I+(�). By Proposition 4.55, there exists λ1, . . . ,λk ∈
� such that Xa+(s−1)b =

�k
i=1 Xλiwi . Repeated application of Equation 4.5 enables us

to write:

k�

i=1

Xλiwi − 1=




k�

j=1

Xw j − 1





�

j|λ j>1

X(λ j−1)w j


+ . . .+



�

j|λ j>r−1

Xw j − 1


 ∈∆I

4.6. Applications to other classes of codes 171

where r = max
�
λ j | j = 1, . . . , k

�
. We have proof more, namely that Xa − Xb ∈ ∆I

since
Xa −Xb = Xb
�

Xa+(s−1)b − 1
�

� �� �
∈∆I

−Xa
�

Xsb − 1
�

� �� �
∈∆I

.

Remark 4.57. Note that the main difference of the set of generators describing the
ideal associated with a modular code, respect to the set of generators of the ideal
related with a �q-linear code, is the fact that for the second set we need to add all
the multiples in �q of each row wi , while for the first ideal this is not necessary as
consequence of Proposition 4.55. Moreover, the previous result can be extended for
codes over �p with p prime since �p ≡ �p.

Example 4.58. Continuing with Example 3.25 where we considered a [5,3, 1] mod-
ular code defined over �4 with generator and parity check matrices:

G =




2 1 0 1 1
1 2 3 1 0
2 3 0 0 3


 ∈ �3×5

4 and H =
�

1 0 1 0 2
0 1 2 0 3

�
∈ �2×5

4 ,

respectively. The following table is related to the additive structure of �4:

T+ 1 2 3
1 2 3 0
2 0 1
3 2

This table yields to the following binomials:

�Xi

�
T+
�
=





x2
i1 − xi2, xi1 xi2 − xi3, xi1 xi3 − 1,

x2
i2 − 1, xi2 xi3 − xi1,

x2
i3 − xi2,



 with i = 1, . . . , 5.

Thus, we may define the ideal I+(�) as the following ideal:

I+(�) =
�




x12 x21 x41 x51 − 1
x11 x22 x33 x41 − 1
x12 x23 x53 − 1




� �

�Xi

�
T+
��

i=1,...,5

�
⊆ �[X1, . . . , X5]

where we decompose each variable Xi with i = 1, . . . , 5 into 3 variables xi1, xi2, xi3
representing each nonzero element of �4.

Taking into account the new definition of the ideal associated to a modular code
we can apply all the results of this chapter to these types of codes. That is to say,
we can use FGLM techniques to obtain a Gröbner basis of our ideal (using a direct

172 Linear Codes: Applications

adaptation of algorithm 21). Moreover, Section 4.2 gives us a method to compute a
Gröbner representation of our modular code (just apply Algorithm 18 with the new
set of generators). All outcomes of Section 4.3 are also valid for modular codes. We
present below only the main results.

Let � = �g1, . . . , gr
�

be the reduced Gröbner basis of I+(�) w.r.t. any degree
compatible ordering ≺. Moreover for all i ∈ {1, . . . , r} we define

gi = Xg+i −Xg−i with Xg+i � Xg−i and g+i − g−i ∈ � .

Theorem 4.59. Let t be the error-correcting capacity of � . If deg
�
Red≺(Xa,�)� ≤ t,

then the vector e ∈ �n
s , verifying that Xe = Red≺ (Xa,�), is the error vector correspond-

ing to the received word a ∈ �n
s . Otherwise a contains more than t errors.

However, in any case, Red≺ (Xa,�) provides a coset leader even if wH(e)≥ t.

Proof. The proof is straightforward from Theorem 4.19.

Proposition 4.60. The set � =
�
g+i − g−i | i = 1, . . . , r

�
is a test-set for � .

Proof. The proof is analogous to the proof of Proposition 4.30.

Example 4.61. Continuing with Example 4.58. We can enumerate the different 16
cosets of � and compute their syndromes to arrive at the syndrome lookup table
displayed in Table 4.3.

Syndrome Coset leader(s)
(0, 0) zero vector
(0, 1) (0, 1,0, 0,0)
(0, 2) (0, 0,0, 0,2), (0, 2,0, 0,0)
(0, 3) (0, 3,0, 0,0)
(1, 0) (1, 0,0, 0,0)
(1, 1) (0, 0,3, 0,1), (0, 3,1, 0,0), (1, 1,0, 0,0), (3, 0,0, 0,3)
(1, 2) (0, 0,1, 0,0)
(1, 3) (0, 0,3, 0,3), (0, 1,1, 0,0), (1, 3,0, 0,0), (3, 0,0, 0,1)
(2, 0) (0, 0,2, 0,0), (2, 0,0, 0,0)
(2, 1) (0, 0,0, 0,3)

(2, 2) (0, 0,2, 0,2), (0, 1,0, 0,3), (0, 2,2, 0,0), (0, 3,0, 0,1),
(1, 0,1, 0,0), (2, 0,0, 0,2), (2, 2,0, 0,0), (3, 0,3, 0,0)

(2, 3) (0, 0,0, 0,1)
(3, 0) (3, 0,0, 0,0)
(3, 1) (0, 0,1, 0,1), (0, 3,3, 0,0), (1, 0,0, 0,3), (3, 1,0, 0,0)
(3, 2) (0, 0,3, 0,0)
(3, 3) (0, 0,1, 0,3), (0,1, 3,0, 0)

Table 4.3: Syndrome lookup table of Example 4.61

4.6. Applications to other classes of codes 173

If we compute a reduced Gröbner basis � of I+(�) w.r.t. a degree reverse lexico-
graphic order, induced by the following ordering on the variables

x11 > x12 > x13� �� �
X1

> x21 > x22 > x23� �� �
X2

> . . .> x51 > x52 > x53� �� �
X5

.

And we take the vectors w ∈ �5
4 such that Xw is a standard monomial in � , we get

the following elements:

(0,1, 0,0, 0) (0, 0,0, 0,2) (0,3, 0,0, 0)
(1,0, 0,0, 0) (3,0, 0,0, 3) (0, 0,1, 0,0) (0,0, 3,0, 3)
(0,0, 2,0, 0) (0,0, 0,0, 3) (0, 1,0, 0,3) (0,0, 0,0, 1)
(3,0, 0,0, 0) (1,0, 0,0, 3) (0, 0,3, 0,0) (0,0, 1,0, 3)

Note that all standard monomials in � represent a coset leader of � .

If we adapt the ideas of Subsection 4.3.2, we manage to define the Border basis
and its reduced structure, the reduced basis, of a modular code. Therefore, again,
we have two ways of reducing a monomial using either the reduced basis or the
Matphi function of its Gröbner representation. These two ways of understanding the
reduction process lead to two different descent decoding procedures: the one where
the search is done changing the coset representative (similar to Liebler’s algorithm
which was defined just for binary codes) and the one given by descending within the
same coset (which is an extension of the algorithm of Ashikhmin and Barg for the
non-binary case).

4.6.2 Multiple Alphabets

Along this section � will a submodule of dimension k defined over the multiple al-
phabets �s1

× . . . × �sn
. For simplicity of notation we write

�
es

1, . . . ,es
s−1

�
for the

canonical basis of �s−1. We will consider the following characteristic crossing func-
tions (which are the same as the one considered in the previous subsection):

∆s : �s −→ {0, 1}s−1 and ∇s : {0,1}s−1 −→ �s

where the map ∆s replaces the element j ∈ �s \ {0} by the vector es
j ∈ �s−1 and 0 by

the zero vector 0 ∈ �s−1. Whereas the map ∇s recovers the element j1 + 2 j2 + . . .+
(s− 1) js−1 from the binary vector (j1, . . . , js−1).

Let X stands for n vector variables X1, . . . , Xn such that each variable Xi can be
decomposed into si − 1 components xi1, . . . , xisi−1 with i = 1, . . . , n representing the
non zero element of �si

. Let a =
�
a1, . . . , an
� ∈ �s1

× . . .× �sn
. We will adopt the

following notation:

Xa = X a1
1 · · ·X an

n =
�

x11 · · · x1s1−1

�∆s1 a1 · · ·
�

xn1 · · · xnsn−1

�∆sn an .

Similar to the modular case, given the rows of a generator matrix of � , labelled by
w1, . . . ,wk, we may define the ideal associated to � as the following binomial ideal:

I+(�) =
�
{Xwi − 1}i=1,...,k

� �
�Xi

�
T+
��

i=1,...,n

�
.

174 Linear Codes: Applications

Remark 4.62. The main difference with the modular case is that the relations�Xi

�
T+
�

could be different for each i ∈ {1, . . . , n}.
Example 4.63. For this example let us take a linear subgroup � defined in �2×�6×
�6 ×�2 with generator matrix

G =
�

1 1 4 0
1 1 1 1

�
.

This code has 12 codewords consisting of the following set:

(1,1, 4,0) (0, 2,2, 0) (1,3, 0,0) (0,4, 4,0)
(1,5, 2,0) (1, 1,1, 1) (1,3, 3,1) (1,5, 5,1)
(0,0, 3,1) (0, 2,5, 1) (0,4, 1,1) (0,0, 0,0)

In �2 there is only one nonzero element whose additive structure yields to the fol-
lowing binomial:

�Xi

�
T+
�
=
�

x2
i − 1
�

with i = 1,4.

We represent each nonzero element of �6 by a distinct variable : xi1, . . . , xi5 with
i = 2,3. The following table is related to the additive structure of �6:

T+ 1 2 3 4 5
1 2 3 4 5 0
2 4 5 0 1
3 0 1 2
4 2 3
5 4

This table yields to the following binomials:

�Xi

�
T+
�
=





x2
i1 − xi2, xi1 xi2 − xi3, xi1 xi3 − xi4, xi1 xi4 − xi5, xi1 xi5 − 1,

x2
i2 − xi4, xi2 xi3 − xi5, xi2 xi4 − 1, xi2 xi5 − xi1,

x2
i3 − 1, xi3 xi4 − xi1, xi3 xi5 − xi2,

x2
i4 − xi2, xi4 xi5 − xi3,

x2
i5 − xi4





for i = 2,3. Let us label the rows of G by w1 and w2. The ideal associated to � may
be defined as the following binomial ideal:

I+(�) =
�
{Xwi − 1} i = 1, 2

� �
�Xi

�
T+
��

i=1,2,3,4

�

=

�




x1 x21 x34 − 1, x1 x21 x31 x4 − 1,
x22 x32 − 1,
x1 x23 − 1, x1 x23 x33 x4 − 1,
x24 x34 − 1, x24 x34 − 1,
x1 x25 x32 − 1, x1 x25 x35 x4 − 1





� �
�Xi

�
T+
��

i=1,2,3,4

�

which is an ideal on �[x1, x21, . . . , x25, x31, . . . , x35, x4]. The exponents of a Gröbner
basis of the above ideal gives the complete set of codewords of � .

4.6. Applications to other classes of codes 175

It is clear that all the results of �q-linear codes could be applied to these types of
codes.

4.6.3 Additive codes

Let �q1
be an algebraic extension of �q2

, i.e. q1 = pr1 and q2 = pr2 where p is a prime
number and r2 divides r1. An �q2

-additive code � of parameters [n, k] over �q1
is a

submodule of �n
q1

, which is closed under the addition in � and closed under scalar
multiplication over the field �q2

. In other words, given the rows of a generator matrix
of � labelled by w1, . . . ,wk ∈ �n

q1
, the set of codewords of � may be defined as:

�
α1w1 + . . .+αkwk | αi ∈ �q2

for i = 1, . . . , k
�

.

Let α be a primitive element of �q2
. We check at once that the binomial ideal

associated to � is defined by the following binomial ideal:

I+(�) =
� �

Xα
jwi − 1
�

i=1,...,k
j=1,...,q2−1

� �
�Xi

�
T+
��

i=1,...,n

�

where �Xi

�
T+
�

consist of all the binomials on the variable Xi associated to the rela-
tions given by the additive table of the field �q1

.
Of course, the results obtained for �q-linear codes could be adapted to additive

codes.

Remark 4.64. In the case that q2 is a prime number, the number of generators of
I+(�) would be reduced taking account of Remark 4.57.

Example 4.65. Let α be a primitive element of �9, i.e.

�9 =
�

0,α,α2 = α+ 1,α3 = 2α+ 1,α4 = 2,α5 = 2α,α6 = 2α+ 2,α7 = α+ 2,α8 = 1
�

.

This representation yields to the following additive table:

T+ 1 2 3 4 5 6 7 8
1 5 3 8 7 0 4 6 2
2 6 4 1 8 0 5 7
3 7 5 2 1 0 6
4 8 6 3 2 0
5 1 7 4 3
6 2 8 5
7 3 1
8 4

176 Linear Codes: Applications

Hence, we obtain the following binomials associated to the previous rules:

�Xi

��+
�
=





x2
i1 − xi5, xi1 xi2 − xi3, xi1 xi3 − xi8, xi1 xi4 − xi7, xi1 xi5 − 1, xi1 xi6 − xi4,

xi1 xi7 − xi6, xi1 xi8 − xi2,
x2

i2 − xi6, xi2 xi3 − xi4, xi2 xi4 − xi1, xi2 xi5 − xi8, xi2 xi6 − 1, xi2 xi7 − xi5,
xi2 xi8 − xi7,

x2
i3 − xi7, xi3 xi4 − xi5, xi3 xi5 − xi2, xi3 xi6 − xi1, xi3 xi7 − 1, xi3 xi8 − xi6,

x2
i4 − xi8, xi4 xi5 − xi6, xi4 xi6 − xi3, xi4 xi7 − xi2, xi4 xi8 − 1,

x2
i5 − xi1, xi5 xi6 − xi7, xi5 xi7 − xi4, xi5 xi8 − xi1,

x2
i6 − xi2, xi6 xi7 − xi8, xi6 xi8 − xi5,

x2
i7 − xi3, xi7 xi8 − xi1,

x2
i8 − x34





for i = 1, 2,3. Consider the �3-additive code � of parameters [3,2] with generator
matrix:

G =
�

1 0 α+ 1
0 1 0

�
∈ �2×3

9 .

Let us label the rows of G by w1 and w2. Note that this code has 9 codewords which
consist of the set

�
β1w1 + β2w2 | β1,β2 ∈ �3

�
. Therefore, we may define the ideal

I+(�) as the following ideal:

I+(�) =
� �

Xα
jwi − 1
�

i=1,...,k
j=4,8

� �
�Xi

�
T+
��

i=1,...,n

�
.

5
A semigroup approach

Contents
5.1 Overview of semigroups . 178
5.2 The semigroup associated with a modular code 181

5.2.1 Another representation for modular codes 183
5.2.2 Identify equivalent representations 186

5.3 The semigroup associated with a linear code 186
5.3.1 Another representation for linear codes 189
5.3.2 Identify equivalent representations 192

5.4 Some conclusions . 193

The purpose of this chapter is to show how some error-correcting codes can be
understood by means of appropriate commutative semigroups with given generators.
This approach involves the description of several kinds of objects such as abelian
groups, lattices, algebras and binomial ideals. Our approach provides the relation-
ship among the above objects for better understanding the techniques used in this
thesis and brings a new perspective for future developments in the area.

Given an error-correcting code � we define the ideal associated to this object as
the binomial ideal

I(�) =
��

Xa −Xb | a− b ∈ �
��
⊆ �[X].

Take notice that Xγ denotes an usual term on �[X] where γ belongs to the algebraic
structure of the code � . Therefore, it seems natural to ask if the above ideal match

177

178 A semigroup approach

a semigroup ideal I(S) given by some specific semigroup S. This construction estab-
lishes a strong relation between codes and semigroups and constitutes a means to
apply numerous results in the field of semigroups to problems in information theory.

Thus some problems of Coding Theory could be addressed using techniques in-
spired by toric mathematics from semigroups. References [22, 26, 55, 107, 32] can
be consulted for a detailed exposition of semigroups and its applications.

The chapter is organized as follows. Section 5.1 is intended to be a brief review
of some basics definitions and known results from the theory of semigroups. We will
restrict our attention to commutative and finitely generated semigroups classes.

Section 5.2 is devoted to the study of several representations for the semigroup
associated with a modular code while Section 5.3 deals with the case of linear codes.
We emphasize that, although there exists different semigroups ideals associated to
the same semigroup depending on the chosen set of generators, the choice of digital
representations seems to be the best adapted to perform complete decoding on the
selected codes.

For the convenience of the reader we repeat the relevant material from the pre-
vious chapters thus making the exposition of this chapter self-contained.

5.1 Overview of semigroups

Let S be a commutative semigroup with an identity element denoted as 0 ∈ S. In
other words, S is a set endowed with an internal commutative operation denoted by
+ such that 0+ a= a+ 0= a, ∀a ∈ S.

All semigroups in this chapter are assumed to be finitely generated, thus, there
exists a fixed finitely system of generators n1, . . . ,nr in S such that every element
m ∈ S can be written in the form

m=
r�

i=1

αini with αi ∈ �.

The notion of cancellative semigroup is related with the cancellation property.
That is to say, if m+ n=m+ n� with m,n,n� ∈ S then n= n�.

Moreover, S is combinatorially finite if there is only finitely many ways to write
every a ∈ S \ {0} as a sum a= a1 + . . .+ as with ai ∈ S \ {0}.

Let G(S) be the associated commutative group of S, i.e. every homomorphism
from S to a group passes through a unique semigroup homomorphism

i : S −→ G(S) .

The commutative group G(S) exists and is unique up to isomorphism. Furthermore,
G(S) is finitely generated when S is. Note that G(S) is also defined as the group of
classes of pairs (m,n) ∈ S × S under the relation ∼ where (m,n) ∼ (m�,n�) if and
only if m+ n� = m� + n. Note that every abelian group is a subgroup of itself and a
semigroup. Moreover, S is cancellative if and only if it can be embedded into a group,

5.1. Overview of semigroups 179

that is if the canonical homomorphism i is injective. In this case, S is combinatorially
finite if and only if S ∩ (−S) = {0}.

Any subset of a semigroup with an identity element which is closed under the
semigroup operation is known as subsemigroup. Any subsemigroups H of an abelian
group G is cancellative and its associated commutative group G(H) is identified to
the smallest subgroup of G containing H. When S is cancellative it can be naturally
identify with a subsemigroup of G(S). Therefore, we may view cancellative semi-
groups (up to isomorphism) as subsemigroups of abelian groups. Thus, G(S) is, up
to isomorphism, the smallest abelian group of which S is a subsemigroup, in other
words, G(S) is the smallest group containing S.

If S is finitelly generated then we may assume that

S ⊂ �n ⊕�/a1�⊕ . . .⊕�/as�,

where a1, . . . , as are non-zero integers and 1 < a1/a2/ . . ./as are uniquely deter-
mined. In particular, G(S)� �n ⊕ T where T is the torsion subgroup of G(S) i.e.

T = {g ∈ G(S) | ∃m ∈ � \ {0} : mg= 0} .

That is, an element a of a group G is called a torsion element of the group if it has
finite order, i.e. if there exists a positive integer m ∈ � such that ma = 0. A group is
called a torsion group if all its elements are torsion elements, i.e. all its elements has
finite order. Therefore all finite groups are torsion groups.

The choice of a system of generators
�
n1, . . . ,nr
�

of S induces a natural semi-
group morphism π : �r −→ S given by π(ei) = ni , where

�
ei | i = 1, . . . , r
�

denotes the canonical basis of �r . And, more generally, π(a) =
�r

i=1 aini for every
a ∈ �r .

Let � denotes an arbitrary field and �[X] = �[X1, . . . , Xr] denotes the polyno-
mial ring in r variables over �. We write �[S] for the �-vector space:

�[S] =
��

n∈S

antn | an ∈ �
�

endowed with a multiplication which is �-linear and satisfies that ta · tb = ta+b with
a,b ∈ S. Thus �[S] has a natural �-algebra structure and we will refer to it as the
semigroup algebra of S.

The semigroup morphism π described above defines a �-algebra morphism:

ϕ : �[X] −→ �[S]
Xi �−→ tni

The ideal I(S) = ker(ϕ) is called the semigroup ideal associated to S. It is well
known (see [55]) that I(S) is a binomial ideal finitely generated by:

I(S) =

��
Xa −Xb |

r�

i=1

aini =
r�

i=1

bini with a,b ∈ �r

��
.

180 A semigroup approach

Notice that, I(S) is dependent on the chosen system of generators and we can expect
a wide range of generating set choice. When no confusion arise, we will simply refer
to these ideals as I(S). Otherwise we should specify the representation chosen to
define S, that is, we will denote by IF (S) the semigroup ideal associated to S when S
is defined by the set of generators F .

The semigroup ideal I(S) is called a toric ideal when G(S) is torsion free, see
[107, Chapter 4]. By Nakayama’s lemma (see [22]) if S is combinatorially finite,
then every minimal binomial generating sets of I(S) have the same cardinality.

In what follows S stands for a commutative cancellative and finitely generated
semigroup with zero element. The following lemma allows a characterization of
combinatorially finite semigroups.

Lemma 5.1. Given a semigroup S and let I(S) be its semigroup ideal over �[X]. S is
combinatorially finite if and only if there are no binomial in I(S) of the form Xa − 1.

Proof. See [115, Lemma I-B.3]. Fix a set of generators
�
n1, . . . ,nr
�

of S. By definition
I(S) = ker(ϕ). Thus, if Xa − 1 ∈ I(S) then,

�r
i=1 aini = 0 with a =

�
a1, . . . , ar
� ∈

�r . That is to say S ∩ (−S) �= {0}. The converse is proved by reading the above
backwards.

Given a lattice � ⊂ �r , the binomial ideal

I� =
��

Xa −Xb | a− b ∈ �
��

is called the lattice ideal associated to � .
Let us describe the lattice � as the set of integer solutions of the linear system

AX= 0 where A=
�
n1, . . . ,nr
�

is a fix system of generators of S, i.e.

� =
�

u ∈ �r |
r�

i=1

uini = 0

�
⊆ �r .

Induced by the semigroup homomorphism π, any set of generators
�
n1, . . . ,nr
�

provides a group homomorphism

Π : �r −→ G(S)

given by Π(ei) = ni where
�
ei | i = 1, . . . , r
�

denotes the canonical basis of �r . Thus
Π(a) =
�r

i=1 aini for every a ∈ �r . Notices that, for the semigroup �r one has
G(�r) = �r .

Therefore, if kerΠ is equal to � then the lattice ideal I� match the semigroup
ideal I(S), i.e.

I� = I(S) =
��

Xa −Xb | a− b ∈ �
��

.

This case induces an exact sequence of abelian groups given by:

0 −→ � −→ G (�r) = �r −→ G (S) −→ 0.

5.2. The semigroup associated with a modular code 181

5.2 The semigroup associated with a modular code

Let us consider the integer m ≥ 2. We define the following characteristic crossing
functions:

� : �s −→ �s
m and � : �s

m −→ �s

where s is determined by context. The map � is reduction modulo m while the map
� replace the class of 0,1, . . . , m− 1 by the same symbols regarded as integers. Both
maps act coordinate-wise.

Let X denotes n variables X1, . . . , Xn. Note that, for every a ∈ �r
m we have that

X�a = X�a1
1 · · ·X�an

n ∈ �[X]. Therefore, these functions enable us to go back to the
usual definition of terms in �[X].

Throughout this section � will be a modular code defined over �m, where �m
denotes the ring of integer modulo m. Recall that a modular code � over �m of
length n and rank k is an additive subgroup of

�
�n

m,+
�

which has a basis form by k
codewords. By a basis for � we understand a set of codewords that are independent,
modular independent and generate � . For a deeper discussion of basis for modular
codes we refer to Section 1.1.2.

Given a generator matrix G ∈ �k×n
m of � and let label its rows by

�
w1, . . . ,wk
� ⊆

�n
m. By Theorem 3.9 we know that the lattice ideal Im(�) associated with � is the

ideal generated by

Im(�) =
�
{Xwi − 1}i=1,...,k

� �
X m

j − 1
�

j=1,...,n

�
⊆ �[X].

Let H ∈ �(n−k)×n
m be a parity check matrix of � . The above ideal is also the

semigroup ideal associated to the commutative semigroup S finitely generated by
h1, . . . ,hn where h j ∈ �n−k

m denotes the j-th column of H.

Proposition 5.2. Let � be a modular code of length n and rank k defined over �m and
let H ∈ �(n−k)×n

m be a parity check matrix of � . Consider the commutative semigroup
S finitely generated by h1, . . . ,hn where h j denotes the j-th column of H. Then I(S) =
Im(�).

Proof. It is clear that Im(�)⊆ I(S) since all binomials in the generating set of Im(�)
belong to I(S). Indeed we distinguish two cases:

• The equality GHT ≡ 0 mod m, which holds for any generator matrix G ∈ �k×n
m

of � , implies that Xwi − 1 ∈ I(S) since
�n

j=1(�wi j)h j ≡ 0 mod m, where the
element wi =
�
wi1, . . . , win
� ∈ �n

m denotes the i-th row of G for all i = 1, . . . , k.

• Moreover mh j ≡ 0 mod m for all j = 1, . . . , n, since h j ∈ �n−k
m . We thus get

X m
j − 1 ∈ I(S).

182 A semigroup approach

To show the converse, it suffice to make the following observations:

Xa −Xb ⇐⇒
r�

i=1

aihi ≡
r�

i=1

bihi mod m with a,b ∈ �r

⇐⇒
r�

i=1

�
ai − bi
�

hi ≡ 0 mod m with a,b ∈ �r

⇐⇒ (a− b) ∈ �� + (m�n)

In other words we can see the semigroup ideal I(S) as an elimination ideal of the
�-kernel of the matrix A∈ �(2n−k)×(n−k) where

A=
�
�H mIdn−k

�
∈ �(2n−k)×(n−k)

and Idn−k denotes the identity matrix of size n− k. By Remark 3.4 this ideal is also
the ideal related the �m-kernel of the matrix H ∈ �(n−k)×n

m . Therefore, by applying
Theorem 3.9 we conclude the proof.

Following the above construction for the semigroup S, note that S ⊆ �n−k
m . Fur-

thermore, by Lemma 5.1, we may deduce that S is not combinatorially finite. More-
over, we can drawn further conclusions for the associated commutative group of S,
denoted by G(S). First note that G(S) is a torsion group since ma≡ 0 mod m for all
elements a ∈ S. Moreover S = G(S), or equivalently S = −S. In fact, this property is
true for any cancellative semigroup for which G(S) is a torsion group.

Proposition 5.3. Let S be the semigroup associated to an [n, k]-modular code � over
�m defined as above. Then

S = G(S)⊆ �n−k
m ,

where G(S) denotes the associated commutative group of S.

Proof. By definition, it is clear that S ⊆ G(S). To show the converse consider any
element m ∈ G(S), then m can be written as

m=
n�

i=1

aihi with a=
�
a1, . . . , an
� ∈ �n.

We distinguish two cases:

• If ai ≥ 0 for all i = 1, . . . , n then m ∈ S.

• Otherwise, there must exists an index i ∈ {1, . . . , n} such that ai < 0. Replacing
ai by âi := ai + K(m− 1)≥ 0 with K ∈ � we can rewrite m as

m≡
�

j=1
j �=i

a jh j + âihi mod m.

By repeating the previous substitution on all possible indexes j ∈ {1, . . . , n}
such that aj < 0 we conclude that m ∈ S.

5.2. The semigroup associated with a modular code 183

Remark 5.4. Let � be a modular code of parameters [n, k] over �m and let H ∈
�(n−k)×n

m be a parity check matrix of � . The proof of Proposition 5.2 allows us to
deduce that the lattice �1 described as

�1 =

�
u ∈ �n |

n�

i=1

uihi ≡ 0 mod m

�

where hi ∈ �n−k
m denotes the i-th column of H is equal to the set �� + (m�n). Thus

we have the following exact sequence of abelian groups:

0 −→ �1 −→ G (�n) = �n −→ G (S) = S −→ 0

and one has Im(�) = I�1
.

5.2.1 Another representation for modular codes

In the previous section we have described the semigroup associated to the lattice
ideal of a modular code � . Although this lattice ideal provides the set of codewords
of minimal support of � , see for instance Theorem 3.20, it does not allow complete
decoding, we refer the reader to the Example 4.17. This is why we define on Chapter
4 another ideal I+(�) associated to � .

For this purpose we need to define new characteristic crossing functions:

∇ : {0, 1}m−1 −→ �m and ∆ : �m −→ {0, 1}m−1 .

Let
�
e1, . . . ,em−1
�

be the canonical basis of �m−1. Here the map ∆ replace the ele-
ment j ∈ �m \ {0} by the unit vector e j ∈ �m−1 and 0 by the zero vector 0 ∈ �m−1.
Whereas the map ∇ recovers the element j1+2 j2+ . . .+(m−1) jm−1 from the binary
vector (j1, . . . , jm−1).

Now let X denotes n vector variables X1, . . . , Xn such that each variable Xi can be
decomposed into m− 1 components xi1, . . . , xim−1 with i = 1, . . . , n representing the
nonzero elements of �m. Let a ∈ �n

m, we adopt the following notation:

Xa = X a1
1 · · ·X an

n =
�

x11 · · · x1m−1
�∆a1 · · ·�xn1 · · · xnm−1

�∆an .

This relationship allows us to work with monomial of type Xa with a ∈ �n
m as mono-

mial with binary exponents. In this case, note that the degree of the monomial Xa is
defined as the Hamming weight of the vector a ∈ �n

m.
By Theorem 3.9, given the rows of a generator matrix G ∈ �k×n

m of � , labelled by
w1, . . . ,wk, we define the following binomial ideal associated to � :

I+(�) =
�
{Xwi − 1}i=1,...,k

� �
�Xi

�
T+
��

i=1,...,n

�

184 A semigroup approach

where �Xi

�
T+
�

consists of all binomials on the vector variable Xi associated to the
relations given by the additive table of the ring �m i.e.

�Xi

�
T+
�
=
� �

xiu xiv − xiw | u+ v ≡ w mod m
�

�
xiu xiv − 1 | u+ v ≡ 0 mod m

�
�

with i = 1, . . . , n.

Let H ∈ �(n−k)×n
m be a parity check matrix of � . The above ideal can be viewed

also as the semigroup ideal associated to the commutative semigroup S finitely gen-
erated by n× (m− 1) elements:

�
n11, . . . ,n1m−1, . . . ,nn1, . . . ,nnm−1

�

with ni j = jhi where hi ∈ �n−k
m denotes the i-th column H.

Remark 5.5. Let H ∈ �(n−k)×n
m be a parity check matrix of � whose columns are

labelled by
�
h1, . . . ,hn
�
. We define two different set of elements of �n−k

m :

• F1 is a set of n elements given by
�
h1, . . . ,hn
�
. This set was considered as

generating set of S in Section 5.2 since its ideal semigroup match the lattice
ideal I�1

= Im(�).
• F2 has cardinality n × (m − 1) and is defined by

�
jhi
�

i=1,...,n
j=1,...,m−1

. Next result

shows that IF2
(S) = I+(�), where I+(�) was first described in Section 4.6.1.

It follows immediate that both F1 and F2 generates the same semigroup S but they
provide two different semigroup ideals.

Proposition 5.6. Let � be a modular code of length n and rank k defined over �m and
let H ∈ �(n−k)×n

m be a parity check matrix of � . Let S be the commutative semigroup
finitely generated by F2 =

�
jhi
�

i=1,...,n
j=1,...,m−1

where hi denotes the i-th column of H. Then

IF2
(S) = I+(�).

Proof. We begin by proving that all the binomials of the generating set of I+(�)
belongs to IF2

(S). Indeed, we distinguish two types of binomials:

• Xw − 1 where w = (w1, . . . , wn) ∈ �n
m denotes a row of a generator matrix

G ∈ �k×n
m of � . Note that

∆w ·
�

n11, . . . ,n1m−1 , . . . , nn1, . . . ,nnm−1

�T
=

n�

i=1

m−1�

j=1

wi jni j

where if wi = si ∈ �m, then wi j =
�

0 , if j �= si
1 , otherwise.

Thus,
n�

i=1

m−1�

j=1

wi jni j =
n�

i=1

m−1�

j=1

wi j jhi =
n�

i=1

sihi =wHT = 0,

since GHT = 0 in �q, and so Xw − 1 ∈ IF2
(S).

5.2. The semigroup associated with a modular code 185

• xiu xiv− xiw ∈ �Xi

�
T+
�

which comes from the additive rule u+ v ≡ w mod m.
Therefore uhi+ vhi ≡ whi mod m. Or equivalently niu+niv−niw ≡ 0 mod m
and so xiu xiv − xiw ∈ IF2

(S).

• xiu xiv−1 ∈ �Xi

�
T+
�

which implies that u+ v ≡ 0 mod m. Thus, uhi+ vhi ≡ 0
mod m and so xiu xiv − 1 ∈ IF2

(S).

To show the converse it suffice to make the following observation:

X∆a −X∆b ∈ IF2
(S) ⇐⇒
�

i=1

�

j=1

ai jni j ≡
�

i=1

�

j=1

bi jni j mod m with a,b ∈ �n

⇐⇒
�

i=1

�

j=1

�
ai j − bi j

�
jhi ≡ 0 mod m with a,b ∈ �n

⇐⇒
� �

i=1

�
j=1

�
a1 j − b1 j

�
j , . . . ,
�

i=1

�
j=1

�
anj − bnj

�
j
�
∈ �

In other words (a− b mod m) ∈ � . Thus, X∆a − X∆b ∈ I(�). Thus Theorem 3.9
gives that X∆a −X∆b ∈ I+(�) which completes the proof.

Remark 5.7. Let � be a modular code of parameters [n, k] over �m and let H ∈
�(n−k)×n

m be a parity check matrix of � . The proof of Proposition 5.6 allows us to
deduce that the lattice �2 described as

�2 =



u ∈ �

n(m−1) |
n�

i=1

m−1�

j=1

ui j jhi ≡ 0 mod m





where hi ∈ �n−k
m denotes the i-th column of H is equal to the set ∆� + (m�n(m−1)).

Thus we have the following exact sequence of abelian groups:

0 −→ �2 −→ G
�
�n(m−1)
�
= �n(m−1) −→ G (S) = S −→ 0.

As above, let �i denotes the lattice related to the semigroup ideal IFi
(S) with

i = 1, 2 where

F1 =
�
hi
�

i=1,...,n and F2 =
�

jhi
�

i=1,...,n
j=1,...,m−1

.

These lattices were described in detail in Remarks 5.4 and 5.7. We have the following
exact sequences:

0 �1 �n

S = G(S)⊆ �n−k
m 0 .

0 �2 �n(m−1)

186 A semigroup approach

5.2.2 Identify equivalent representations

An elementary row operation on a matrix of type A ∈ �r×s
m is a sequence of three

types of row operations: interchanging two rows, multiplying a row with a unit in
�m or adding one row to another row.

Proposition 5.8. Let H1 and H2 be two (n−k)×n parity check matrices of the modular
codes �1 and �2 over �m. Then the following statements are equivalent:

�1 = �2 ⇐⇒ There is an invertible matrix M ∈ �(n−k)×(n−k)
m : H2 = MH1.

Proof. Assume that �1 = �2, then the row space of H1 and H2 are the same, that is
H1 and H2 are row equivalent. Let M ∈ �(n−k)×(n−k)

m be the matrix which represents
the set of elementary row operations made over H1 to obtain H2. Thus, H2 = MH1.

Conversely, let H2 = MH1 where M ∈ �(n−k)×(n−k)
m is an invertible matrix over

�m. Then, we check at once that each codeword c2 ∈ �2 verifies that

H2cT
2 ≡ 0 mod m ⇒ MH1cT

2 ≡ 0 mod m ⇒ H1cT
2 ≡ 0 mod m.

Therefore c2 ∈ �1. Similar arguments apply to the case �1 ⊆ �2, and the proof is
complete.

Let S be the semigroup associated to an [n, k]-modular code � over the ring �m
and F be the chosen generating set of S. Consider the matrix H ∈ �(n−k)×n

m which is
the parity check matrix of � related with F , that is,

F =
�
hi
�

i=1,...,n or F =
�

jhi
�

i=1,...,n
j=1,...,n

where hi denotes the i-th column of H.
Proposition 5.8 implies that performing elementary row operations on H yields

to a new set of generators F̂ of S. Or equivalently, if we consider a new set of
generators F̂ defined by a matrix Ĥ such that Ĥ = MH where M is an invertible
matrix M ∈ �(n−k)×(n−k)

m . Then F̂ is also a generating set of S.
However, any permutation of the order of the set F or multiplying any element

of F by a unit in �m gives the same semigroup S2 associated with another modular
code �2 which is equivalent to � thus, both codes have the same parameters.

5.3 The semigroup associated with a linear code

Let α be a primitive element of �q and
�
e1, . . . ,eq−1

�
be the canonical basis of �q−1.

We will use throughout this section the following characteristic crossing functions:

∇ : {0,1}q−1 −→ �q and ∆ : �q −→ {0, 1}q−1

The map ∆ replaces the class of the elements a= α j ∈ �∗q by the vector e j and 0 ∈ �q

by the zero vector 0 ∈ �q−1. Whereas the map ∇ recovers the element

j1α+ . . . jq−2α
q−2 + jq−1 ∈ �q

5.3. The semigroup associated with a linear code 187

from the (q− 1)-tuple of binary elements (j1, . . . , jq−1).
Let X denotes n vector variables X1, . . . , Xn such that each variable Xi can be

decomposed into q − 1 components xi1, . . . , xiq−1 with i = 1, . . . , n. Let a ∈ �n
q , we

will adopt the following notation:

Xa = X a1
1 · · ·X an

n =
�

x11 · · · x1q−1

�∆a1 · · ·
�

xn1 · · · xnq−1

�∆an .

This relationship allows us to work with monomial whose exponents are form by
elements defined over the field �q as monomials with integer exponents.

On this section � will be an [n, k] linear code defined over a finite field �q. Given
the rows of a generator matrix G ∈ �k×n

q of � , labelled by w1, . . . ,wk, we define the
ideal associated with � as the binomial ideal generated by

I+(�) =
� �

Xα
jwi − 1
�

i=1,...,k
j=1,...,q−1

� �
�Xi

�
T+
��

i=1,...,n

�
⊆ �[X]

where �Xi

�
T+
�

stands for all the binomials on the variable Xi associated to the
relations given by the additive table of the field �q (see Section 4.1 for more details),
i.e.

�Xi

�
T+
�
=
� �

xiu xiv − xiw | αu +αv = αw� � �xiu xiv − 1 | αu +αv = 0
� �

Let H ∈ �(n−k)×n
q be a parity check matrix of � whose columns are labelled by

h1, . . . ,hn. The ideal I+(�) is also a semigroup ideal associated to the commutative
semigroup S finitely generated by n× (q− 1) elements defined as
�
n11, . . . ,n1q−1, . . . ,nn1, . . . ,nnq−1

�
with ni j = α jhi ∈ �n−k

q .

Proposition 5.9. Let � be an [n, k]-linear code over �q and H ∈ �(n−k)×n
q be a

parity check matrix of � . Let S be the commutative semigroup finitely generated by�
α jhi

�
i=1,...,n

j=1,...,q−1
where hi denotes the i-th column of a H and α is any primitive element

of �q. Then I(S) = I+(�).

Proof. It is easy to check that I+(�) ⊆ I(S) since all binomials in the generating set
of I+(�) belong to I(S). To prove this, take any element of the generating of I+(�)
of the form:

• Xα
sw − 1 with s = 1, . . . , q− 1 where w = (w1, . . . , wn) ∈ �n

q denotes a row of a
generator matrix G ∈ �k×n

q of � . Note that

αs∆w
�

n11, . . . ,n1q−1 , . . . , nn1, . . . ,nnq−1

�T
= αs

n�

i=1

q−1�

j=1

wi jni j

where if wi = αri ∈ �q then wi j =
�

0 , if j �= ri
1 , otherwise.

188 A semigroup approach

Thus

αs
n�

i=1

q−1�

j=1

wi jni j = αs
n�

i=1

q−1�

j=1

wi jα
jhi = αs

n�

i=1

αri hi =wHT = 0,

since GHT = 0 in �q, and so Xα
sw − 1 ∈ I(S).

• xiu xiv − xiw ∈ �Xi

�
T+
�

which comes from the additive rule αu + αv = αw in
�q. Therefore αuhi +αvhi −αwhi = 0, or equivalently, niu+niv −niw = 0, and
consequently xiu xiv − xiw ∈ I(S).

• xiu xiv−1 ∈ �Xi

�
T+
�

which implies that αu+αv = 0 in �q. This gives niu+niv =
0 and hence xiu xiv − 1 ∈ I(S).

To show the converse, it suffice to make the following observation:

X∆a −X∆b ∈ I(�) ⇐⇒
n�

i=1

q−1�

j=1

ai jni j =
n�

i=1

q−1�

j=1

bi jni j in �q with a,b ∈ �n

⇐⇒
n�

i=1

q−1�

j=1

�
ai j − bi j

�
α jhi = 0 in �q with a,b ∈ �n

⇐⇒
� �q−1

i=1

�
a1 j − b1 j

�
α j , . . . ,
�q−1

i=1

�
anj − bnj

�
α j
�
∈ �

In other words
�

a− b in �q

�
∈ � . Thus, X∆a−X∆b ∈ I(�) = I+(�). Recall that the

last equality is due to Theorem 4.3.

Let q = ps with p prime. Following the above construction for the semigroup
S, note that S ⊆ �n−k

q . Again, by Lemma 5.1, we may deduce that S is not combi-
natorially finite. Moreover S is cancellative and G(S), which denotes the associated
commutative group of S, is a torsion group since pa= 0 in �q for all elements a ∈ S.
This implies S = G(S) but we will also show that G(S) = �n−k

q .

Proposition 5.10. Let S be the semigroup associated to an [n, k]-linear code � over
�q defined as above. Then

S = G(S) = �n−k
q ,

where G(S) denotes the associated commutative group of S.

Proof. By construction, it is clear that S = G(S). Moreover, since every parity check
matrix H ∈ �(n−k)×n

q of � has rank n− k, then n− k columns of its reduced echelon
form R = rref(H) form the identity matrix Idn−k. Let us labelled such columns by�
r1, . . . , rn−k
�
.

Note that if H1, H2 are two parity check matrices of � then its columns generates
the same semigroup. Moreover every element v ∈ �n−k

q can be rewritten as

v= v1r1 + . . .+ vn−krn−k = αi1r1 + . . .+αin−k rn−k ∈ G(S),

which gives our claim.

5.3. The semigroup associated with a linear code 189

Remark 5.11. Let � be an [n, k]-linear code over �q and let H ∈ �(n−k)×n
q be a parity

check matrix of � . The proof of Proposition 5.9 allows us to deduce that the lattice
�2 described as

�2 =



u ∈ �

n(q−1) |
n�

i=1

q−1�

j=1

ui jα
jhi = 0 in �q





where hi ∈ �n−k
q denotes the i-th column of H and α is a primitive element of �q,

is equal to the set ∆� +
�

p�n(q−1)
�

. Thus we have the following exact sequence of
abelian groups:

0 −→ �2 −→ G
�
�n(q−1)
�
= �n(q−1) −→ G (S) = S = �n−k

q −→ 0 .

5.3.1 Another representation for linear codes

Let �q be a finite field then q is a prime power, i.e. q = ps where p is a prime. Let
f (X) be any irreducible polynomial of degree s over �p and β be a root of f (X).
Then, every element of �q can be uniquely represented in the form

a0 + a1β + . . .+ as−1β
s−1 with a0, . . . , as−1 ∈ �q.

That is, we can express �q in the form �p[β].
Note that every primitive element α of �q can serve as a defining element of

�p over �q, i.e. �p[α] = �q. However, it is not in fact necessary for β to be a
multiplicative generator of �∗q.

In this way we could define new characteristic crossing functions:

� : �s −→ �q and � : �q −→ �s

Here the map � replaces the class of the elements a= a0+ a1β + . . .+ as−1β
s−1 ∈ �q

with
�
a0, a1, . . . , as−1
� ∈ �s

p by the vector ��a0, . . . , as−1
� ∈ �s. While the map � re-

covers the element�a0+�a1β+. . .+�as−1β
s−1 from the integer vector

�
a0, a1, . . . , as−1
�
.

Note that the map � means reduction modulo p while the map � replace the
class of 0,1, . . . , p− 1 by the same symbols regarded as integers. These maps where
defined on Section 5.2.

Let Y denotes n vector variables Y1, . . . , Yn such that each variable Yi is decom-
posed into s components yi1, . . . , yis. Let b ∈ �n

q , we adopt the following notation:

Yb = Y b1
1 · · ·Y bn

n =
�

y11 · · · y1s
��b1 · · ·�yn1 · · · yns

��bn .

Therefore, again we identify monomials whose exponents belongs to �n
q with the

usual terms of �[Y].

190 A semigroup approach

Let G ∈ �k×n
q be a generator matrix of� , where its rows are tagged as

�
w1, . . . ,wk
�⊆

�n
q . The following binomial ideal is another ideal associated to � .

Im(�) =
�
{Ywi − 1}i=1,...,k

� �
y p

i j − 1
�

i=1,...,n
j=1,...,s

�
⊆ �[Y].

Note that this ideal is in certain sense equivalent to the binomial ideal for modular
code defined on Section 5.2 denoted also by Im(�).

Let H ∈ �(n−k)×n
q be a parity check matrix of � whose columns are labelled by�

h1, . . . ,hn
� ⊆ �n−k

q . The above ideal can be viewed also as a semigroup ideal asso-
ciated to the commutative semigroup S finitely generated by n×m elements

�
n11, . . . ,n1s, . . . ,nn1, . . . ,nns

�
with ni j = β j−1hi .

Remark 5.12. Let H ∈ �(n−k)×n
q be a parity check matrix of � whose columns are

labelled by
�
h1, . . . ,hn
�
. We have define two generating sets of S.

• Let α be a primitive element of �q. We define the set F2 as a set of n× (q− 1)
elements given by �

ni j

�
i=1,...,n

j=1,...,q−1
with ni j = α jhi .

This set was considered as generating set of S in Section 5.3 since its ideal
semigroup coincide with the ideal I+(�).
• Let β be a root of any irreducible polynomial of degree s over �p. We define

the set F1 with cardinality n× s defined by the elements
�
ni j

�
i=1,...,n
j=1,...,s

with ni j = β j−1hi .

We will see that IF1
(S) = Im(�).

They are easily seen to generate the same semigroup S. However they provide two
different semigroups ideals.

Proposition 5.13. Let � be an [n, k]-linear code over �q with q = ps and let H ∈
�(n−k)×n

q be a parity check matrix of � . Let S be the commutative semigroup finitely
generated by F1 =

�
β j−1hi

�
i=1,...,n
j=1,...,s

where hi denotes the i-th column H and β is any

root of an irreducible polynomial of degree s over �p. Then IF1
(S) = Im(�).

Proof. The following result may be proved in the same way as Proposition 4.55. We
claim that all the binomials of the generating set of Im(�) belongs to IF1

(S). Indeed,
we distinguish two types of binomials:

• Yw − 1 where w = (w1, . . . , wn) ∈ �q denotes a row of any generator matrix
G ∈ �k×n

q of � . Note that each component wi ∈ �q can be rewritten as:

wi = ai0 + ai1β + . . .+ ais−1β
s−1.

5.3. The semigroup associated with a linear code 191

Hence,

�w
�

n11, . . . ,n1s , . . . , nn1, . . . ,nns

�T
=
�n

i=1

�
ai0ni1 + . . .+ ais−1nis

�

=
�n

i=1

�
ai0 + ai1β + . . .+ ais−1β

s−1
�

hi =wHT = 0

Since GHT = 0 in �q, and so Yw − 1 ∈ IF1
(S).

• y p
i j − 1 with i = 1, . . . , n and j = 1, . . . , s. Note that pβ j−1hi = 0 in �q, since

char(�q) = p. Thus y p
i j − 1 ∈ IF1

(S).

To show the converse it suffice to make the following observation:

Y�a − Y�b ∈ IF1
(S) ⇐⇒

n�

i=1

s�

j=1

ai jni j =
n�

i=1

s�

j=1

bi jni j with a,b ∈ �n

⇐⇒
n�

i=1

s�

j=1

�
ai j − bi j

�
ni j = 0 with a,b ∈ �n

⇐⇒
�

s�

i=1

(a1i − b1i)β i−1, . . . ,
s�

i=1

(ani − bni)β i−1,

�
∈ �

Thus a− b ∈ � over �q, or equivalently, Y�a − Y�b ∈ Im(�).

Remark 5.14. Let � be an [n, k]-linear code over �q and let H ∈ �(n−k)×n
q be a parity

check matrix of � . The proof of Proposition 5.13 allows us to deduce that the lattice
�1 described as

�1 =



u ∈ �

ns |
n�

i=1

s�

j=1

ui jβ
jhi = 0 in �q





where hi ∈ �n−k
q denotes the i-th column of H and β is a root of an irreducible

polynomial of degree s over �q, is equal to the set �� + �p�ns�. Thus we have the
following exact sequence of abelian groups:

0 −→ �1 −→ G (�ns) = �ns −→ G (S) = S = �n−k
q −→ 0

Let�i denotes the lattice related to the semigroup ideal IFi
(S)with i = 1,2 where

F2 =
�
α jhi

�
i=1,...,n

j=1,...,q−1
and F1 =
�
β j−1hi

�
i=1,...,n
j=1,...,s

.

These lattices were described in detail in Remarks 5.11 and 5.14. We have the fol-
lowing exact sequences:

0 �2 �n(q−1)

S = G(S) = �n−k
q 0

0 �1 �ns

192 A semigroup approach

5.3.2 Identify equivalent representations

The following result will provide us a test to determine what happen with the linear
code � associated to a commutative semigroup S when we make some particular
modifications over the generating set of S.

Definition 5.15. A matrix is in reduced echelon form if it satisfies the following con-
ditions:

1. All nonzero rows are above any row form by the zero vector.

2. Every leading coefficient (i.e. the first nonzero element of each nonzero-row)
is 1 and is the only nonzero entry in its column.

3. The leading coefficient is always strictly to the right of the leading coefficient
of the row above it.

Let H ∈ �(n−k)×n
q be a parity check matrix of � . By Linear Algebra, we can

transform H in a row reduced echelon, denoted by rred(H), form by a sequence of
three elementary row operations: interchanging two rows, multiplying a row with a
nonzero constant or adding one row to another row.

Note that, although a parity check matrix H of a code � is not unique, the matrix
rref(H), which is also a parity check matrix of � is unique.

Proposition 5.16. Let H1 and H1 be two (n− k)× n parity check matrices of the codes
�1 and �2 over �q. Then the following statements are equivalent:

1. �1 = �2.

2. rref(H1) = rref(H2).

3. There is an invertible matrix M ∈ �(n−k)×(n−k)
q such that H2 = MH1.

Proof. Let us assume that �1 = �2, then the row space of H1 and H2 are the same.
So H1 and H2 are row equivalent, i.e. rref(H1) = rref(H2).

Furthermore, rref(H1) = E1 · · · El H1 where E1, . . . , El are the elementary matrices
that corresponds to the elementary row operations made to transform H1 on rref(H1).
Let M1 = E1 · · · El , then M1 ∈ �(n−k)×(n−k)

q is an invertible matrix since Ei are invertible
and rref(H1) = M1H1. Likewise rref(H2) = M2H2 where M2 ∈ �(n−k)×(n−k)

q is an
invertible matrix.

Now assume that rref(H1) = rref(H2) and let M = M2M−1
1 , then

MH1 = M2M−1
1 M1rref(H1) = M2rref(H2) = H2.

Finally suppose that H2 = MH1 for some invertible matrix M ∈ �(n−k)×(n−k)
q . Then

for every codeword c2 ∈ �2 we have that

H2cT
2 = 0⇒ MH1cT

2 = 0⇒ H1cT
2 = 0.

So �2 is a subcode of �1. Similarly �1 ⊆ �2 since H1 = M−1H2 which proves the
desired result.

5.4. Some conclusions 193

Let S be the semigroup associated to an [n, k] linear code � over �q and F be the
generating set of S. Consider the matrix H ∈ �(n−k)×(n−k)

q which is the parity check
matrix of � defining the set F , i.e. we distinguish two cases:

F =
�
α jhi

�
i=1,...,n

j=1,...,q−1
or F =
�
β j−1hi

�
i=1,...,n
j=1,...,s

where hi denotes the i-th column of H, α denotes a primitive element of �q and β
represent a root of any irreducible polynomial of degree s over �p with q = ps.

Proposition 5.16 implies that performing elementary row operations on H yields
to a new generating set of S. That is to say, if we consider a new generating set F̂
defined by the matrix Ĥ such that rref(H) = rref(Ĥ). Then F̂ is also a generating set
of S.

However a permutation or a multiplication by a nonzero constant on the generat-
ing set F define the same semigroup S associated with another linear code �2 which
is equivalent to � , thus, both codes have the same parameters.

5.4 Some conclusions

We have found a semigroup S related to linear and modular codes but we can con-
sider several generating sets of it which yields to different binomials semigroups
ideals. Summarizing, we have two different situations:

1. If � is an [n, k]-modular code over �m and H is a parity check matrix of � we
have analyzed two generating sets of S:

• The set F1 described by the elements
�
hi
�

i=1,...,n, where hi denotes the i-th
column of H. Proposition 5.2 states the equivalence IF1

(S) = Im(�)where
Im(�) describes the binomial ideal of � by taking care of the arithmetic
of modular integers.
This ideal was first described in Section 3.2 where we proved that it can be
also view as the binomial ideal of a modular integer program. Moreover a
Graver basis of this ideal provides the set of codewords of minimal support
of � , see Theorem 3.20. However, such ideal does not allow complete
decoding as Example 4.29 shows.

• The set F2 given by the elements
�

jhi
�

i=1,...,n
j=1,...m−1

, where hi denotes the i-th

column of H. Proposition 5.6 shows that IF2
(S) = I+(�), where I+(�) is

the binomial ideal of � given by the additive rules of the ring �m.
This ideal was introduced in Section 4.6.1 where it was shown that not
only it describes the set of codewords of minimal support but it also pro-
vides a complete decoding procedure for � , see Proposition 4.60. Al-
though the cardinality of this set is n× (m−1) which is much larger than
the cardinality of F1, in Section 4.4 we discuss an alternative for the com-
putation of a Gröbner basis of this ideal which is better suited than the
standard Buchberger’s algorithm.

194 A semigroup approach

2. The same conclusion can be drawn for linear codes. Let � be an [n, k]-linear
code over �q with q = ps and H be a parity check matrix of � . We have
examined two generating sets of S:

• Let α be a primitive element of the finite field �q. The set F2 is given by
n× (q−1) elements of the form:

�
α jhi

�
i=1,...,n

j=1,...,q−1
, where hi denotes the i-

th column of H. Proposition 5.9 shows that IF2
(S) = I+(�) where I+(�)

is the binomial ideal of � attached to the additive table of the field �q.
This ideal was depth studied in Chapter 4 where we show that the reduced
Gröbner basis of I+(�) relative to a degree compatible ordering provides
us with two complete decoding algorithms, see Section 4.3. Moreover a
Graver basis of I+(�) allows us to obtain the set of codewords of minimal
support of � .

• Let β be a root of any irreducible polynomial of degree s over �p. The
set F1 is given by n × s elements of the form:

�
β j−1hi

�
i=1,...,n
j=1,...,s

, where

hi denotes the i-th column of H. Proposition 5.13 claims that IF1
(S) =

Im(�) where Im(�) describes the binomial ideal of � by taking care of
the arithmetic over fields of characteristic p.
This ideal was already studied in [16] where the authors were unable to
describe a complete decoding algorithm for � . See for instance Example
4.17.

Therefore only the semigroups ideals related to the binomial ideals I+(�) allow
us to solve the complete decoding problem, which is the main aim of this thesis. The
advantage of using the ideals I+(�) lies in the fact that on these cases the degree of
the monomials Xa match the Hamming weight of the word a, which could be defined
over the ring �n

m or over the finite field �n
q .

Remark 5.17. Note that the number of generators of the ideal I+(�) varies depend-
ing whether the code � belongs to one of the following cases:

1. The code � is modular or � is linear a defined over a prime field.

2. The code � is linear and is defined over a finite field �q where q is not prime.

See Remark 4.57 for a deeper discussion.

Definition 5.18. The generating set F =
�
n1, . . . ,nr
�

of a semigroup S is called a
digital representation of S if every element m ∈ S can be written as

r�

i=1

aini with a1, . . . , ar ∈ {0, 1} ⊆ �.

It is worth pointing out that the choice of digital representations of S, where S de-
fines the semigroup associated with a code � , provides not only complete decoding

5.4. Some conclusions 195

algorithms but also the set of codewords of minimal support of � , where � could be
either a modular or a linear code.

Moreover the result obtained in this chapter could be adapted to other classes of
codes such as codes defined over multiple alphabets or additive codes. Notice that
semigroups in this context are always cancellatives and finites, so digital representa-
tions for them always exists and a rather a natural choice.

196 A semigroup approach

Bibliography

[1] W. W. Adams and P. Loustaunau. An introduction to Gröbner bases, volume 3 of
Graduate Studies in Mathematics. American Mathematical Society, Providence,
RI, 1994. (Cited on page 24.)

[2] A. Ashikhmin and A. Barg. Minimal vectors in linear codes. IEEE Trans. In-
form. Theory, 44(5):2010–2017, 1998. (Cited on pages 5, 13, 50, 69, 70, 80,
and 88.)

[3] A. Barg. Complexity issues in coding theory. In Handbook of coding theory, Vol.
I, II, pages 649–754. North-Holland, Amsterdam, 1998. (Cited on pages 32,
33, 34, 50, 66, 71, and 90.)

[4] A. Becker, A. Joux, A. May, and A. Meurer. Decoding random binary linear
codes in 2n/20: How 1+ 1 = 0 improves information set decoding. In EURO-
CRYPT, pages 520–536, 2012. (Cited on page 35.)

[5] E. R. Berlekamp. Algebraic Coding Theory. No. M-6. Aegean Park Press, 1984.
(Cited on page 24.)

[6] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg. On the inherent
intractability of certain coding problems. IEEE Trans. Information Theory, IT-
24(3):384–386, 1978. (Cited on pages 3, 11, 32, and 90.)

[7] D. J. Bernstein, T. Lange, and C. Peters. Attacking and Defending the
McEliece Cryptosystem. In Johannes Buchmann and Jintai Ding, editors,
PQCrypto 2008, volume 5299 of Lecture Notes in Computer Science, pages 31–
46. Springer-Verlag Berlin Heidelberg, 2008. (Cited on page 35.)

[8] D. J. Bernstein, T. Lange, and C. Peters. Smaller Decoding Exponents: Ball-
Collision Decoding. In Crypto, pages 743–760, 2011. (Cited on page 35.)

[9] R. E. Blahut. Theory and practice of error control codes. Addison-Wesley Pub.
Co., 1983. (Cited on page 24.)

[10] T. Bogart, A. N. Jensen, and R. R. Thomas. The circuit ideal of a vector con-
figuration. Journal of Algebra, 309(2):518 – 542, 2007. (Cited on page 91.)

[11] M. Borges-Quintana, M. A. Borges-Trenard, P. Fitzpatrick, and E. Martínez-
Moro. Gröbner bases and combinatorics for binary codes. Applicable Algebra in
Engineering Communication and Computing (AAECC), 19(5):393–411, 2008.

197

198 Bibliography

(Cited on pages 5, 6, 8, 12, 14, 15, 51, 53, 57, 81, 85, 87, 90, 94, 97, 101,
126, 140, and 146.)

[12] M. Borges-Quintana, M. A. Borges-Trenard, I. Márquez-Corbella, and
E. Martínez-Moro. Computing coset leaders and leader codewords of binary
codes. Submitted, 2012. (Cited on pages 10, 17, and 49.)

[13] M. Borges-Quintana, M. A. Borges-Trenard, and E. Martínez-Moro. GBLA-LC:
Gröbner Bases by Linear Algebra and Linear Codes. In ICM 2006. Mathemati-
cal Software, pages 604–605. EMS, 2006. (Cited on pages 5, 12, 51, and 57.)

[14] M. Borges-Quintana, M. A. Borges-Trenard, and E. Martínez-Moro. A general
framework for applying FGLM techniques to linear codes. In Applied algebra,
algebraic algorithms and error-correcting codes, volume 3857 of Lecture Notes
in Computer Science (LNCS), pages 76–86. Springer, Berlin, 2006. (Cited on
pages 5, 12, 51, 57, and 126.)

[15] M. Borges-Quintana, M. A. Borges-Trenard, and E. Martínez-Moro. A Gröbner
representation for linear codes. In Advances in coding theory and cryptography,
volume 3 of Series on Coding Theory Cryptology, pages 17–32. World Sci. Publ.,
Hackensack, NJ, 2007. (Cited on pages 5, 12, 51, and 97.)

[16] M. Borges-Quintana, M. A. Borges-Trenard, and E. Martínez-Moro. On a Gröb-
ner bases structure associated to linear codes. J. Discrete Math. Sci. Cryptogr.,
10(2):151–191, 2007. (Cited on pages 5, 12, 51, 54, 56, 57, 101, 133, 137,
138, 139, and 194.)

[17] M Borges-Quintana, M. A. Borges-Trenard, and E Martínez-Moro. Gröb-
ner representations of Binary Matroids. In Applicable Algebra in Engineering
Communication and Computing (AAECC), pages 227–230, 2009. (Cited on
page 48.)

[18] M. Borges-Quintana, M.A. Borges-Trenard, I. Márquez-Corbella, and
E. Martínez-Moro. An algebraic view to gradient descent decoding. In In-
formation Theory Workshop (ITW), 2010 IEEE, pages 1 –4, 30 2010-sept. 3
2010. (Cited on pages 9, 16, and 49.)

[19] Y. Borissov and N. Manev. Minimal codewords in linear codes. Serdica Math.
J., 30:303–324, 2004. (Cited on pages 3 and 11.)

[20] I. Borosh and L. B. Treybig. Bounds on positive integral solutions of lin-
ear diophantine equations. Proceedings of the American Mathematical Society,
55(2):299–304, 1976. (Cited on page 82.)

[21] M. Bras-Amorós and T. Høholdt, editors. Applied Algebra, Algebraic Algorithms
and Error-Correcting Codes, 18th International Symposium, AAECC-18 2009,
Tarragona, Catalonia, Spain, June 8-12, 2009. Proceedings, volume 5527 of
Lecture Notes in Computer Science. Springer, 2009. (Cited on page 48.)

Bibliography 199

[22] E. Briales, A. Campillo, C. Marijuán, and P. Pisón. Minimal systems of gen-
erators for ideals of semigroups. Journal of Pure and Applied Algebra, 124(1-
3):7–30, 1998. (Cited on pages 178 and 180.)

[23] J. Bruck and M. Naor. The hardness of decoding linear codes with preprocess-
ing. IEEE Transactions on Information Theory, 36(2):381–385, 1990. (Cited
on pages 3, 11, and 90.)

[24] B. Buchberger. Bruno Buchberger’s PhD thesis 1965: An algorithm for finding
the basis elements of the residue class ring of a zero dimensional polynomial
ideal. Journal of Symbolic Computation, 41(3-4):475–511, 2006. (Cited on
pages 24 and 40.)

[25] A. R. Calderbank. The art of signaling: fifty years of coding theory. IEEE
Trans. Inform. Theory, 44(6):2561–2595, 1998. Information theory: 1948–
1998. (Cited on page 69.)

[26] A. Campillo and P. Pisón. Toric mathematics from semigroup viewpoint. In
Ring theory and algebraic geometry (León, 1999), volume 221 of Lecture Notes
in Pure and Appl. Math., pages 95–112. Dekker, New York, 2001. (Cited on
page 178.)

[27] A. Canteaut and H. Chabanne. A further improvement of the work factor in
an attempt at breaking McEliece’s cryptosystem. In Pascale Charpin, editor,
EUROCODE 94, pages 169–173, 1994. (Cited on page 35.)

[28] A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight
words in a linear code: application to McEliece’s cryptosystem and to narrow-
sense BCH codes of length 511. IEEE Transactions on Information Theory,
44(1):367–378, 1998. (Cited on page 35.)

[29] A. Canteaut and N. Sendrier. Cryptanalysis of the original McEliece cryptosys-
tem. In Kazuo Ohta and Dingyi Pei, editors, ASIACRYPT’98, volume 1514
of Lecture Notes in Computer Science, pages 187–199. Springer-Verlag Berlin
Heidelberg, 1998. (Cited on page 35.)

[30] D. Choi and J. D. H. Smith. Greedy loop transversal codes for correcting error
bursts. Discrete Math., 264(1-3):37–43, March 2003. (Cited on page 76.)

[31] T. Chunming, G. Shuhong, and Z. Chengli. The Optimal Linear Secret Shar-
ing Scheme for Any Given Access Structure. Cryptology ePrint Archive, 2011.
(Cited on pages 4 and 11.)

[32] A. H. Clifford and G. B. Preston. The algebraic theory of semigroups. Vol. II.
Mathematical Surveys, No. 7. American Mathematical Society, Providence,
R.I., 1967. (Cited on page 178.)

200 Bibliography

[33] P. Conti and C. Traverso. Buchberger algorithm and integer programming.
In Applied algebra, algebraic algorithms and error-correcting codes (New Or-
leans, LA, 1991), volume 539 of Lecture Notes in Comput. Sci., pages 130–139.
Springer, Berlin, 1991. (Cited on pages 6, 13, 24, 80, and 82.)

[34] D.A. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Graduate Texts
in Mathematics. Springer, 2005. (Cited on page 24.)

[35] D.A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An Intro-
duction to Computational Algebraic Geometry and Commutative Algebra. Num-
ber v. 10 in Undergraduate Texts in Mathematics. Springer, 2007. (Cited on
pages 24, 37, 39, and 41.)

[36] R. Crandall. Some notes on steganography, 1998. (Cited on pages 4 and 12.)

[37] B. Debraize and I. Márquez-Corbella. Fault analysis of the stream cipher snow
3g. In Fault Diagnosis and Tolerance in Cryptography (FDTC), 2009 Workshop
on, pages 103–110, 2009. (Cited on pages 10 and 17.)

[38] F. Di Biase and R. Urbanke. An Algorithm to Calculate the Kernel of Certain
Polynomial Ring Homomorphisms. Experimental Mathematics, 4(3):227–234,
1995. (Cited on pages 6, 14, 81, 85, and 87.)

[39] S. T. Dougherty and H. Liu. Independence of vectors in codes over rings.
Designs, Codes and Cryptography, 51:55–68, 2009. (Cited on pages 30, 31,
and 32.)

[40] D. Eisenbud and B. Sturmfels. Binomial ideals. Duke Mathematical Journal,
84(1):1–45, 1996. (Cited on page 24.)

[41] P. Elias. List decoding for noisy channels. Technical report (Massachusetts
Institute of Technology. Research Laboratory of Electronics); 335, 1957. (Cited
on page 35.)

[42] J. C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of
zero-dimensional Gröbner bases by change of ordering. J. Symbolic Comput.,
16(4):329–344, 1993. (Cited on pages 41, 51, 96, 144, 146, and 147.)

[43] M. Finiasz, P. Gaborit, and N. Sendrier. Improved fast syndrome based crypto-
graphic hash functions. In Proceedings of ECRYPT Hash Workshop 2007, 2007.
http://www-roc.inria.fr/secret/Matthieu.Finiasz/research/
2007/finiasz-gaborit-sendrier-ecrypt-hash-workshop07.pdf.
(Cited on page 35.)

[44] M. Finiasz and N. Sendrier. Security bounds for the design of code-based
cryptosystems. In ASIACRYPT, pages 88–105, 2009. (Cited on page 35.)

[45] P. Fitzpatrick. Solving a multivariable congruence by change of term order. J.
Symbolic Comput., 24(5):575–589, 1997. (Cited on pages 96, 146, and 147.)

Bibliography 201

[46] P. Fitzpatrick and J. Flynn. A Gröbner basis technique for Padé approximation.
J. Symbolic Comput., 13(2):133–138, 1992. (Cited on page 146.)

[47] E. Gabidulin and T. Klove. On a bound involving the covering radius and the
newton radius. In Information Theory, 1998. Proceedings. 1998 IEEE Interna-
tional Symposium on, pages 433–, 1998. (Cited on page 59.)

[48] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.12,
2009. (Cited on page 57.)

[49] J. I. García-García, M. A. Moreno-Frías, and A. Vigneron-Tenorio. On glued
semigroups. arXiv:1104.2835v2, 2011. (Cited on pages 81 and 102.)

[50] M. J. E. Golay. Notes on digital coding. Proc. IEEE., 37:657, 1949. (Cited on
page 23.)

[51] J. E. Graver. On the foundations of linear and integer linear programming. I.
Math. Programming, 9(2):207–226, 1975. (Cited on page 83.)

[52] G. M. Greuel, G. Pfister, O. Bachmann, C. Lossen, and H. Schönemann. A
Singular Introduction to Commutative Algebra. Springer, 2007. (Cited on
page 24.)

[53] R. W. Hamming. Error Detecting and Error Correcting Codes. Bell System
Technical Journal, 26:147–160, 1950. (Cited on page 23.)

[54] T. Helleseth and T. Klove. The newton radius of codes. IEEE Trans. Inf. Theor.,
43(6):1820–1831, November 1997. (Cited on page 59.)

[55] J. Herzog. Generators and relations of abelian semigroups and semigroup
rings. Manuscripta mathematica, 3:175–194, 1970. (Cited on pages 178
and 179.)

[56] D.G. Hoffman. Coding Theory: The Essentials. Pure and applied mathematics.
M. Dekker, 1991. (Cited on page 24.)

[57] F. L. Hsu, F. A. Hummer, and J. D. H. Smith. Logarithms, syndrome functions,
and the information rates of greedy loop transversal codes. J. Comb. Math.
Comb. Comp., 22:33 – 49, 1996. (Cited on page 76.)

[58] W. C. Huffman and V. Pless. Fundamentals of error-correcting codes. Cambridge
University Press, Cambridge, 2003. (Cited on pages 24, 29, and 61.)

[59] T. Y. Hwang. Decoding linear block codes for minimizing word error rate. IEEE
Trans. Inform. Theory, 25(6):733–737, 1979. (Cited on page 90.)

[60] D. Ikegami and Y. Kaji. Maximum Likelihood Decoding for Linear Block Codes
using Grobner Bases. IEICE Trans. Fund. Electron. Commun. Comput. Sci., E86-
A(3):643–651, 2003. (Cited on pages 6, 13, 80, 83, 84, 85, 87, 90, 126,
and 129.)

202 Bibliography

[61] R. Jurrius and R. Pellikaan. Algebraic Geometry Modeling in Information The-
ory, volume 8 of Coding Theory and Cryptology, chapter Codes, Arrangements
and Matroids. World Scientific Publishing Company Incorporated, 2013.
(Cited on page 24.)

[62] J. Justesen and T. Høholdt. A Course In Error-Correcting Codes. EMS Textbooks
in Mathematics. European Mathematical Society, 2004. (Cited on pages 24
and 26.)

[63] N. Kashyap. A decomposition theory for binary linear codes. IEEE Trans.
Inform. Theory, 54(7):3035–3058, 2008. (Cited on pages 48, 81, 102, 104,
and 108.)

[64] N. Kashyap. Matroid pathwidth and code trellis complexity. SIAM J. Discret.
Math., 22(1):256–272, February 2008. (Cited on page 80.)

[65] N. Kashyap. On minimal tree realizations of linear codes. IEEE Trans. Inform.
Theory, 55(8):3501–3519, 2009. (Cited on pages 81, 102, and 104.)

[66] A. Kehrein and M. Kreuzer. Characterizations of border bases. Journal of Pure
and Applied Algebra, pages 251–270, 2004. (Cited on page 44.)

[67] M. Kreuzer and L. Robbiano. Computational Commutative Algebra 1. Compu-
tational Commutative Algebra. Springer, 2008. (Cited on page 24.)

[68] J. P. S. Kung. A source book in matroid theory. Birkhāuser, 1986. (Cited on
page 24.)

[69] P. J. Lee and E. F. Brickell. An observation on the security of McEliece’s public-
key cryptosystem. In Christoph G. Günther, editor, EUROCRYPT ’88, volume
330 of Lecture Notes in Computer Science, pages 275–280. Springer-Verlag
Berlin Heidelberg, 1988. (Cited on page 35.)

[70] J. S. Leon. A probabilistic algorithm for computing minimum weights of large
error-correcting codes. IEEE Transactions on Information Theory, 34(5):1354–
1359, 1988. (Cited on page 35.)

[71] R. A. Liebler. Implementing gradient descent decoding. Michigan Math. J.,
58(1):285–291, 2009. (Cited on pages 5, 13, 50, 69, 74, 80, and 88.)

[72] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes.
Elsevier/North Holland, Amsterdam, 1977. (Cited on page 24.)

[73] M. G. Marinari, H. M. Moller, and T. Mora. Gröbner bases of ideals denned
by functionals with an application to ideals of projective points. Applicable
Algebra in Engineering Communication and Computing (AAECC), 4:103–145,
1993. (Cited on page 144.)

Bibliography 203

[74] I. Márquez-Corbella and E. Martínez-Moro. Algebraic structure of the minimal
support codewords set of some linear codes. Adv. Math. Commun., 5(2):233–
244, 2011. (Cited on pages 9, 16, 50, 80, 81, 105, and 126.)

[75] I. Márquez-Corbella and E. Martínez-Moro. Decomposition of Modular Codes
for Computing Test Sets and Graver Basis. Mathematics in Computer Science,
6:147–165, 2012. (Cited on pages 9, 16, and 81.)

[76] I. Márquez-Corbella and E. Martínez-Moro. Algebraic Geometry Modeling in
Information Theory, volume 8 of Coding Theory and Cryptology, chapter An In-
troduction to LDPC codes, pages 129–166. World Scientific Publishing Com-
pany Incorporated, 2013. (Cited on pages 9 and 16.)

[77] I. Márquez-Corbella, E. Martínez-Moro, and R. Pellikaan. The non-gap se-
quence of a subcode of a generalized Reed–Solomon code. Des. Codes Cryp-
togr., 66(1-3):317–333, 2013. (Cited on pages 9 and 16.)

[78] I. Márquez-Corbella, E. Martínez-Moro, and R. Pellikaan. On the unique rep-
resentation of very strong algebraic geometry codes. Des. Codes Cryptogr.,
pages 1–16, 2013. (Cited on pages 9 and 16.)

[79] I. Márquez-Corbella, E. Martínez-Moro, R. Pellikaan, and D. Ruano. Compu-
tational aspects of retrieving a representation of an algebraic geometry code.
Submitted, 2013. (Cited on pages 10 and 17.)

[80] I. Márquez-Corbella, E. Martínez-Moro, and E. Suárez-Canedo. Error-
correcting pairs for public-key cryptosystem. Submitted, 2013. (Cited on
pages 10 and 17.)

[81] I. Márquez-Corbella, E. Martínez-Moro, and E. Suárez-Canedo. On the com-
position of secret sharing schemes related to codes. Submitted, 2013. (Cited
on pages 4, 10, and 17.)

[82] I. Márquez-Corbella, E. Martínez-Moro, and E. Suárez-Canedo. On the ideal
associated to a linear code. Submitted, 2013. (Cited on pages 10 and 17.)

[83] E. Martínez-Moro, J. Mozo-Fernández, and C. Munuera. Compounding secret
sharing schemes. Australian Journal of Combinatorics, 30, 2004. (Cited on
page 4.)

[84] J. L. Massey. Minimal codewords and secret sharing, 1993. (Cited on pages 4,
11, 50, and 90.)

[85] A. May, A. Meurer, and E. Thomae. Decoding random linear codes in
� (20.054n). In ASIACRYPT, pages 107–124, 2011. (Cited on page 35.)

[86] R. J. McEliece. A public-key cryptosystem based on algebraic coding the-
ory, 1978. Jet Propulsion Laboratory DSN Progress Report 42–44. http:
//ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF. (Cited
on page 35.)

204 Bibliography

[87] E. Miller and B. Sturmfels. Combinatorial Commutative Algebra. Graduate
Texts in Mathematics. Springer, 2004. (Cited on page 24.)

[88] T. Mora. Solving polynomial equation systems II = Macaulay’s paradigm and
Gröbner technology. Cambridge University Press, Encyclopedia of Mathematics
and its Applications 99, 2005. (Cited on page 144.)

[89] C. Munuera. Algebraic Geometry Modeling in Information Theory, volume 8
of Coding Theory and Cryptology, chapter Steganography from a coding the-
ory point of view. World Scientific Publishing Company Incorporated, 2013.
(Cited on pages 4 and 12.)

[90] J. G. Oxley. Matroid Theory. Oxford Graduate Texts in Mathematics Series.
Oxford University Press, 2006. (Cited on pages 24 and 80.)

[91] C. H. Papadimitriou. On the complexity of integer programming. J. ACM,
28(4):765–768, October 1981. (Cited on page 82.)

[92] Y. Park. Modular independence and generator matrices for codes over �m.
Designs, Codes and Cryptography, 50:147–162, 2009. (Cited on pages 31
and 32.)

[93] C. Peters. Information-set decoding for linear codes over Fq. In PQCrypto
2010, pages 81–94, 2010. (Cited on page 35.)

[94] E. Prange. Step-by-step decoding in groups with weight function. part 1. AIR
FORCE CAMBRIDGE RESEARCH LABS HANSCOM AFB MA, 1961. (Cited on
pages 34 and 126.)

[95] E. Prange. The use of information sets in decoding cyclic codes. IRE Transac-
tions on Information Theory, 8(5):5–9, September 1962. (Cited on page 35.)

[96] A. Renvall, C. Ding, J. Pieprzyk, and J. Seberry. Information Security and Pri-
vacy, volume 1172, pages 67–78. Springer Berlin / Heidelberg, 1996. (Cited
on pages 4 and 11.)

[97] J. C. Rosales. On presentations of subsemigroups of Nn. Semigroup Forum,
55(2):152–159, 1997. (Cited on pages 81 and 102.)

[98] M. Sala, T. Mora, and L. Perret. Gröbner Bases, Coding, and Cryptography.
Springer, 2009. (Cited on pages 24, 46, and 47.)

[99] P. Samuel and A. J. Silberger. Algebraic Theory Of Numbers. Dover Books on
Mathematics Series. Dover Publications, 2008. (Cited on page 127.)

[100] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons,
Inc., New York, NY, USA, 1986. (Cited on page 82.)

[101] C. E. Shannon. A mathematical theory of communication. Bell Systems Tech-
nical Journal, 27:379–423,623–656, 1948. http://cm.bell-labs.com/
cm/ms/what/shannonday/paper.html. (Cited on pages 23 and 24.)

Bibliography 205

[102] J. D. H. Smith. Loop transversals to linear codes. J. Combin. Inform. System
Sci., 17:1–8, 1992. (Cited on page 76.)

[103] R. P. Stanley. Combinatorics and Commutative Algebra:. Progress in Mathemat-
ics. Birkhäuser Boston, 2004. (Cited on page 24.)

[104] W. A. Stein et al. Sage Mathematics Software (Version 4.7.2). The Sage De-
velopment Team, 2012. http://www.sagemath.org. (Cited on pages 107
and 116.)

[105] J. Stern. A method for finding codewords of small weight. In Gérard D. Cohen
and Jacques Wolfmann, editors, Coding theory and applications, volume 388
of Lecture Notes in Computer Science, pages 106–113. Springer-Verlag Berlin
Heidelberg New York, 1989. (Cited on page 35.)

[106] B. Sturmfels. Grobner bases of toric varieties. Tohoku mathematical journal.
Second series, 43(2):249–261, june 1991. (Cited on page 24.)

[107] B. Sturmfels. Gröbner bases and convex polytopes, volume 8 of University Lec-
ture Series. American Mathematical Society, Providence, RI, 1996. (Cited on
pages 24, 81, 82, 88, 89, 165, 178, and 180.)

[108] B. Sturmfels and R. R. Thomas. Variation of cost functions in integer program-
ming. Mathematical Programming, 77:357–387, 1994. (Cited on page 24.)

[109] A. Thomas. Construction of set theoretic complete intersections via semigroup
gluing. Beiträge Algebra Geom., 41(1):195–198, 2000. (Cited on pages 81
and 102.)

[110] R. R. Thomas. A geometric buchberger algorithm for integer programming.
Mathematics of Operations Research, 20:864–884, 1995. (Cited on page 24.)

[111] W. T. Tutte. Lectures on matroids, volume 69B of Journal of Research of the Na-
tional Bureau of Standards-B. Mathematics and Mathematical Physics. National
Bureau of Standards, 1965. (Cited on page 80.)

[112] J. H. Van Lint. Introduction to Coding Theory. Graduate Texts in Mathematics.
Springer, 1999. (Cited on page 24.)

[113] J. van Tilburg. On the McEliece public-key cryptosystem. In Shafi Goldwasser,
editor, CRYPTO ’88, volume 403 of Lecture Notes in Computer Science, pages
119–131. Springer-Verlag Berlin Heidelberg, 1990. (Cited on page 35.)

[114] J. van Tilburg. Security-analysis of a class of cryptosystems based on linear error-
correcting codes. PhD thesis, Eindhoven University of Technology, Netherlands,
1994. (Cited on page 35.)

[115] A. Vigneron-Tenorio. Álgebra de Semigrupos y Aplicaciones. PhD thesis, Uni-
versidad de Sevilla, 2000. (Cited on page 180.)

206 Bibliography

[116] T. Wadayama, K. Nakamura, M. Yagita, Y. Funahashi, S. Usami, and I. Takumi.
Gradient descent bit flipping algorithms for decoding ldpc codes. Communica-
tions, IEEE Transactions on, 58(6):1610 –1614, june 2010. (Cited on page 34.)

[117] B. L. van der. Waerden. Modern Algebra, volume 1. Springer Verlang, second
edition, 1937. (Cited on page 24.)

[118] D. J. A. Welsh. Matroid Theory. Dover Books on Mathematics. Dover Publica-
tions, 2010. (Cited on page 24.)

[119] N. White. Theory of Matroids. Encyclopedia of Mathematics and its Applica-
tions. Cambridge University Press, 2008. (Cited on page 24.)

[120] H. Whitney. On the abstract properties of linear dependence. American Jour-
nal of Mathematics, 57:509–533, 1935. (Cited on page 24.)

[121] J. M. Wozencraft. List decoding. Quarterly Progress Report, pages 90–95, Jan.
1958. (Cited on page 35.)

Index

S-polynomial, 36, 38
� -Border, 37, 71, 139

index, 38
prebasis, 38

� -remainder, 39
m-gluing code, 100
t-error correcting, 22

Algorithm
border division, 39
Buchberger’s, 35
CLBC, 50
CLBC2, 58
computing a Graver basis, 85, 162
computing the set CL(y), 61
Conti-Traverso, 78
division, 32
extended Conti-Traverso, 81
FGLM, 37
FGLM for linear codes, 143
FGLM for modular code, 93
GDDA using (� ∗,φ∗), 70
GDDA using the function φ, 68
gröbner representation, 48, 130
gradient-like decoding, 29
leader GDDA, 66, 141
minimal Gröbner test-set, 159
test-set GDDA, 66, 141

Border basis, 38, 41, 138
Border of a code, 70, 139

head, 71, 139
reduced, 71, 139
tail, 71, 139

Boundary, 62

Canonical form, 53, 131
Channel

capacity, 20
discrete memoryless, 21

Circuit, 84
Codeword, 20, 22
Complexity

space, 28
time, 28

Coset, 24
minimum weight, 24

Coset leaders, 24, 134
Covering radius, 55, 56, 60, 145

Decoding, 21
CDP, 28
complete, 28
function, 21, 22
gradient descent, 29, 65, 140
information-set, 30
list-decoding, 31
MDD, 28, 67
minimal-vector, 29
MLD, 28
step by step, 29
syndrome, 28, 65
unique, 28
Zero-Neighbours, 67

Dual code, 23

Encoding, 20, 23
function, 20
systematic, 23

Error-correcting code, 20
Error-correction capacity, 22, 28

Generator matrix, 23
standard, 23
systematic, 23

Gröbner basis, 34, 41

207

208 Index

reduced, 34, 47
Gröbner representation, 46, 129
Gröbner test-set, 79

minimal, 159
Graver basis, 84, 161

Hamming
distance, 22
weight, 22

Ideal, 33
initial, 34
order, 37

Information rate, 21, 22
Information-set, 23, 30
Inner product, 23
Integer LP problem, 77

Lattice, 176
ideal, 176

Lawrence lifting, 85, 161
modulo q, 86

Leader codewords, 58
Linear code, 22
Loop Transversal Codes, 72

Matroid, 42
�q-representable, 42, 109
basis, 42
circuit, 42
cycle, 42
rank, 42

MDS code, 22
Minimal support codeword, 25
Minimum

distance, 22, 23, 56
weight, 22

Minimum distance
relative, 21

Modular
independent, 26

Modular code, 26, 76
basis, 27
generator matrix, 27
rank, 27

Modular Integer program, 79

Neighbours, 38
Newton radius, 55
Normal form, 34, 41, 137

Parity check matrix, 23
Perfect codes, 57, 64, 145
Polynomial

leading coefficient, 32
leading monomial, 32
leading term, 32
support, 32

Primitive binomial, 84, 160
Punctured code, 98

Reduced Border, 139
Reduction

in one step, 136
Redundancy, 22

Semigroup, 174
algebra, 175
cancellative, 174
combinatorially finite, 174
finitely generated, 174
ideal, 176

Shortened code, 99
Singleton bound, 22
Standard form, 136
Standard monomials, 34
Subsemigroup, 175
Sum code, 99
Syndrome, 24

Term order, 31
adapted to a MI program, 81
deglex, 32
degrevlex, 32
induced by a cost vector, 78
lexicographical, 31
lexrev, 32
POT, 91
TOP, 91
total degree, 32
weight compatible, 49
well ordering, 31

Test-set, 25, 29, 138, 139, 141, 168

Index 209

integer LP problem, 78
universal, 79, 85

Toric ideal, 176
Torsion group, 175

Universal Gröbner basis, 84, 160

Voronoi region, 25, 62

Weight Distribution
of the Coset Leaders, 55

Word, 22
support, 22

Zero-neighbours, 29, 62

210 Index

Index 211

Irene Márquez-Corbella was born on September 20, 1985

in Tenerife, Canary Islands. She received her diploma in

mathematics in 2008 from the University of La Laguna.

In 2009, she was awarded by “La Caixa” foundation and

the Government of France with an scholarship for Msc

studies which allow her to accomplish a Master degree at

the University of Diderot-Paris VII and an intership at

the Security Lab in Gemalto, Meudon (France). In 2010

she got her MsC in Mathematics at the Univesity of Va-

lladolid and started her PhD studies under the support

of the FPU scholarship from the Spanish Governement

and the research group SINGACOM (from the Institute

of Mathematics, UVa). The present dissertation contains

the result of part of her work from 2009 to 2013.

‘Combinatorial Commutative Algebra
Approach to Complete Decoding’

This thesis aims to explore the bridge between the al-

gebraic structure of a code and the complete decoding

process. Although complete decoding is an NP-problem,

even if preprocessing is allowed, we propose alternative

algorithms and new techniques to tackle such problem.

This problem has many applications not only in Coding

Theory but also in other areas of Information Security

such as Cryptography and Steganography.

This memory is intended to be as much self contained as

possible, providing the whole theoretical setting behing

the structure used as well as the computational tools

needed, namely Gröbner and Border basis.

Institute of Mathematics University of Valladolid • http://www.imuva.uva.es/

SINGACOM Group • http://www.singacom.uva.es

